CS 591: Formal Methods in Security and Privacy
Formal Proofs for Cryptography

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
From the previous class
Symmetric Encryption Schemes

• Our treatment of symmetric encryption schemes is parameterized by three types:

 type key. (* encryption keys, key_len bits *)
 type text. (* plaintexts, text_len bits *)
 type cipher. (* ciphertexts – scheme specific *)

• An encryption scheme is a stateless implementation of this module interface:

 module type ENC = {
 proc key_gen(): key (* key generation *)
 proc enc(k: key, x: text): cipher (* encryption *)
 proc dec(k: key, c: cipher): text (* decryption *)
 }.
Scheme Correctness

• An encryption scheme is *correct* if and only if the following procedure returns true with probability 1 for all arguments:

```plaintext
module Cor (Enc : ENC) = {
  proc main(x : text) : bool = {
    var k : key; var c : cipher; var y : text;
    k <- Enc.key_gen();
    c <- Enc.enc(k, x);
    y <- Enc.dec(k, c);
    return x = y;
  }
}
```

• The module **Cor** is parameterized (may be applied to) an arbitrary encryption scheme, **Enc**.
Encryption Oracles

• To define IND-CPA security of encryption schemes, we need the notion of an *encryption oracle*, which both the adversary and IND-CPA game will interact with:

```ocaml
module type EO = {
  (* initialization – generates key *)
  proc * init() : unit
  (* encryption by adversary before game's encryption *)
  proc enc_pre(x : text) : cipher
  (* one-time encryption by game *)
  proc genc(x : text) : cipher
  (* encryption by adversary after game's encryption *)
  proc enc_post(x : text) : cipher
}.
```
Standard Encryption Oracle

• Here is the standard encryption oracle, parameterized by an encryption scheme, Enc:

\[
\text{module } \text{EncO} \text{ (Enc : ENC) : EO = \{ }
\text{var key : key}
\text{var ctr_pre : int}
\text{var ctr_post : int}
\text{proc init() : unit = \{}
\text{key @@ Enc.key_gen();}
\text{ctr_pre \leftarrow 0; ctr_post \leftarrow 0;}
\text{\}}
\]
proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}

proc genc(x : text) : cipher = {
 var c : cipher;
 c <@ Enc.enc(key, x);
 return c;
}
Standard Encryption Oracle

```
proc enc_post(x : text) : cipher = {
    var c : cipher;
    if (ctr_post < limit_post) {
        ctr_post <- ctr_post + 1;
        c <@ Enc.enc(key, x);
    }
    else {
        c <- ciph_def; (* default result *)
    }
    return c;
}
```

Encryption Adversary

• An encryption adversary is parameterized by an encryption oracle:

```plaintext
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc * choose() : text * text {EO.enc_pre}

  (* given ciphertext c based on a random boolean b
     (the encryption using EO.genc of x1 if b = true,
      the encryption of x2 if b = false), try to guess b *)
  proc guess(c : cipher) : bool {EO.enc_post}
}.
```

• Adversaries may be probabilistic.
The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = {
 module EO = EncO(Enc) (* make EO from Enc *)
 module A = Adv(EO) (* connect Adv to EO *)
 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init(); (* initialize EO *)
 (x1, x2) <$> A.choose(); (* let A choose x1/x2 *)
 b <$> {0,1}; (* choose boolean b *)
 c <$> EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
 b' <$> A.guess(c); (* let A guess b from c *)
 return b = b'; (* see if A won *)
 }
}.
IND-CPA Game
IND-CPA Game

• If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly $1/2$.

• E.g., if Adv always returns true, it’ll win half the time.

• The question is how much better it can do—and we want to prove that it can’t do much better than win half the time.

• But this will depend upon the quality of the encryption scheme.

• An adversary that wins with probability greater than $1/2$ can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and $1/2$.
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and $1/2$:

\[|\text{Pr}[\text{INDCPA}(\text{Enc, Adv}).\text{main()} @ &m : \text{res}] - 1/2| \leq \ldots \text{Adv} \ldots \]

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly $1/2$, but this won’t be possible.

