
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Semantics of programs

From the previous class

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditions

We also need to describe the rules which
combine program and specifications.

A first example
FastExponentiation(n, k : Nat) : Nat
n’:= n; k’:= k; r := 1;
if k’ > 0 then

 while k’ > 1 do
 if even(k’) then
 n’ := n’ ∗ n’;
 k’ := k’/2;

 else
 r := n’ ∗ r;
 n’ := n’ ∗ n’;
 k’ := (k’ − 1)/2;
 r := n’ ∗ r;
 (* result is r *)

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Expressions
We want to be able to write complex programs with our language.

Where f can be any arbitrary operator.

e::= x
 | f(e1,…,en)

Some expression examples

x+5 x mod k x[i] (x[i+1] mod 4)+5

Memories
We can formalize a memory as a map m from variables to values.

m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.

We want to read the value associated to a particular variable:

We want to update the value associated to a particular variable:

m(x)

m[x←v]
This is defined as

m[x←v](y)=
v

m(y)
If x=y
Otherwise{

Semantics of Expressions
This is defined on the structure of expressions:

{x}m = m(x)

{f(e1,…,en)}m = {f}({e1}m,…,{en}m)

where {f} is the semantics associated with the basic operation
we are considering.

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m
 = ({x}m[{i}m{+}{1}m] {mod} {y}m){+}{5}m
 = ({x}m[1{+}1] {mod} 2){+}5
 = ({x}m[2] {mod} 2){+}5
 = (2 {mod} 2){+}5 = 0 {+} 5 = 5

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Today: more on program
semantics

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

We will denote this relation as:

Cmd * Mem * (Mem | ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset
as: JcKm = m0

{c}m=⊥Or

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

Semantics of While
What about while

{while e do c}m = ???

Semantics of While

{while e do c}m = m

{e}m=falseIf Then

What about when {e}m=true ?

Semantics of While

{while e do c}m = {c;while e do c}m

{e}m=trueIf Then we would like to have:

Is this well defined?

Approximating While

whilen e do c

We could define the following syntactic approximations of
a While statement:

This can be defined inductively on n as:

while0 e do c = skip

whilen+1 e do c =
if e then (c;whilen e do c) else skip

We will write

for
if e then c else skip

if e then c

Approximating While

whilen e do c

We could define the following syntactic approximations of
a While statement:

This can be defined inductively on n as:

while0 e do c = skip

whilen+1 e do c =
if e then (c;whilen e do c)

We will write

for
if e then c else skip

if e then c

Semantics of While

{while e do c}m = {whilen e do c}m

We could go back and try to define the semantics using the
approximations:

How do we find the n?

Information order
An idea that has been developed to solve this problem is the
idea of information order.

This corresponds to the idea of order different possible
denotations in term of the information they provide.

In our case we can use the following order on possible
outputs:

⊥

m1 m2 m3 mn… …

≥
≥ ≥ ≥

Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define
the semantics using the approximations and a sup operation:

Will this work?

We are missing the
base case.

Approximating While
Revisited

whilen e do c

We could define the following lower iteration of
a While statement:

This can be defined using the approximations as:

whilen e do c=(whilen e do c);if e then abort

Example

{while e do c}m =supn∊Nat{whilen e do c}m

We now have all the components to define the semantics of while:

Semantics of While

n:=3;
r:=1;
while n > 1 do
r := n ∗ r;
n := n-1;

What is the semantics of the following program:

Semantics of While

Fact(n: Nat) : Nat
 r:=1;
 while n > 1 do
 r := n ∗ r;
 n := n-1;

What is the semantics of the following program:

Summary of the Semantics
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

