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Turn on Recording!



Final Projects
• See Piazza for a message about the course projects (which 

count 50% of the overall course grade). 
• We will have a series of 20 minute project presentations on 

Tuesday, April 28, and Thursday, April 30. 
• The schedule is on Piazza. 
• Each team will share one of their screens on Zoom. 
• You may present slides, or use Emacs to demonstrate 

code. 
• Final reports — of approximately 5 pages — will be due on 

Wednesday, May 6, at 2pm. 
• You should also submit a zip or tar archive of any code you 

have written.
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Review from the Class 
Before Spring Break



Symmetric Encryption from PRF + Randomness
• We are studying a symmetric encryption scheme built out of a 

pseudorandom function plus randomness. 
• Symmetric encryption means the same key is used for both 

encryption and decryption. 
• We’ll review the definition of when a symmetric encryption 

scheme is IND-CPA (indistinguishability under chosen 
plaintext attack) secure. 

• We’ll also review our instance of this scheme, and our 
informal analysis of adversaries’ strategies for breaking 
security. 

• You can find all the definitions and the proofs on GitHub: 

https://github.com/alleystoughton/EasyTeach/
tree/master/encryption
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Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is 

parameterized by three types: 
type key.  (* encryption keys, key_len bits *) 
type text.  (* plaintexts, text_len bits *) 
type cipher.  (* ciphertexts - scheme specific *) 

• An encryption scheme is a stateless implementation of this 
module interface: 

module type ENC = { 
  proc key_gen() : key  (* key generation *) 
  proc enc(k : key, x : text) : cipher  (* encryption *) 
  proc dec(k : key, c : cipher) : text  (* decryption *) 
}. 
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Scheme Correctness
• An encryption scheme is correct if and only if the following 

procedure returns true with probability 1 for all arguments: 
module Cor (Enc : ENC) = { 
  proc main(x : text) : bool = { 
    var k : key; var c : cipher; var y : text; 
    k <@ Enc.key_gen(); 
    c <@ Enc.enc(k, x); 
    y <@ Enc.dec(k, c); 
    return x = y; 
  } 
}. 

• The module Cor is parameterized (may be applied to) an 
arbitrary encryption scheme, Enc.
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Encryption Oracles
• To define IND-CPA security of encryption schemes, we need 

the notion of an encryption oracle, which both the adversary 
and IND-CPA game will interact with: 

module type EO = { 
  (* initialization - generates key *) 
  proc * init() : unit 
  (* encryption by adversary before game's encryption *) 
  proc enc_pre(x : text) : cipher 
  (* one-time encryption by game *) 
  proc genc(x : text) : cipher 
  (* encryption by adversary after game's encryption *) 
  proc enc_post(x : text) : cipher 
}. 
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Standard Encryption Oracle
• Here is the standard encryption oracle, parameterized by an 

encryption scheme, Enc:
module EncO (Enc : ENC) : EO = { 
  var key : key 
  var ctr_pre : int 
  var ctr_post : int 

  proc init() : unit = { 
    key <@ Enc.key_gen(); 
    ctr_pre <- 0; ctr_post <- 0; 
  } 
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Standard Encryption Oracle
  proc enc_pre(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_pre < limit_pre) { 
      ctr_pre <- ctr_pre + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 
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Standard Encryption Oracle
  proc genc(x : text) : cipher = { 
    var c : cipher; 
    c <@ Enc.enc(key, x); 
    return c; 
  } 
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Standard Encryption Oracle
  proc enc_post(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_post < limit_post) { 
      ctr_post <- ctr_post + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 
}. 
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Encryption Adversary
• An encryption adversary is parameterized by an encryption 

oracle: 
module type ADV (EO : EO) = { 
  (* choose a pair of plaintexts, x1/x2 *) 
  proc * choose() : text * text {EO.enc_pre} 

  (* given ciphertext c based on a random boolean b 
     (the encryption using EO.genc of x1 if b = true, 
      the encryption of x2 if b = false), try to guess b  
  *) 
  proc guess(c : cipher) : bool {EO.enc_post} 
}. 

• Adversaries may be probabilistic. 
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IND-CPA Game
• The IND-CPA Game is parameterized by an encryption 

scheme and an encryption adversary: 
module INDCPA (Enc : ENC, Adv : ADV) = { 
  module EO = EncO(Enc)        (* make EO from Enc *) 
  module A = Adv(EO)           (* connect Adv to EO *) 
  proc main() : bool = { 
    var b, b' : bool; var x1, x2 : text; var c : cipher; 
    EO.init();                 (* initialize EO *) 
    (x1, x2) <@ A.choose();    (* let A choose x1/x2 *) 
    b <$ {0,1};                (* choose boolean b *) 
    c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *) 
    b' <@ A.guess(c);          (* let A guess b from c *) 
    return b = b';             (* see if A won *) 
  } 
}. 
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IND-CPA Game
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IND-CPA Game
• If the value b’ that Adv returns is independent of the random 

boolean b, then the probability that Adv wins the game will be 
exactly 1/2. 
• E.g., if Adv always returns true, it’ll win half the time. 