• The upper bound may also be a function of the number of bits text_len in text and the encryption oracle limits limit_pre and limit_post.
IND-CPA Security

- Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?

 - A: Because encryption can (must!) involve randomness.

- Q: What is the rationale for letting the adversary call `enc_pre` and `enc_post` at all?

 - A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted.

- Q: What is the rationale for limiting the number of times `enc_pre` and `enc_post` may be called?

 - A: There will probably be some limit on the adversary’s influence on what is encrypted.
Next: Encryption from PRFs
Pseudorandom Functions

• Our pseudorandom function (PRF) is an operator \(F \) with this type:

\[
\text{op } F : \text{key} \rightarrow \text{text} \rightarrow \text{text}.
\]

• For each value \(k \) of type key, \((F \ k)\) is a function from text to text.

• Since key is a bitstring of length \(\text{key_len} \), then there are at most \(2^{\text{key_len}} \) of these functions.

• If we wanted, we could try to spell out the code for \(F \), but we choose to keep \(F \) abstract.

• How do we know if \(F \) is a “good” PRF?
Pseudorandom Functions

- We will assume that \texttt{dtext (dkey)} is a sub-distribution on \texttt{text (key)} that is a distribution (is “lossless”), and where every element of \texttt{text (key)} has the same non-zero value:

 \[
 \text{op dtext : text distr.}
 \]

 \[
 \text{op dkey : key distr.}
 \]

- A \textit{random function} is a module with the following interface:

 \[
 \text{module type RF = {}
 \]

 \[
 \text{(* initialization *)}
 \]

 \[
 \text{proc * init() : unit}
 \]

 \[
 \text{(* application to a text *)}
 \]

 \[
 \text{proc f(x : text) : text}
 \]

 \[
 \text{}}.
 \]
Pseudorandom Functions

• Here is a random function made from our PRF F:

```plaintext
module PRF : RF = {
    var key : key
    proc init() : unit = {
        key <$ dkey;
    }
    proc f(x : text) : text = {
        var y : text;
        y <- F key x;
        return y;
    }
}.
```
Pseudorandom Functions

• Here is a random function made from true randomness:

 module TRF : RF = {
 (* mp is a finite map associating texts with texts *)
 var mp : (text, text) fmap
 proc init() : unit = {
 mp <- empty; (* empty map *)
 }
 proc f(x : text) : text = {
 var y : text;
 if (! x \in mp) { (* give x a random value in *)
 y <$ dtext; (* mp if not already in mp's domain *)
 mp.[x] <- y;
 }
 return oget mp.[x]; (* return value of x in mp *)
 } (* mp.[x] is: None if x is not in mp’s domain, *)
 }. (* and Some z if z is the value of x in mp *)
Pseudorandom Functions

• A random function adversary is parameterized by a random function module:

```plaintext
module type RFA (RF : RF) = {
    proc * main() : bool {RF.f}
}.
```
Pseudorandom Functions

Here is the random function game:

```haskell
module GRF (RF : RF, RFA : RFA) = {
    module A = RFA(RF)
    proc main() : bool = {
        var b : bool;
        RF.init();
        b <$> A.main();
        return b;
    }
}
```

A random function adversary RFA tries to tell the PRF and true random functions apart, by *returning true with different probabilities*.
Pseudorandom Functions

• Our PRF F is “good” if and only if the following is small, whenever RFA is limited in the amount of computation it may do (maybe we say it runs in polynomial time):

\[
\left| \Pr[\text{GRF}(\text{PRF}, \text{RFA}).\text{main()} @ \&m : \text{res}] - \Pr[\text{GRF}(\text{TRF}, \text{RFA}).\text{main()} @ \&m : \text{res}] \right|
\]

• **RFA** must be limited, because there will typically be many more true random functions than functions of the form \((F \cdot k)\), where \(k\) is a key (there are at most \(2^{\text{key_len}}\) such functions).

