
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Example in Hoare Logic and Non-interference

From the previous classes

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Summary of the Semantics
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Rules of Hoare Logic
Skip

⊢skip: P⇒P

Rules of Hoare Logic
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

Invariant

Today 1: More Hoare Logic

Some examples

How can we derive this?

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

Some examples

⊢ x := 3 : {true} ⇒ {x = 3}

⊢ x := 3 : {3 = 3} ⇒ {x = 3}true ⇒ 3 = 3

⊢ y := 1 : {x = 3} ⇒ {x = 3 ∧ y = 1}

x = 3 ⇒ x = 3 ∧ 1 = 1 ⊢ y := 1 : {x = 3 ∧ 1 = 1} ⇒ {x = 3 ∧ y = 1}

⊢ x := 3; y := 1 : {true} ⇒ {x = 3 ∧ y = 1}
x = 3 ∧ y = 1 ⇒ x = 3 ∧ 1 = 1 ∧ y = 4 − x

⊢ x := 3; y := 1 : {true} ⇒ {x = 3 ∧ 1 = 1 ∧ y = 4 − x}

Some examples

: {y = 4 − x ∧ x ≥ 1} ⇒while x > 1 do
y := y+1;
x := x-1

⊢

y := y+1;
x := x-1 ⊢

: {y = 4 − (x − 1) ∧ x − 1 ≥ 1} ⇒ {y = 4 − x ∧ x ≥ 1}x := x-1 ⊢
: {y + 1 = 4 − (x − 1) ∧ x − 1 ≥ 1} ⇒ {y = 4 − (x − 1) ∧ x − 1 ≥ 1}y := y+1 ⊢

y := y+1;
x := x-1 ⊢

y = 4 − x ∧ x ≥ 1 ∧ x > 1 ⇒ y + 1 = 4 − (x − 1) ∧ x − 1 ≥ 1

{y = 4 − x ∧ x ≥ 1 ∧ ¬(x > 1)}

: {y = 4 − x ∧ x ≥ 1 ∧ x > 1} ⇒
{y = 4 − x ∧ x ≥ 1}

{y = 4 − x ∧ x ≥ 1}
: {y + 1 = 4 − (x − 1) ∧ x − 1 ≥ 1} ⇒

{y = 4 − x ∧ x = 1}{y = 4 − x ∧ x ≥ 1 ∧ ¬(x > 1)} ⇒
: {y = 4 − x ∧ x ≥ 1} ⇒while x > 1 do

y := y+1;
x := x-1

⊢ {y = 4 − x ∧ x = 1}

Some examples

: {x = 3 ∧ y = 1 ∧ y = 4 − x} ⇒ {y = 3}
while x > 1 do
y := y+1;
x := x-1;

⊢

: {y = 4 − x ∧ x ≥ 1} ⇒ {y = 4 − x ∧ x = 1}

while x > 1 do
y := y+1;
x := x-1;

⊢

x = 3 ∧ y = 1 ∧ y = 4 − x ⇒ y = 4 − x ∧ x ≥ 1
y = 4 − x ∧ x = 1 ⇒ y = 3

Some examples

: {x = 3 ∧ y = 1 ∧ y = 4 − x} ⇒ {y = 3}
while x > 1 do
y := y+1;
x := x-1;

⊢

{true} ⇒ {x = 3 ∧ 1 = 1 ∧ y = 4 − x}x :=3;
y :=1; ⊢

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢ : {true} ⇒ {y = 3}

How do we know that these
are the right rules?

Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.

Are the rules we presented
sound?

Completeness

⊢c : P ⇒ Q
c : P ⇒ QIf a triple is valid, then

we can derive through

the rules of the logic.

Are the rules we presented
complete?

Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : P ⇒ Q

c : P ⇒ QIf a triple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

Today 2: security as
information flow control

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Private vs Public
We want to distinguish confidential information
that need to be kept secret from nonconfidential
information that can be accessed by everyone.

We assume that every variable is tagged with
one either public or private.

x:public x:private

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

public public

private private

Is this program secure?

x:private
y:public

x:=y

Secure

Is this program secure?

x:private
y:public

y:=x

Insecure

Is this program secure?

x:private
y:public

y:=x;
y:=5

Secure

Is this program secure?
x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Secure

Is this program secure?
x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

Insecure

How can we formulate a
policy that forbids flows
from private to public?

