
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Introduction, Class Structure, Logistics, and Objectives

Security and Privacy

Formal Methods aim at making this process
mathematically rigorous.

Goal of formal methods:
building applications that are

correct.

Why correctness matters?

What does “correct” mean?

A program is correct if it respects the specification:

• What is computed (functional aspects)

• How it is computed (non-functional aspects).

Infosec
Institute

Why correctness matters?
An example:
DARPA HACMS (High Assurance Cyber Military Systems)

Is correctness easy to
guarantee?

Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}

Is this code correct?

Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}

Is this code correct?

Something
seems wrong.

Is It the name
or the program?

Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r = x + y

Adding the specification

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r = x + y

Adding the specification

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r = x + y

Does the program comply with the
specification?

Fail to meet
the specification

In the rest of the class
• We will focus on methods to guarantee correctness of

programs with respect to security and privacy
properties.

• We will address in particular three properties of security
and privacy.

• We will focus on program-based methods, where the
security and privacy guarantees depend on the program
design.

• This is in contrast to (whole) system security and
privacy, which require to consider many other aspects.

Why formal methods?
• Formal proofs can be checked by a machine, and

designed with the support of a machine.
• Formal methods provide strong guarantees of software

correctness.
• Formal systems usually allow us to create digital

certificates that can be used to verify the trust of the
software component.

• In applications that require strong security and privacy
guarantees, we cannot make mistakes.

What is the recipe we will  
follow?
•We will look at specific notions of security and
privacy

•We will formalize these notions, through some
formal model useful to determine if a program
satisfy this notion or not.

•We will then look at a formal logic which allow us
to mechanize this reasoning.

•We will use the formal logic on several examples.

What will we look at?

• Basic methods to reason formally about whether
programs meet their specification: Hoare Logic

• Adapt this method to reason about security in
terms of information flow: Relational Hoare Logic

• Adapt this method to reason about security in
terms of formal cryptography: Probabilistic
Relational Hoare Logic

• Adapt this method to reason about data privacy in
terms of differential privacy: Approximate
Probabilistic Relational Hoare Logic

Marco Gaboardi
•Ph.D. 2007 from University of
Torino (Italy) and INPL (France)

•Research in:
Programming Languages Theory
Data Privacy

•Previously: Buffalo, Dundee (Scotland)
•Office Hours: on Zoom by appointment

Alley Stoughton

•Ph.D. 1987 from University of Edinburgh
(Scotland)

•Research in:
Programming Languages Theory
Formal Methods for Security and Cryptography

•Research Professor at BU
•Previously: Sussex (England), Kansas State, MIT
Lincoln Laboratory, IMDEA (Spain)

•Office Hours: on Zoom by appointment

Syllabus for the course

Lecture Time and Location: CAS 221 or Zoom - Tu-Tr 3:30 - 4:45
EasyCrypt Lab Time: We 6:30pm-7:45pm (on Zoom)
Office Hours: on Zoom by appointment

Course load:
- completing the assignments,
- working on a project and presenting the

results.

Course Webpages: Piazza
• Course will use Piazza and the class webpage
• Piazza:

piazza.com/bu/spring2021/cs591g1/home
• Q/A
• Homework and solutions

• Class webpage:
http://cs-people.bu.edu/gaboardi/teaching/S21-CS591.html

• Class slides
• Materials

Notes

http://software.imdea.org/~gbarthe/__introrelver.pdf

23

http://cs-people.bu.edu/gaboardi/teaching/S21-CS591.html

Schedule

Grade Break Down
•60% Assignments
(5 EasyCrypt + 2 theory)

•40% Project

Assignments
• 1 EasyCrypt assignment to get you familiar with EasyCrypt ambient
logic (Due Week 2- tentatively)

• 1 EasyCrypt assignment to get you familiar with Hoare Logic
(Due in Week 3 - tentatively)

• 1 theoretical assignment on Hoare Logic
(Due in Week 4 - tentatively)

• 1 EasyCrypt assignment on Non-Interference and Relational Hoare
Logic (Due in Week 5 - tentatively).