• Since **text_len** is the number of bits in **text**, there will be \(2^{\text{text_len}} \cdot 2^{\text{text_len}}\) distinct maps from **text** to **text** (e.g., \(2^8 = 256\), \(2^8 \cdot 2^8 \approx 10^{617}\)).

• Thus, with enough running time, **RFA** may be able to tell with reasonable probability if it’s interacting with a PRF random function or a true random function.
Our Symmetric Encryption Scheme

• We construct our encryption scheme Enc out of F:

$$(+^\wedge) : \text{text} \to \text{text} \to \text{text} \quad (* \text{bitwise exclusive or} *)$$

$type \ \text{cipher} = \text{text} \times \text{text}. \quad (* \text{ciphertexts} *)$

module $\text{Enc} : \text{ENC} = \{$
 proc $\text{key_gen}() : \text{key} = \{$
 var $k : \text{key}$;
 $k <$ dkey;
 return k;
 $\}$
$\}$
Our Symmetric Encryption Scheme

proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$ dtext;
 return (u, x +^ F k u);
}

proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v +^ F k u;
}

Correctness

• Suppose that $\text{enc}(k, x)$ returns $c = (u, x +^F k u)$, where u is randomly chosen.

• Then $\text{dec}(k, c)$ returns $(x +^F k u) +^F k u = x$.
Adversarial Attack Strategy

• Before picking its pair of plaintexts, the adversary can call `enc_pre` some number of times with the same argument, `text0` (the bitstring of length `text_len` all of whose bits are 0).

• This gives us ..., `(ui, text0 +^ F key ui), ...`, i.e., ..., `(ui, F key ui), ...

• Then, when `genc` encrypts one of `x1/x2`, it may happen that we get a pair `(ui, xj +^ F key ui)` for one of them, where `ui` appeared in the results of calling `enc_pre`.

• But then

 \[F \text{ key } ui +^ (xj +^ F \text{ key } ui) = text0 +^ xj = xj \]
Adversarial Attack Strategy

• Similarly, when calling `enc_post`, before returning its boolean judgement `b` to the game, a collision with the left-side of the cipher text passed from the game to the adversary will allow it to break security.

• Suppose, again, that the adversary repeatedly encrypts `text0` using `enc_pre`, getting ..., `(u_i, F \text{ key } u_i)`, ...

• Then by *experimenting directly* with `F` with different keys, it may learn enough to guess, with reasonable probability, `key` itself.

• This will enable it to decrypt the cipher text `c` given it by the game, also breaking security.

• Thus we must assume some bounds on how much work the adversary can do (we can’t tell if it’s running `F`).
IND-CPA Security for Our Scheme

• Our security upper bound

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| <= ...

will be a function of:

(1) the ability of a random function adversary constructed from Adv to tell the PRF random function from the true random function

• this lets us switch in our proof from using F to using a true random function

(2) the number of bits text_len in text and the encryption oracles limits limit_pre and limit_post

• this quantifies the possibility of collisions in the values of u
IND-CPA Security for Our Scheme

• Our security upper bound

\[|Pr[\text{INDCPA(Enc, Adv).main()} \ @ \ &m : \text{res}] - 1/2| \leq \ldots \]

will be a function of:

(1) the ability of a random function adversary constructed from \textbf{Adv} to tell the PRF random function from the true random function; and

(2) the number of bits \texttt{text_len} in \texttt{text} and the encryption oracles limits \texttt{limit_pre} and \texttt{limit_post}.

• Q: Why doesn’t the upper bound also involve \texttt{key_len}, the number of bits in \texttt{key}?

• A: that’s part of (1).
IND-CPA Security for Our Scheme

• Later in the course, in lecture and/or lab, we’ll survey the proof of IND-CPA security.

• Before then, you can look at all the definitions and the proofs on GitHub:

 https://github.com/alleystoughton/EasyTeach/tree/master/encryption

If you are interested in doing a course project on the security of cryptographic schemes or protocols, Marco and I can make suggestions.