CS 591: Formal Methods in

Security and Privacy
Formal Proofs for Cryptography

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

From the previous class

Symmetric Encryption Schemes

Our treatment of symmetric encryption schemes is
parameterized by three types:

e key. (x encryption keys, key_len bits x)
ne text. (x plaintexts, text_len bits x)
pe cipher. (x ciphertexts - scheme specific x)

An encryption scheme is a stateless implementation of this
module intertace:

module type ENC = {

oroc key_gen() : key (x key generation x)
oroc enc(k : key, x : text) : cipher (% encryption x)

oroc dec(k : key, c : cipher) : text (% decryption x)

Scheme Correctness

* An encryption scheme is correct it and only if the following
procedure returns true with probability 1 for all arguments:
module Cor (Enc : ENC) = {
proc main(x : text) : bool = {
var k : key; var c : cipher; var y : text;
k <@ Enc.key gen();
Cc <@ Enc.enc(k, x);
y <@ Enc.dec(k, c);

return x = vy,

}.

* The module Cor is parameterized (may be applied to) an
arbitrary encryption scheme, Enc.

—ncryption Oracles

* TJo define IND-CPA security of encryption schemes, we need
the notion of an encryption oracle, which both the adversary
and IND-CPA game will interact with:

module type EO = {

(* initialization - generates key x)

proc *x init() : unit

(x encryption by adversary before game's encryption x)
proc enc_pre(x : text) : cipher

(x one—time encryption by game)

proc genc(x : text) : cipher

(x encryption by adversary after game's encryption x)
proc enc_post(x : text) : cipher

Standard Encryption Oracle

* Here Is the standard encryption oracle, parameterized by an
encryption scheme, Enc:

module EncO (Enc : ENC) : EO = {
var key : key
var ctr_pre : 1int

var ctr_post : int

proc init() : unit = {
key <@ Enc.key gen();
ctr_pre <- 0; ctr_post <- 0;

Standard Encryption Oracle

proc enc_pre(x : text) : cipher = {
var c : cipher;
if (ctr_pre < limit_pre) {
ctr_pre <- ctr_pre + 1;
c <@ Enc.enc(key, x);
s
else {
Cc <— ciph_def; (*x default result x)

}

return c;

Standard Encryption Oracle

proc genc(x : text) : cipher = {
var c : cipher;
c <@ Enc.enc(key, x);

return c;

Standard Encryption Oracle

proc enc_post(x : text) : cipher = {
var c : cipher;
if (ctr_post < limit_post) {
ctr_post <- ctr_post + 1;
c <@ Enc.enc(key, x);
I3
else {
c <- ciph_def; (% default result *)

}

return c;

-ncryption Adversary

* An encryption adversary is parameterized by an encryption
oracle:

module type ADV (EO : EO0) = {
(x choose a pair of plaintexts, x1/x2)
proc * choose() : text x text {EO.enc_pre}

(* given ciphertext c based on a random boolean b
(the encryption using EO.genc of x1 if b = true,
the encryption of x2 if b = false), try to guess b
*)
proc guess(c : cipher) : bool {EO.enc_post}

|
* Adversaries may be probabillistic.

10

IND-CPA Game

* The IND-CPA Game is parameterized by an encryption
scheme and an encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = {

module EO = EncO(Enc) (x make EO from Enc x)
module A = Adv(EO) (x connect Adv to EOQ)
proc main() : bool = {
var b, b' : bool; var x1, x2 : text; var c : cipher;
EOQ.init(); % initialize EO x)
(x1, x2) <@ A.choose(): * let A choose x1/x2 x)
b <$ {0,1}; choose boolean b x)

C <@ EO.genc(b ? x1 : x2);
b' <@ A.quess(c);
return b = b';

*

encrypt x1 or x2 x)
let A guess b from c x)
see if A won)

*

A~ AN AN AN A~ A~
S

*

11

IND-CPA Game

12

IND-CPA Game

* |f the value b’ that Adv returns is independent of the random
boolean b, then the probability that Adv wins the game will be
exactly 1/2.

