
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Formal Proofs for Cryptography — Continued

Turn on Recording!

Final Projects
• See Piazza for a message about the course projects (which

count 50% of the overall course grade).
• We will have a series of 20 minute project presentations on

Tuesday, April 28, and Thursday, April 30.
• The schedule is on Piazza.
• Each team will share one of their screens on Zoom.
• You may present slides, or use Emacs to demonstrate

code.
• Final reports — of approximately 5 pages — will be due on

Wednesday, May 6, at 2pm.
• You should also submit a zip or tar archive of any code you

have written.

3

Review from the Class
Before Spring Break

Symmetric Encryption from PRF + Randomness
• We are studying a symmetric encryption scheme built out of a

pseudorandom function plus randomness.
• Symmetric encryption means the same key is used for both

encryption and decryption.
• We’ll review the definition of when a symmetric encryption

scheme is IND-CPA (indistinguishability under chosen
plaintext attack) secure.

• We’ll also review our instance of this scheme, and our
informal analysis of adversaries’ strategies for breaking
security.

• You can find all the definitions and the proofs on GitHub:

https://github.com/alleystoughton/EasyTeach/
tree/master/encryption

5

https://github.com/alleystoughton/EasyTeach/tree/master/encryption
https://github.com/alleystoughton/EasyTeach/tree/master/encryption

Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is

parameterized by three types:
type key. (* encryption keys, key_len bits *)
type text. (* plaintexts, text_len bits *)
type cipher. (* ciphertexts - scheme specific *)

• An encryption scheme is a stateless implementation of this
module interface:

module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
}.

6

Scheme Correctness
• An encryption scheme is correct if and only if the following

procedure returns true with probability 1 for all arguments:
module Cor (Enc : ENC) = {
 proc main(x : text) : bool = {
 var k : key; var c : cipher; var y : text;
 k <@ Enc.key_gen();
 c <@ Enc.enc(k, x);
 y <@ Enc.dec(k, c);
 return x = y;
 }
}.

• The module Cor is parameterized (may be applied to) an
arbitrary encryption scheme, Enc.

7

Encryption Oracles
• To define IND-CPA security of encryption schemes, we need

the notion of an encryption oracle, which both the adversary
and IND-CPA game will interact with:

module type EO = {
 (* initialization - generates key *)
 proc * init() : unit
 (* encryption by adversary before game's encryption *)
 proc enc_pre(x : text) : cipher
 (* one-time encryption by game *)
 proc genc(x : text) : cipher
 (* encryption by adversary after game's encryption *)
 proc enc_post(x : text) : cipher
}.

8

Standard Encryption Oracle
• Here is the standard encryption oracle, parameterized by an

encryption scheme, Enc:
module EncO (Enc : ENC) : EO = {
 var key : key
 var ctr_pre : int
 var ctr_post : int

 proc init() : unit = {
 key <@ Enc.key_gen();
 ctr_pre <- 0; ctr_post <- 0;
 }

9

Standard Encryption Oracle
 proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }

10

Standard Encryption Oracle
 proc genc(x : text) : cipher = {
 var c : cipher;
 c <@ Enc.enc(key, x);
 return c;
 }

11

Standard Encryption Oracle
 proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }
}.

12

Encryption Adversary
• An encryption adversary is parameterized by an encryption

oracle:
module type ADV (EO : EO) = {
 (* choose a pair of plaintexts, x1/x2 *)
 proc * choose() : text * text {EO.enc_pre}

 (* given ciphertext c based on a random boolean b
 (the encryption using EO.genc of x1 if b = true,
 the encryption of x2 if b = false), try to guess b
 *)
 proc guess(c : cipher) : bool {EO.enc_post}
}.

• Adversaries may be probabilistic.

13

IND-CPA Game
• The IND-CPA Game is parameterized by an encryption

scheme and an encryption adversary:
module INDCPA (Enc : ENC, Adv : ADV) = {
 module EO = EncO(Enc) (* make EO from Enc *)
 module A = Adv(EO) (* connect Adv to EO *)
 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init(); (* initialize EO *)
 (x1, x2) <@ A.choose(); (* let A choose x1/x2 *)
 b <$ {0,1}; (* choose boolean b *)
 c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
 b' <@ A.guess(c); (* let A guess b from c *)
 return b = b'; (* see if A won *)
 }
}.

14

IND-CPA Game

15

Enc

EO Adv

Game

IND-CPA Game
• If the value b’ that Adv returns is independent of the random

boolean b, then the probability that Adv wins the game will be
exactly 1/2.
• E.g., if Adv always returns true, it’ll win half the time.

