
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Non-interference

From the previous classes

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Rules of Hoare Logic
Skip

⊢skip: P⇒P

Rules of Hoare Logic
abort

⊢abort: true⇒false

Rules of Hoare Logic
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

Invariant

Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.

Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : P ⇒ Q

c : P ⇒ QIf a triple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Private vs Public
We want to distinguish confidential information
that need to be kept secret from nonconfidential
information that can be accessed by everyone.

We assume that every variable is tagged with
one either public or private.

x:public x:private

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

public public

private private

Today: Noninterference -
Relational Hoare Logic

How can we formulate a
policy that forbids flows
from private to public?

Low equivalence
Two memories m1 and m2 are low
equivalent if and only if they coincide in
the value that they assign to public
variables.

In symbols: m1 ~low m2

Noninterference
A program prog is noninterferent if and
only if, whenever we run it on two low
equivalent memories m1 and m2 we have
that:
1) Either both terminate or both non-

terminate
2) If they both terminate we obtain two

low equivalent memories m1’ and m2’.

Noninterference
In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

public public

private private

Does this program satisfy
noninterference?

x:private
y:public

x:=y

Yes

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

Is this program secure?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

Does this program satisfy
noninterference?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

No

Does this program satisfy
noninterference?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

Yes

Does this program satisfy
noninterference?

x:public
z:public
y:private

y:=0
z:=0
if x=0 then z:=1;
if z=0 then y:=1;

Yes

Does this program satisfy
noninterference?

x:private
z:public
y:private

y:=0
z:=0
if x=0 then z:=1;
if z=0 then y:=1;

No

Does this program satisfy
noninterference?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

No

Does this program satisfy
noninterference?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Yes

How can we prove our
programs noninterferent?

Noninterference

Is this condition easy to check?

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Can we use the tool we
studied so far?

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity talks only about one
memory. How can we manage

two memories?

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Relational Assertions

c1 ∼ c2 : P ⇒ Q
Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which
memory we are referring to.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Is this easy to check?

Rules of Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

Rules of Relational Hoare Logic
abort

⊢abort~abort:true⇒false

Rules of Relational Hoare Logic
Assignment

⊢x:=e~x:=e:
P[e<1>/x<1>,e<2>/x<2>]⇒P