• 1 EasyCrypt assignment on Probabilistic Non-Interference
(Due in Week 6 - tentatively).

• 1 theoretical assignment on Probabilistic Coupling
(Due in Week 7 - tentatively)

• 1 EasyCrypt assignment on Differential Privacy
(Due in Week 8 - tentatively)

EasyCrypt Assignments

• Discussions with other students about the assignment are
permitted and encouraged.

• However, the solutions to the EasyCrypt assignments must
be your own. No pair or group submission is allowed.

Academic integrity policy
The Department of Computer Science takes the academic
integrity of all students seriously. In order to uphold the integrity
of our programs and the university, we rely on students to
behave appropriately and take responsibility for their mistakes.
Please review the following pages to better understand the
expectations of the department, college, and university, as well
as the process of any academic misconduct matters.

•https://www.bu.edu/academics/policies/academic-conduct-
code/

•https://www.bu.edu/cs/undergraduate/undergraduate-life/
academic-integrity/

EasyCrypt
• Proof assistant for mechanizing proofs in the program

logics we’ll study in this course
• You’ll be using EasyCrypt in the course’s assignments,

and perhaps in the course project
• To date, EasyCrypt has mostly been used to mechanize

proofs from theoretical cryptography
• But we’ll also consider other applications, e.g., to

noninterference and differential privacy

EasyCrypt
• EasyCrypt proofs are about simple assignment-oriented

programming language with while loops and random
assignments

• EasyCrypt has logics supporting:
• Reasoning about single programs
• Reasoning about pairs of programs—relational logic
• Reasoning in a typed higher-order logic—for general

mathematics, and connecting results from other logics

EasyCrypt
• EasyCrypt proofs:

• structured as sequences of lemmas
• lemmas are proved using tactics, which reduce goals to

zero or more subgoals
• developed interactively using a special mode of Emacs

text editor, with EasyCrypt running as subprocess
• maybe rechecked either interactively, or in batch mode

EasyCrypt Lab Sessions
• We will have a weekly EasyCrypt lab session for showing

more details about EasyCrypt than there is time for in
lectures.

• Lectures will focus on theory and applications, with lab
sessions focusing on realization in EasyCrypt

Final Projects
Projects can take different forms depending on the interest
of each student but all the projects must have a research
component.
Some examples:

• using EasyCrypt or one of its extensions to prove
security and privacy of a new complex algorithm,

• design or implementation of a new programming
language, system, or tool for security and privacy,

• development and implementation of heuristics and
optimizations to speed up the verification tasks for
security and privacy,

• investigation of new applications of relational logics.

Final Projects

We will provide some specific ideas for possible projects but
other ideas may be accepted if well motivated and discussed with
us.

You may work on your project alone or with others. Groups can
be composed by at most two students. Each group is invited to
meet with us regularly (3-4 times during the term) to check on
the advancements and directions of the project.

The deadline for choosing a project is March 2nd.

Questions?

Formal Logic
•We will need to reason extensively about formal
specifications/requirements.

•A convenient way to express these requirements
is by means of logical formulas.

X=Y+1 and Z=X+S

not X=Y or Y < X

For all n, X=n implies Y = n+1

Classical Logic Formulas:
Basic Predicates
We can assume that we have some basic predicates that give us
some basic formulas (for us over program’s expressions)

X=Y

X<Y

We can think about this as some primitive operations whose
validity we are able to establish in an atomic way.

True

False

Classical Logic Formulas:
Connectives

If we have a formula P and a formula Q we can create the formula
P and Q

If we have a formula P and a formula Q we can create the formula
P or Q

If we have a formula P and a formula Q we can create the formula
P implies Q

If we have a formula P we can create the formula not P

Classical Logic Formulas:
Quantifiers

If we have a formula P(x) which depends on the variable x we
can create the universally quantified formula for all x, P(x)

If we have a formula P(x) which depends on the variable x we
can create the existentially quantified formula exists x, P(x)

Classical Logic: Proving formulas
When we are working with logical formulas we are in general
interested in proving them true.