• The question is how much better it can do—and we want to
prove that it can’t do much better than win half the time.
• But this will depend upon the quality of the encryption

scheme.
• An adversary that wins with probability greater than 1/2 can

be converted into one that loses with that probability, and vice
versa. When formalizing security, it’s convenient to upper-
bound the distance between the probability of the adversary
winning and 1/2.

16

IND-CPA Security
• In our security theorem for a given encryption scheme Enc

and adversary Adv, we prove an upper bound on the
absolute value of the difference between the probability that
Adv wins the game and 1/2:

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r|
 <= … Adv …
• Ideally, we’d like the upper bound to be 0, so that the

probability that Enc wins is exactly 1/2, but this won’t be
possible.

• The upper bound may also be a function of the number of bits
text_len in text and the encryption oracle limits
limit_pre and limit_post.

17

IND-CPA Security
• Q: Because the adversary can call the encryption oracle with

the plaintexts x1/x2 it goes on to choose, why isn’t it
impossible to define a secure scheme?
• A: Because encryption can (must!) involve randomness.

• Q: What is the rationale for letting the adversary call enc_pre
and enc_post at all?
• A: It models the possibility that the adversary may be able

to influence which plaintexts are encrypted.
• Q: What is the rationale for limiting the number of times
enc_pre and enc_post may be called?
• A: There will probably be some limit on the adversary’s

influence on what is encrypted.

18

Pseudorandom Functions
• Our pseudorandom function (PRF) is an operator F with this

type:
op F : key -> text -> text.

• For each value k of type key, (F k) is a function from text to
text.

• Since key is a bitstring of length key_len, then there are at
most 2key_len of these functions.

• If we wanted, we could try to spell out the code for F, but we
choose to keep F abstract.

• How do we know if F is a “good” PRF?

19

Pseudorandom Functions
• We will assume that dtext (dkey) is a sub-distribution on
text (key) that is a distribution (is “lossless”), and where
every element of text (key) has the same non-zero value:

op dtext : text distr.
op dkey : key distr.

• A random function is a module with the following interface:
module type RF = {

 (* initialization *)

 proc * init() : unit

 (* application to a text *)

 proc f(x : text) : text

}.

20

Pseudorandom Functions
• Here is a random function made from our PRF F:
module PRF : RF = {
 var key : key
 proc init() : unit = {
 key <$ dkey;
 }
 proc f(x : text) : text = {
 var y : text;
 y <- F key x;
 return y;
 }
}.

21

Pseudorandom Functions
• Here is a random function made from true randomness:
module TRF : RF = {
 (* mp is a finite map associating texts with texts *)
 var mp : (text, text) fmap
 proc init() : unit = {
 mp <- empty; (* empty map *)
 }
 proc f(x : text) : text = {
 var y : text;
 if (! x \in mp) { (* give x a random value in *)
 y <$ dtext; (* mp if not already in mp's domain *)
 mp.[x] <- y;
 }
 return oget mp.[x]; (* return value of x in mp *)
 }
}.

22

Pseudorandom Functions
• A random function adversary is parameterized by a random

function module:
module type RFA (RF : RF) = {
 proc * main() : bool {RF.f}
}.

23

Pseudorandom Functions
• Here is the random function game:
module GRF (RF : RF, RFA : RFA) = {
 module A = RFA(RF)
 proc main() : bool = {
 var b : bool;
 RF.init();
 b <@ A.main();
 return b;
 }
}.
• A random function adversary RFA tries to tell the PRF and true

random functions apart, by returning true with different
probabilities.

24

Pseudorandom Functions
• Our PRF F is “good” if and only if the following is small,

whenever RFA is limited in the amount of computation it may
do (maybe we say it runs in polynomial time):

 `|Pr[GRF(PRF, RFA).main() @ &m : res] -
 Pr[GRF(TRF, RFA).main() @ &m : res]|
• RFA must be limited, because there will typically be many

more true random functions than functions of the form (F k),
where k is a key (there are at most 2key_len such functions).
• Since text_len is the number of bits in text, then there

will be 2text_len ^ 2text_len distinct maps from text to
text.

• Thus, with enough running time, RFA may be able to tell
with reasonable probability if it’s interacting with a PRF
random function or a true random function.

25

Our Symmetric Encryption Scheme
• We construct our encryption scheme Enc out of F:

(+^) : text -> text -> text (* bitwise exclusive or *)

type cipher = text * text. (* ciphertexts *)

module Enc : ENC = {
 proc key_gen() : key = {
 var k : key;
 k <$ dkey;
 return k;
 }

26

Our Symmetric Encryption Scheme
 proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$ dtext;
 return (u, x +^ F k u);
 }

 proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v +^ F k u;
 }
}.

