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More on Differential Privacy



Course evaluation
The course evaluation is now available:

Please fill it. 

https://bu.campuslabs.com/courseeval/



Recording
This is a reminder that we will record the class and 
we will post the link on Piazza. 

This is also a reminder to myself to start recording!



From the previous classes



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database D, D and for every S⊆R:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δ



(ε,δ)-indistinguishability

We can define a ε-skewed version of statistical 
distance. We call this notion ε-distance.

Δε(µ1,µ2)=supE⊆A max(µ1(E)-eεµ2(E), µ2(E)-eεµ1(E),0)

We say that two distributions µ1, µ2 ∈D(A), are at  
(ε,δ)-indistinguishable if:

Δε(µ1,µ2) ≤ δ



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ
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apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



Validity of apRHL judgments

We say that the quadruple ⊢ε,δ c1~c2:P⇒Q 
is valid if and only if for every pair of 
memories m1,m2 such that P(m1,m2) we 
have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qε,δ*(μ1,μ2).



R-ε-δ-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-ε-δ-coupling between them, for 
R⊆AxB and 0≤ε and 0≤δ≤1, if there are two 
joint distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δε(µL,µR)≤δ



Today: More on 
apRHL



Releasing privately the 
mean of Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i]; 
    i:=i+1; 
 z:=$ lap eps s;  
 z:= (s/i)+z;  
 return z

I am using the easycrypt notation here where lap eps a 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



apRHL 
Laplace

x1:=$ Lap(ε,y1)  
~ 
x2:=$ Lap(ε,y2)  
:|y1-y2|≤1 ==> = 

⊢ε,0



R

q(b∪{x}) q(b∪{y})

Global Sensitivity

GSq = max{ |q(D) − q(D′ ) | s.t. D ∼ D′ }



Laplace in EasyCrypt



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-y2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i]; 
    z:=$ lap eps s; 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is (ε1,δ1)-DP 

M2 is (ε2,δ2)-DP 

…
Mn is (εk,δk)-DP 

The overall process is (ε1+ε2+…+εk,δ1+δ2+…+δk)-DP 



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

apRHL 
Composition

 seq 1 1 : (postcondition R) <[ eps1 & del1 ]>.

This corresponds to EC command:



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i]; 
    z:=$ lap eps s; 
    r:= r ++ [z]; 
    i:= i+1; 
 return r



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> 

/\e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk



Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and 
M2:DB →R be a (ε2,δ2)-differentially private program.  Suppose 
that we partition D in a data-independent way into two datasets 
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2)) 
is (max(ε1,ε2),max(δ1,δ2))-differentially private.



Parallel Composition
In EC



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ lap eps d[i]; 
    s:= s + z; 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



Parallel Composition
In EC



Pointwise Differential Privacy
Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is (ε,δ)-
differentially private iff 
for all adjacent database D, D and for every S⊆R:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δ

Pointwise Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is (ε,δ)-
differentially private iff 
for all adjacent database D, D and for every r∈R, we 
have δr such that:

Pr[Q(D)∈ S] ≤ exp(ε)Pr[Q(D’)∈ S] + δr 
and ∑ δr ≤ δ



Above Threshold
aboveT (db :int list,n:int,t:int):int = { 
    s<-0; 
    i <- 0; 
    r <- -1; 
    nT <$ lap (eps/4%r) t; 
    while (i < n) { 
      s <$ lap (eps/2%r) (evalQ i db); 
      if (nT < s /\ r = -1){ 
        r <- i; 
      } 
      i <- i + 1; 
    } 
    return r; 
  }



Pointwise DP in Aprhl

c1~c2 :P ==> x<1> = x<2> ⊢ε,δ

c1~c2 :P ==> x<1>=r => x<2>=r ⊢ε,δr

forall r∈R

∑ δr ≤ δ

The corresponding tactic in EC is  
pweq(r,r)





Review of the class



Formal Semantics

Precondition
Program 

Postcondition

formal semantics 
of programs

We need to assign a formal meaning to the different 
components: formal semantics 

of specification 
conditions

formal semantics 
of specification 

conditions

We also need to describe the rules which 
combine program and specifications.



Programming Language
c::= abort                   
   | skip                 
   | x:=e 
   | c;c 
   | if e then c else c  
   | while e do c 

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands



Summary of the Semantics 
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m



Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Is this condition easy to check?



An example

: {true} ⇒ {y = 3}

x:=3; 
y:=1; 
while x > 1 do 
y := y+1;  
x := x-1; 

⊢



Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.



Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : P ⇒ Q

c : P ⇒ QIf a triple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then



Noninterference
In symbols 
m1 ~low m2 and {c}m1=m1’ and m2’{c}m2=m2’ 
implies m1’ ~low m2’

public public

private private



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

Is this easy to check?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ =low

An example



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… probabilistic expressions



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn = 
let m’={(whilen e do c)}m in {if e then abort}m’



Probabilistic Noninterference as a 
Relational Property

c is probabilistically noninterferent if and only 
if for every m1 ~low m2  : 
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

public
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C public
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private private
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µpu2

µpr2

µpu1 



Probabilistic Relational Hoare 
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q*(μ1,μ2).