We could define a formal system for building proofs. This can be
achieved for example by a formal system managing proof rules
of the form:

assumption1 is true assumptionk is true
conclusion is trueconclusion is true

Inductive proofs
For proving logical formulas true we need to build proofs.

We can inductively build proofs as trees:

F is true

conclusion is trueBase case: a leaf

Inductive case:
…

F1 is true Fk is true

Where the assumptions of the rule have to match exactly the
conclusion of the trees.

Meta-proofs
Since proofs are inductively defined objects, we can then reason
about them by induction. This is useful to prove properties about
the logic itself.

Some examples in formal proof systems: soundness and
completeness.

Reference from programming languages:
G. Winskel - The formal semantics of programming languages
(chapter 2-3)
https://www.cin.ufpe.br/~if721/intranet/TheFormalSemanticsofProgrammingLanguages.pdf

Classical Logic - Proving formulas:
Conjunction
To prove that a conjunction formula P and Q is true, we need to
show that both P and Q are true.

This corresponds to the following rule:

P true Q true
P and Q true

Classical Logic - Proving formulas:
Conjunction
To prove that a disjunction formula P or Q is true, it is sufficient to
show that one between P and Q is true.

This corresponds to the following two rules:

P true
P or Q true

Q true
P or Q true

Classical Logic - Proving formulas:
Negation
To prove that a negation formula not P is true, we can show that
under the assumption that P is true, we can conclude False.

This corresponds to the following rule:

P true

False true

not P true

.

.

.

Not very precise

Notation

This way of writing can be confusing, sometime is better to just
write:

[P true]

False true

not P true

.

.

.

[P]

False

not P

.

.

.

Classical Logic - Proving formulas:
Implication
To prove that an implication formula P implies Q is true, we
can show that under the assumption that P is true, we can
conclude Q.
This corresponds to the following rule:

[P]

Q

P implies Q

.

.

.

Not very precise

Classical Logic - some examples

[P]

P implies (P or Q)

P or Q

P implies (Q implies (P and Q))

[P]

P and Q

Q implies (P and Q)

Q

Classical Logic - Proving formulas:
Universal Quantification
To prove that a universally quantified formula for all x,P(x)
is true, we can show that under the assumption that x is an
arbitrary element of the universe, we can conclude P(x).
This corresponds to the following rule:

P(x)

for all x,P(x)

Not very precise

Classical Logic - Proving formulas:
Existential Quantification
To prove that an existentially quantified formula exists
x,P(x) is true, we can show that P(t) is true for some term t
the universe.
This corresponds to the following rule:

P(t)

exists x,P(x)

Not very precise

Classical Logic: other rules for
proving formulas
We have few other principles that we can use to prove formulas

If we have contradictory assumptions, we can prove anything

This corresponds to the following rule:

P and (not P)

Q

Classical Logic: other rules for
proving formulas
If we have the assumption P implies Q and the assumption
P, then we can prove Q.

This corresponds to the following rule:

P implies Q P

Q

Classical Logic: other rules for
proving formulas
If we have the assumption P or Q and we want to prove R,
then we can prove that R follows from P and that R follows from
Q.

This corresponds to the following rule:

P or Q R R

R

[P] [Q]

.

.

.

.

.

.

Classical Logic: other rules for
proving formulas
In classical logic we have the Law of the Excluded Middle
saying that a formula P is always either true or false.

This can be formulated as the following rule

P or (not P)

Classical Logic: negation
The negation of composed formulas can be often rewritten

not(P and Q) ≅ (not P) or (not Q)
not(P or Q) ≅ (not P) and (not Q)

not(P implies Q) ≅ P and (not Q)
not(not P) ≅ P

not exists x, P(x) ≅ for all x, not P(x)

not for all x, P(x) ≅ exists x, not P(x)

Classical Logic - some examples

[P]

P implies (P or Q)

P or Q

not ((P or not P) implies (P and not P))

[(P or not P) implies (P and not P)]

P and not P

False

P or not P

Classical Logic: proving complex fact

Classical logic can be combined with specific theories to prove
more complex facts. As an example, if we combine classical
logic with a theory of integers we can prove true formulas such
as:

for all x,y,z, x+y=z implies x=z-y

Questions?