• The question is how much better it can do—and we want to 
prove that it can’t do much better than win half the time. 
• But this will depend upon the quality of the encryption 

scheme. 
• An adversary that wins with probability greater than 1/2 can 

be converted into one that loses with that probability, and vice 
versa. When formalizing security, it’s convenient to upper-
bound the distance between the probability of the adversary 
winning and 1/2. 
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IND-CPA Security
• In our security theorem for a given encryption scheme Enc 

and adversary Adv, we prove an upper bound on the 
absolute value of the difference between the probability that 
Adv wins the game and 1/2: 

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| 
   <= … Adv … 
• Ideally, we’d like the upper bound to be 0, so that the 

probability that Enc wins is exactly 1/2, but this won’t be 
possible. 

• The upper bound may also be a function of the number of bits 
text_len in text and the encryption oracle limits 
limit_pre and limit_post.
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IND-CPA Security
• Q: Because the adversary can call the encryption oracle with 

the plaintexts x1/x2 it goes on to choose, why isn’t it 
impossible to define a secure scheme? 
• A: Because encryption can (must!) involve randomness. 

• Q: What is the rationale for letting the adversary call enc_pre 
and enc_post at all? 
• A: It models the possibility that the adversary may be able 

to influence which plaintexts are encrypted. 
• Q: What is the rationale for limiting the number of times 
enc_pre and enc_post may be called? 
• A: There will probably be some limit on the adversary’s 

influence on what is encrypted.
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Pseudorandom Functions
• Our pseudorandom function (PRF) is an operator F with this 

type: 
op F : key -> text -> text. 

• For each value k of type key, (F k) is a function from text to 
text. 

• Since key is a bitstring of length key_len, then there are at 
most 2key_len of these functions. 

• If we wanted, we could try to spell out the code for F, but we 
choose to keep F abstract. 

• How do we know if F is a “good” PRF? 
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Pseudorandom Functions
• We will assume that dtext (dkey) is a sub-distribution on 
text (key) that is a distribution (is “lossless”), and where 
every element of text (key) has the same non-zero value: 

op dtext : text distr. 
op dkey  : key distr. 

• A random function is a module with the following interface: 
module type RF = { 

  (* initialization *) 

  proc * init() : unit 

  (* application to a text *) 

  proc f(x : text) : text 

}. 
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Pseudorandom Functions
• Here is a random function made from our PRF F: 
module PRF : RF = { 
  var key : key 
  proc init() : unit = { 
    key <$ dkey; 
  } 
  proc f(x : text) : text = { 
    var y : text; 
    y <- F key x; 
    return y; 
  } 
}. 
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Pseudorandom Functions
• Here is a random function made from true randomness: 
module TRF : RF = { 
  (* mp is a finite map associating texts with texts *) 
  var mp : (text, text) fmap 
  proc init() : unit = { 
    mp <- empty;  (* empty map *) 
  } 
  proc f(x : text) : text = { 
    var y : text; 
    if (! x \in mp) {   (* give x a random value in *) 
      y <$ dtext;  (* mp if not already in mp's domain *) 
      mp.[x] <- y; 
    } 
   return oget mp.[x];  (* return value of x in mp *) 
  } 
}. 
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Pseudorandom Functions
• A random function adversary is parameterized by a random 

function module: 
module type RFA (RF : RF) = { 
  proc * main() : bool {RF.f} 
}. 
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Pseudorandom Functions
• Here is the random function game: 
module GRF (RF : RF, RFA : RFA) = { 
  module A = RFA(RF) 
  proc main() : bool = { 
    var b : bool; 
    RF.init(); 
    b <@ A.main(); 
    return b; 
  } 
}. 
• A random function adversary RFA tries to tell the PRF and true 

random functions apart, by returning true with different 
probabilities. 
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Pseudorandom Functions
• Our PRF F is “good” if and only if the following is small, 

whenever RFA is limited in the amount of computation it may 
do (maybe we say it runs in polynomial time): 

   `|Pr[GRF(PRF, RFA).main() @ &m : res] - 
     Pr[GRF(TRF, RFA).main() @ &m : res]| 
• RFA must be limited, because there will typically be many 

more true random functions than functions of the form (F k), 
where k is a key (there are at most 2key_len such functions). 
• Since text_len is the number of bits in text, then there 

will be 2text_len ^ 2text_len distinct maps from text to 
text. 

• Thus, with enough running time, RFA may be able to tell 
with reasonable probability if it’s interacting with a PRF 
random function or a true random function. 
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Our Symmetric Encryption Scheme
• We construct our encryption scheme Enc out of F: 

(+^) : text -> text -> text  (* bitwise exclusive or *) 

type cipher = text * text.  (* ciphertexts *) 

module Enc : ENC = { 
  proc key_gen() : key = { 
    var k : key; 
    k <$ dkey; 
    return k; 
  } 
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Our Symmetric Encryption Scheme
  proc enc(k : key, x : text) : cipher = { 
    var u : text; 
    u <$ dtext; 
    return (u, x +^ F k u); 
  } 

  proc dec(k : key, c : cipher) : text = { 
    var u, v : text; 
    (u, v) <- c; 
    return v +^ F k u; 
  } 
}. 
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Correctness
• Suppose that enc(k, x) returns c = (u, x +^ F k u), 

where u is randomly chosen. 
• Then dec(k, c) returns (x +^ F k u) +^ F k u = x. 
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Adversarial Attack Strategy
• Before picking its pair of plaintexts, the adversary can call 
enc_pre some number of times with the same argument, 
text0 (the bitstring of length text_len all of whose bits are 
0). 