Relational lifting of a 
predicate

We say that two subdistributions μ1⊆D(A) 
and μ2⊆D(B) are in the relational lifting of 
the relation R⊆AxB, denoted μ1 R* μ2 if 
and only if there exist a subdistribution 
μ⊆D(AxB) such that: 
1) if μ(a,b)>0, then  (a,b)∈Q. 
2)  and π1(μ) = μ1 π2(μ) = μ2



R-Coupling 
Given two distributions µ1∈D(A), and 
µ2∈D(B), an R-coupling between them, for 
R⊆AxB, is a joint distribution µ∈D(AxB) 
such that: 
1) the marginal distributions of µ are µ1 

and µ2, respectively,  
2) the support of µ is contained in R. That 

is, if μ(a,b)>0, then (a,b)∈R.



A sufficient condition for R-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), and a 
relation R⊆AxB, if there is a mapping h:A→B such 
that: 

1) h is a bijective map between elements in 
supp(µ1) and supp(µ2), 

2) for every a∈supp(µ1),  (a,h(a))∈R
3) Prx~µ1[x=a]=Prx~µ2[x=h(a)] 

Then, there is an R-coupling between µ1 and µ2. 
We write h⊲(µ1,µ2) in this case. 



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

h⊲({d1},{d2}) 
P=∀v,v∈supp({d1}) 
⇒ Q[v/x1<1>,h(v)/x2<2>]

Probabilistic Relational Hoare Logic 
Random Assignment



Consequences of Coupling

⊢ c1 ∼ c2 : True ⇒ Q

Given the following  pRHL judgment

We have that:

if , then Q ⇒ (R⟨1⟩ ⟺ S⟨2⟩) Pr[c1 : R] = Pr[c2 : S]

if , then Q ⇒ (R⟨1⟩ ⇒ S⟨2⟩) Pr[c1 : R] ≤ Pr[c2 : S]



A more realistic example
StreamCipher(m : private msg[n]) : public msg[n] 
 pkey :=$ PRG(Uniform({0,1}k)); 
 cipher := msg xor pkey; 
 return cipher  



Properties of PRG
We would like the PRG to increase the number of 
random bits but also to guarantee the result to be 
(almost) random. 

PRG: {0,1}k → {0,1}n for n>k

Δ(PRG(Uniform({0,1}k),Uniform({0,1}n) ≤ 2-n 

We can express this as:

In fact this is a too strong requirement - usually we 
require that every polynomial time adversary cannot 
distinguish the two distributions in statistical distance



Approximate Probabilistic 
Relational Hoare Logic

⊢δ c1 ∼ c2 : P ⇒ Q
Probabilistic 

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



R-δ-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-δ-coupling between them, for 
R⊆AxB and 0≤δ≤1, if there are two joint 
distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δ(µL,µR)≤δ



Example of R-δ-Coupling

R(a,b)= {a≤b}
OO 0.2
O1 0.25
1O 0.25
11 0.3

OO 0
O1 0.40
1O 0
11 0.6

µ1 µ2

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

OO O1 1O 11
OO 0.20
O1 0.20
1O 0.3
11 0.3

µL µR

∆(µL,µR)=0.05 



Approximate relational  
lifting of a predicate

We say that two subdistributions μ1⊆D(A) 
and μ2⊆D(B) are in the relational δ-lifting of 
the relation R⊆AxB, denoted μ1 Rδ* μ2 if 
and only if there exist an R-coupling 
between them.



Validity of approximate 
Probabilistic Hoare judgments
We say that the quadruple ⊢δ c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qδ*(μ1,μ2).



Releasing the mean of 
Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i] 
    i:=i+1; 
 return (s/i)  



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



(ε,δ)-indistinguishability

We can define a ε-skewed version of statistical 
distance. We call this notion ε-distance.

Δε(µ1,µ2)=supE⊆A max(µ1(E)-eεµ2(E), µ2(E)-eεµ1(E),0)

We say that two distributions µ1, µ2 ∈D(A), are at  
(ε,δ)-indistinguishable if:

Δε(µ1,µ2) ≤ δ



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ
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apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



Validity of apRHL judgments

We say that the quadruple ⊢ε,δ c1~c2:P⇒Q 
is valid if and only if for every pair of 
memories m1,m2 such that P(m1,m2) we 
have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qε,δ*(μ1,μ2).



R-ε-δ-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-ε-δ-coupling between them, for 
R⊆AxB and 0≤ε and 0≤δ≤1, if there are two 
joint distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δε(µL,µR)≤δ



Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is 

parameterized by three types: 
type key.  (* encryption keys, key_len bits *) 

type text.  (* plaintexts, text_len bits *) 

type cipher.  (* ciphertexts - scheme specific *) 

• An encryption scheme is a stateless implementation of this 
module interface: 

module type ENC = { 

  proc key_gen() : key  (* key generation *) 

  proc enc(k : key, x : text) : cipher  (* encryption *) 

  proc dec(k : key, c : cipher) : text  (* decryption *) 

}. 