 E.g., if Adv always returns true, it'll win half the time.

* The question is how much better it can do—and we want to
porove that it can’'t do much better than win half the time.

* But this will depend upon the quality of the encryption
scheme.

* An adversary that wins with probability greater than 1/2 can
be converted into one that /oses with that probability, and vice
versa. When tormalizing security, it's convenient to upper-
bound the distance between the probability of the adversary
winning and 1/2.

13

IND-CPA Security

* |n our security theorem for a given encryption scheme Enc
and adversary Adyv, we prove an upper bound on the
absolute value of the ditterence between the probability that
Adv wins the game and 1/2:

" |Pr[INDCPA(Enc, Adv).main() @ &m : res] — 1%r / 2%r|
<= .. Adv ..
* |deally, we'd like the upper bound to be 0O, so that the

porobability that Enc wins is exactly 1/2, but this won't be
possible.

* The upper bound may also be a function of the number of bits
text len in text and the encryption oracle limits
Llimit_preand limit_post.

14

IND-CPA Security

 (Q: Because the adversary can call the encryption oracle with
the plaintexts x1/x2 it goes on to choose, why isn't it
impossible to define a secure scheme?

* A: Because encryption can (must!) involve randomness.

 Q: What is the rationale for letting the adversary call enc_pre
and enc_post at all?

* A:lt models the possibility that the adversary may be able
to influence which plaintexts are encrypted.

* Q: What is the rationale for limiting the number of times
enc_pre and enc_post may be called?

* A: There will probably be some limit on the adversary's
influence on what is encrypted.

15

Next: Encryption from
PRFs

Pseudorandom Functions

* Qur pseudorandom function (PRF) is an operator F with this
type:
op F : key —> text —> text.

» For each value k of type key, (F k) is a function from text to
{ext.

* Since key is a bitstring of length key__len, then there are at
most 2key_len of these functions.

* |f we wanted, we could try to spell out the code for F, but we
choose to keep F abstract.

* How do we know if F is a “good” PRF?

17

Pseudorandom Functions

* We will assume that dtext (dkey) is a sub-distribution on
text (key) that is a distribution (is “lossless”), and where
every element of text (key) has the same non-zero value:

op dtext : text distr.
op dkey : key distr.

* A random function is a module with the following intertace:
module type RF = {

(x initialization x)

proc x init() : unit

(x application to a text)

proc f(x : text) : text

18

Pseudorandom Functions

e Here is a random function made from our PRF F:

module PRF : RF = {

var key : key

proc init() : unit = {
key <$ dkey;

¥

proc f(x : text) : text = {
var y : text;
y <—- F key X;
return vy,

}

19

Pseudorandom Functions

e Here is a random function made from true randomness:

module TRF : RF = {
(x mp is a finite map associating texts with texts x)
var mp : (text, text) fmap
proc init() : unit = {
mp <— empty; (% empty map *)
}
proc f(x : text) : text = {
var y : text;
if (! x \in mp) A (* give x a random value in)
y <$ dtext; (% mp if not already in mp's domain)
mp. [X] <- y;
s
return oget mp.[x]; (% return value of x in mp)
¥y (% mp.[x] is: None if x is not in mp’s domain,)
}. (x and Some z if z is the value of x in mp x)

20

Pseudorandom Functions

* A random function adversary is parameterized by a random
function module:

module type RFA (RF : RF) = {
proc *x main() : bool {RF.f}

}.

21

Pseudorandom Functions

* Here is the random function game:

module GRF (RF : RF, RFA : RFA) = {
module A = RFA(RF)
proc main() : bool = {
var b : bool;
RF.init();
b <@ A.main();
return b;

}.

* A random function adversary RFA tries to tell the PRF and true
random functions apart, by returning true with different
probabillities.