• This gives us …, (ui, text0 +^ F key ui), …, i.e., …, 
(ui, F key ui), … 

• Then, when genc encrypts one of x1/x2, it may happen that 
we get a pair (ui, xj +^ F key ui) for one of them, 
where ui appeared in the results of calling enc_pre. 

• But then 

F key ui +^ (xj +^ F key ui) = text0 +^ xj = xj
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Adversarial Attack Strategy
• Similarly, when calling enc_post, before returning its 

boolean judgement b to the game, a collision with the left-
side of the cipher text passed from the game to the adversary 
will allow it to break security. 

• Suppose, again, that the adversary repeatedly encrypts 
text0 using enc_pre, getting …, (ui, F key ui), … 

• Then by experimenting directly with F with different keys, it 
may learn enough to guess, with reasonable probability, key 
itself. 

• This will enable it to decrypt the cipher text c given it by the 
game, also breaking security. 

• Thus we must assume some bounds on how much work the 
adversary can do (we can’t tell if it’s running F).
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IND-CPA Security for Our Scheme
• Our security upper bound 
`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| 
   <= … 

will be a function of: 

(1)  the ability of a random function adversary constructed 
from Adv to tell the PRF random function from the true 
random function; and 

(2)  the number of bits text_len in text and the 
encryption oracles limits limit_pre and limit_post.

• Q: Why doesn’t the upper bound also involve ken_len, the 
number of bits in key? 
• A: that’s part of (1).
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Next: Proof of 
IND-CPA Security



Sequence of Games Approach
• Our proof of IND-CPA security uses the sequence of games 

approach, which is used to connect a “real” game R with an 
“ideal” game I via a sequence of intermediate games. 

• Each of these games is parameterized by the adversary, and 
each game has a main procedure returning a boolean. 

• We want to establish an upper bound for 
`| Pr[R.main() @ &m : res] - Pr[I.main() : res] |
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Sequence of Games Approach
• Suppose we can prove 
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1 

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2 

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3 

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4 

for some b1, b2, b3 and b4. Then we can conclude 
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <= 

  ?? 
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Sequence of Games Approach
• Suppose we can prove 
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1 

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2 

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3 

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4 

for some b1, b2, b3 and b4. Then we can conclude 
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <= 

  b1 + b2 + b3 + b4 
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Sequence of Games Approach
• This follows using the triangular inequality: 

`| x - z | <= `| x - y | + `| y - z |. 
• Q: what can our strategy be to establish an upper bound for 

the following? 
`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| 

• A: We can use a sequence of games to connect 
INDCPA(Enc, Adv) to an ideal game I such that 

Pr[I.main() @ &m : res] = 1%r / 2%r.
• The overall upper bound will be the sum b1 + … + bn of the 

sequence b1, …, bn of upper bounds of the steps of the 
sequence of games. 
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Sequence of Games Approach
• Q: But how do we know what this I should be? 
• A: We start with INDCPA(Enc, Adv) and make a sequence 

of simplifications, hoping to get to such an I. 
• Some simplifications work using code rewriting, like inlining. 

(The upper bound for such a step is 0.) 
• Some simplifications work using cryptographic reductions, 

like the reduction to the security of PRFs. 
• The upper bound for such a step involves a constructed 

adversary for the security game of the reduction. 
• Some simplifications make use of “up to bad” reasoning, 

meaning they are only valid when a bad event doesn’t hold. 
• The upper bound for such a step is the probability of the 

bad event happening.
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Starting the Proof in a Section
• First, we enter a “section”, and declare our adversary Adv as 

not interfering with certain modules and as being lossless: 
section. 

declare module Adv : ADV{EncO, PRF, TRF, Adv2RFA}. 

axiom Adv_choose_ll : 

  forall (EO <: EO{Adv}), 

  islossless EO.enc_pre => islossless Adv(EO).choose. 

axiom Adv_guess_ll : 

  forall (EO <: EO{Adv}), 

  islossless EO.enc_post => islossless Adv(EO).guess. 
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Step 1: Replacing PRF with TRF
• In our first step, we switch to using a true random function 

instead of a pseudorandom function in our encryption 
scheme. 
• We have an exact model of how the TRF works. 

• When doing this, we inline the encryption scheme into a new 
kind of encryption oracle, EO_RF, which is parameterized by 
a random function. 

• We also instrument EO_RF to detect two kinds of 
“clashes” (repetitions) in the generation of the inputs to the 
random function. 

• This is in preparation for Steps 2 and 3.
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