70



IND-CPA Game
• The IND-CPA Game is parameterized by an encryption scheme 

and an encryption adversary: 
module INDCPA (Enc : ENC, Adv : ADV) = { 
  module EO = EncO(Enc)        (* make EO from Enc *) 
  module A = Adv(EO)           (* connect Adv to EO *) 
  proc main() : bool = { 
    var b, b' : bool; var x1, x2 : text; var c : cipher; 
    EO.init();                 (* initialize EO *) 
    (x1, x2) <@ A.choose();    (* let A choose x1/x2 *) 
    b <$ {0,1};                (* choose boolean b *) 
    c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *) 
    b' <@ A.guess(c);          (* let A guess b from c *) 
    return b = b';             (* see if A won *) 
  } 
}. 

71



Sequence of Games Approach
• Our proof of IND-CPA security uses the sequence of games 

approach, which is used to connect a “real” game R with an 
“ideal” game I via a sequence of intermediate games. 

• Each of these games is parameterized by the adversary, and 
each game has a main procedure returning a boolean. 

• We want to establish an upper bound for 
`| Pr[R.main() @ &m : res] - Pr[I.main() : res] |

72
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Sequence of Games Approach
• Suppose we can prove 
`| Pr[R.main() @ &m : res] - Pr[G1.main() : res] | <= b1 

`| Pr[G1.main() @ &m : res] - Pr[G2.main() : res] | <= b2 

`| Pr[G2.main() @ &m : res] - Pr[G3.main() : res] | <= b3 

`| Pr[G3.main() @ &m : res] - Pr[I.main() : res] | <= b4 

for some b1, b2, b3 and b4. Then we can conclude 
`| Pr[R.main() @ &m : res] - Pr[I.main() @ &m : res] | <= 

  b1 + b2 + b3 + b4 

73
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Step 1: Replacing PRF with TRF
• In our first step, we switch to using a true random function 

instead of a pseudorandom function in our encryption scheme. 
• We have an exact model of how the TRF works. 

• When doing this, we inline the encryption scheme into a new kind 
of encryption oracle, EO_RF, which is parameterized by a 
random function. 

• We also instrument EO_RF to detect two kinds of 
“clashes” (repetitions) in the generation of the inputs to the 
random function. 

• This is in preparation for Steps 2 and 3.
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Step 2: Oblivious Update in genc
• In Step 2, we make use of up to bad reasoning, to transition to a 

game in which the encryption oracle, EO_O, uses a true random 
function and “obliviously” (“O” for “oblivious”) updates the true 
random function’s map — i.e., overwrites what may already be 
stored in the map.
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Step 3: Independent Choice in genc
• In Step 3, we again make use of up to bad reasoning, this time 

transitioning to a game in which the encryption oracle, EO_I, 
chooses the text value to be exclusive or-ed with the plaintext in a 
way that is “independent” (“I” for “independent”) from the true 
random function’s map, i.e., without updating that map. 

• We no longer need to detect “pre” clashes (clashes in genc with 
a u chosen in a call to enc_pre).
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Step 4: One-time Pad Argument
• In Step 4, we can switch to an encryption oracle EO_N in which 

the right side of the ciphertext produced by EO_N.genc makes 
no (“N” for “no”) reference to the plaintext. 

• We no longer need any instrumentation for detecting clashes.
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Step 5: Proving G4’s Probability
• When proving 
local lemma G4_prob &m : 
  Pr[G4.main() @ &m : res] = 1%r / 2%r. 

we can reorder 
  b <$ {0,1}; 
  c <@ EO_N.genc(text0); 
  b' <@ A.guess(c); 
  return b = b'; 

to 
  c <@ EO_N.genc(text0); 
  b' <@ A.guess(c); 
  b <$ {0,1}; 
  return b = b'; 

• We use that Adv’s procedures are lossless.
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IND-CPA Security Result
lemma INDCPA (Adv <: ADV{EncO, PRF, TRF, Adv2RFA}) &m : 
  (forall (EO <: EO{Adv}), 
   islossless EO.enc_pre => islossless Adv(EO).choose) => 
  (forall (EO <: EO{Adv}), 
   islossless EO.enc_post => islossless Adv(EO).guess) => 
  `|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 
    1%r / 2%r| <= 
  `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] - 
    Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| + 
  (limit_pre%r + limit_post%r) / (2 ^ text_len)%r. 

• Q: If we remove the restriction on Adv ({EncO, PRF, TRF, 
Adv2RFA}), what would happen? 

• A: Various tactic applications would fail; e.g., calls to the Adv’s 
procedures, as they could invalidate assumptions. 
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Any Question?