27

Correctness
• Suppose that enc(k, x) returns c = (u, x +^ F k u),

where u is randomly chosen.
• Then dec(k, c) returns (x +^ F k u) +^ F k u = x.

28

Adversarial Attack Strategy
• Before picking its pair of plaintexts, the adversary can call
enc_pre some number of times with the same argument,
text0 (the bitstring of length text_len all of whose bits are
0).

• This gives us …, (ui, text0 +^ F key ui), …, i.e., …,
(ui, F key ui), …

• Then, when genc encrypts one of x1/x2, it may happen that
we get a pair (ui, xj +^ F key ui) for one of them,
where ui appeared in the results of calling enc_pre.

• But then

F key ui +^ (xj +^ F key ui) = text0 +^ xj = xj

29

Adversarial Attack Strategy
• Similarly, when calling enc_post, before returning its

boolean judgement b to the game, a collision with the left-
side of the cipher text passed from the game to the adversary
will allow it to break security.

• Suppose, again, that the adversary repeatedly encrypts
text0 using enc_pre, getting …, (ui, F key ui), …

• Then by experimenting directly with F with different keys, it
may learn enough to guess, with reasonable probability, key
itself.

• This will enable it to decrypt the cipher text c given it by the
game, also breaking security.

• Thus we must assume some bounds on how much work the
adversary can do (we can’t tell if it’s running F).

30

IND-CPA Security for Our Scheme
• Our security upper bound
`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r|
 <= …

will be a function of:

(1) the ability of a random function adversary constructed
from Adv to tell the PRF random function from the true
random function; and

(2) the number of bits text_len in text and the
encryption oracles limits limit_pre and limit_post.

• Q: Why doesn’t the upper bound also involve ken_len, the
number of bits in key?
• A: that’s part of (1).

31

Next: Proof of
IND-CPA Security

Sequence of Games Approach
• Our proof of IND-CPA security uses the sequence of games

approach, which is used to connect a “real” game R with an
“ideal” game I via a sequence of intermediate games.

• Each of these games is parameterized by the adversary, and
each game has a main procedure returning a boolean.

• We want to establish an upper bound for
`| Pr[R.main() @ &m : res] - Pr[I.main() : res] |

33

R IG1 G2 G3

Sequence of Games Approach
• Suppose we can prove
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4

for some b1, b2, b3 and b4. Then we can conclude
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <=

 ??

34

R IG1 G2 G3

Sequence of Games Approach
• Suppose we can prove
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4

for some b1, b2, b3 and b4. Then we can conclude
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <=

 b1 + b2 + b3 + b4

35

R IG1 G2 G3

Sequence of Games Approach
• This follows using the triangular inequality:

`| x - z | <= `| x - y | + `| y - z |.
• Q: what can our strategy be to establish an upper bound for

the following?
`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r|

• A: We can use a sequence of games to connect
INDCPA(Enc, Adv) to an ideal game I such that

Pr[I.main() @ &m : res] = 1%r / 2%r.
• The overall upper bound will be the sum b1 + … + bn of the

sequence b1, …, bn of upper bounds of the steps of the
sequence of games.

36

Sequence of Games Approach
• Q: But how do we know what this I should be?
• A: We start with INDCPA(Enc, Adv) and make a sequence

of simplifications, hoping to get to such an I.
• Some simplifications work using code rewriting, like inlining.

(The upper bound for such a step is 0.)
• Some simplifications work using cryptographic reductions,

like the reduction to the security of PRFs.
• The upper bound for such a step involves a constructed

adversary for the security game of the reduction.
• Some simplifications make use of “up to bad” reasoning,

meaning they are only valid when a bad event doesn’t hold.
• The upper bound for such a step is the probability of the

bad event happening.

37

Starting the Proof in a Section
• First, we enter a “section”, and declare our adversary Adv as

not interfering with certain modules and as being lossless:
section.

declare module Adv : ADV{EncO, PRF, TRF, Adv2RFA}.

axiom Adv_choose_ll :

 forall (EO <: EO{Adv}),

 islossless EO.enc_pre => islossless Adv(EO).choose.

axiom Adv_guess_ll :

 forall (EO <: EO{Adv}),

 islossless EO.enc_post => islossless Adv(EO).guess.

38

Step 1: Replacing PRF with TRF
• In our first step, we switch to using a true random function

instead of a pseudorandom function in our encryption
scheme.
• We have an exact model of how the TRF works.

• When doing this, we inline the encryption scheme into a new
kind of encryption oracle, EO_RF, which is parameterized by
a random function.

• We also instrument EO_RF to detect two kinds of
“clashes” (repetitions) in the generation of the inputs to the
random function.

• This is in preparation for Steps 2 and 3.

39