22

Pseudorandom Functions

* Our PRF Fis “good” if and only if the following is small,
whenever RFA is limited in the amount of computation it may
do (maybe we say it runs in polynomial time):

" |Pr[GRF(PRF, RFA).main() @ &m : res] -
Pr{GRF(TRF, RFA).main() @ &m : res]|

* RFA must be limited, because there will typically be many
more true random functions than functions of the form (F k),
where K is a key (there are at most 2key_len sych functions).

 Since text Llen is the number of bits in text, there will
be 2text_Llen & Dtext_len distinct maps from text to text
(e.g., 28 = 256, 28 N 28 ~= 1(0617),

* Thus, with enough running time, RFA may be able to tell
with reasonable probability if it's interacting with a PRF
random function or a true random function.

23

Our Symmetric Encryption Scheme

* We construct our encryption scheme Enc out of F:

(+~) : text —> text —> text (% bitwise exclusive or x)

type cipher = text *x text. (x ciphertexts)

module Enc : ENC = {
proc key_gen() : key = {
var k : key;
K <$ dkey;

return k:

24

Our Symmetric Encryption Scheme

proc enc(k : key, x : text) : cipher = {
var u : text;
u <$ dtext;
return (u, x +* F k u);

}

[
~

proc dec(k : key, c : cipher) : text
var u, v : text;
(u, v) <- ¢c;
return v +~ F k u;

25

Correctness

e Suppose that enc(k, x) returnsc=(u, x +~ F k u),
where u Iis randomly chosen.

e Thendec(k, c)returns (x +* F k u) +~ F k u=x.

20

Adversarial Attack Strategy

Before picking its pair of plaintexts, the adversary can call
enc_pre some number of times with the same argument,
text0 (the bitstring of length text Llen all of whose bits are

).

This gives us ..., (ui, text@ +~ F key ui), ... ie., ...,
(ui, F key ui), ...

Then, when genc encrypts one of X1/Xz2, it may happen that
we get a pair (ui, x; +~ F key ui) for one of them,
where ui appeared in the results of calling enc_pre.

But then

F key ui +~ (x5 +~ F key ui) = text0 + Xxj = Xj

27

Adversarial Attack Strategy

Similarly, when calling enc_post, before returning its
boolean judgement b to the game, a collision with the left-
side of the cipher text passed from the game to the adversary
will allow it to break security.

Suppose, again, that the adversary repeatedly encrypts
text®@ using enc_pre, getting ..., (ui, F key ui), ...

Then by experimenting directly with F with different keys, it
may learn enough to guess, with reasonable probability, key
tselt.

This will enable it to decrypt the cipher text ¢ given it by the
game, also breaking security.

Thus we must assume some bounds on how much work the
adversary can do (we can't tell if it's running F).

28

IND-CPA Security for Our Scheme

* Qur security upper bound
" |Pr[INDCPA(Enc, Adv).main() @ &m : res] — 1%r / 2%r|

<: L 1]]

will be a function of:

(1) the ability of a random function adversary constructed
from Adv to tell the PRF random function from the true
random function

* this lets us switch in our proof from using F to using a
true random function

(2) the number of bits text _Llen in text and the
encryption oracles limits Limit_pre and Limit_post

* this quantifies the possibility of collisions in the values
of u

29

IND-CPA Security for Our Scheme

* Qur security upper bound
" |Pr[INDCPA(Enc, Adv).main() @ &m : res] — 1%r / 2%r|

<: L 1]]

will be a function of:

(1) the ability of a random function adversary constructed
from Adv to tell the PRF random function from the true
random function; and

(2) the number of bits text _Llen in text and the
encryption oracles limits Limit_pre and Limit_post.

 Q: Why doesn’t the upper bound also involve key_len, the
number of bits in key?

* A:that’s part of (1).

30

IND-CPA Security for Our Scheme

* Later in the course, in lecture and/or lab, we’ll survey the
proof of IND-CPA security.

* Before then, you can look at all the definitions and the proofs
on GitHub:

https://github.com/alleystoughton/EasyTeach/
tree/master/encryption

If you are interested in doing a course
project on the security of cryptographic
schemes or protocols, Marco and | can

make suggestions

31

