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Differential Privacy



Where we were…



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ
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apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q
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Validity of apRHL judgments

We say that the 6-tuple ⊢ε,δ c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qε,δ*(μ1,μ2).



R-(ε,δ)-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-(ε,δ)-coupling between them, 
for R⊆AxB and 0≤δ≤1, ε≥0, if there are two 
joint distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δε(µL,µR)≤δ



apRHL: skip rule

⊢0,0skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the ⊢0,0 skip~skip: P⇒P.
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Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the ⊢0,0 skip~skip: P⇒P.

For every m1,m2 such that P(m,m’) we have 
{skip}m=unit(m) and {skip}m’=unit(m’) 
we need P*0,0(unit(m),unit(m’)).

⊢0,0skip~skip:P⇒P
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m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …
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Correctness of Skip Rule
⊢0,0skip~skip:P⇒P

μL m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …

We need to show: 
1) 𝜋1(μL)=unit(m) and 𝜋2(μR)=unit(m’) 
2) (m,m’)∈P 3) Δ0(µL,µR)≤0

μR m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …



apRHL: Lap rule (simplified) 

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤1 ⇒ = 

⊢ε,0
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

b regulates the 
skewness of 
the curve,

b=.5

b=1

Lap(b, µ)(X) =
1

2b
exp

⇣
� |µ�X|

b

⌘



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤1 ⇒ =.



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤1 ⇒ =.

For every m1,m2 such that P(m,m’) we have 
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) and  
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) we need to show that 
these two terms are in the (ε,0) lifting of =.



Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



We need to show: 
1) 𝜋1(μL)=let a={Lap(1/ε,y1)}m in unit(m[x1←a]) 

and  
𝜋2(μR)=let a={Lap(1/ε,y2)}m in unit(m[x2←a]) 

2) (m1,m2)∈ =    3) Δε(µL,µR)≤0

Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a
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Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
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= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)
≤ exp(ε|m(y2)-m(y2)+1|) 



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)
≤ exp(ε|m(y2)-m(y2)+1|) 
= exp(ε) 



Laplace Mechanism
Lap(d : priv data)(q: data -> real) 
   (eps:real) : pub real 
 z:= q(d)    
 z:=$ Lap(GSq/eps,z) 
 return z



R

q(b∪{x}) q(b∪{y})

Global Sensitivity

GSq = max{ |q(D) − q(D′ ) | s.t. D ∼ D′ }



Laplace Mechanism
Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.

Proof:
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Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.

Proof:

1.7. The Laplace mechanism 15

is described in the following algorithm where q : N|X | æ R and where
the notation Y

$Ω f denotes the fact that Y is sampled from the
distribution f .

Algorithm 2 Pseudo-code for the Laplace Mechanism
1: function LapMech(D, q, ‘)
2: Y

$Ω Lap(�q
‘ )(0)

3: return q(D) + Y

4: end function

Notice that by the properties of the Laplace distribution we have
that LapMec(D, q, ‘) and Lap(�q

‘ )(D) are the same distribution, that is
we can see the Laplace mechanism as returning a Laplace distribution
centered in q(D) with scale �q

‘ . The scale �q
‘ is such that the noise that

the mechanism add is directly proportional to the global sensitivity of
q and inversely proportional to the level of protection ‘ one wants to
guarantee. Notice also that the Laplace mechanism is generic in the
kind of function it takes in input, i.e. it can be applied to any numeric
function, non only counting queries.

Likewise what we did for Randomized Response, we want to prove
two properties of the Laplace mechanism: that it ensures di�erential
privacy and that it has a non-trivial accuracy. Let’s start by proving
that it ensures di�erential privacy.

Theorem 1.4 (Privacy of the Laplace mechanism). The Laplace mecha-
nism ensures ‘-di�erential privacy.

Proof. Consider D ≥1 D
Õ œ X n, q : X n æ R, and let p and p

Õ denote the
probability density function of LapMech(D, q, ‘) and LapMech(DÕ

, q, ‘),
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
1

≠ ‘|q(D)≠z|
�q

2

exp
1

≠ ‘|q(DÕ)≠z|
�q

2

= exp
1

‘(|q(DÕ) ≠ z| ≠ |q(D) ≠ z|)
�q

2

Æ exp
1

‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].
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Laplace Mechanism
Lap(d : priv data)(q: data -> real) 
   (eps:real) : pub real 
 z:= q(d)    
 z:=$ Lap(GSq/eps,z) 
 return z



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢k*ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤k ⇒ =.



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢k*ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤k ⇒ =.

For every m1,m2 such that P(m,m’) we have 
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) and  
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) we need to show that 
these two terms are in the (k*ε,0) lifting of =.
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We can take: 
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and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



We need to show: 
1) 𝜋1(μL)=let a={Lap(1/ε,y1)}m in unit(m[x1←a]) 

and  
𝜋2(μR)=let a={Lap(1/ε,y2)}m in unit(m[x2←a]) 

2) (m1,m2)∈ =    3) Δk*ε(µL,µR)≤0

Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



Correctness of Lap Rule



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
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Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+k-a|)
≤ exp(ε|m(y2)-m(y2)+k|) 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+k-a|)
≤ exp(ε|m(y2)-m(y2)+k|) 
= exp(k*ε) 



Releasing privately the 
mean of Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i] 
    i:=i+1; 
 z:=$ Lap(sens/eps,(s/i)) 
 return z
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Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is (ε1,δ1)-DP 

M2 is (ε2,δ2)-DP 

…
Mn is (εk,δk)-DP 

The overall process is (ε1+ε2+…+εk,δ1+δ2+…+δk)-DP 



Composition
Let M1:DB →R1 be a (ε1,δ1)-differentially private program and 
M2:DB →R2 be a (ε2,δ1)-differentially private program. Then, their 
composition M1,2:DB→R1xR2 defined as

 M1,2(D)=(M1(D),M2(D)) 
is (ε1+ε2,δ1+δ2)-differentially private.



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ Lap(eps,s) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ Lap(eps,d[i]) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and 
M2:DB →R be a (ε2,δ2)-differentially private program.  Suppose 
that we partition D in a data-independent way into two datasets 
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2)) 
is (max(ε1,ε2),max(δ1,δ2))-differentially private.



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> /\ e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk



Properties of
Differential Privacy



Some important properties

• Resilience to post-processing

• Group privacy

• Composition



Some important properties

• Resilience to post-processing

• Group privacy

• Composition

We will look at them in the context of (ε,0)-differential privacy. 



M is  
ε-DP

Resilience to Post-processing
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f◦M is ε-DP

Resilience to Post-processing



Question: Why is resilience to post-processing important?

Resilience to Post-processing



Question: Why is resilience to post-processing important?

Resilience to Post-processing

Answer: Because it is what allows us to publicly 
release the result of a differentially private analysis!
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1.5. Di�erential Privacy 7

a conjunction query qv̨on a dataset D œ X n gives the k-way

marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

qy(x) =
I

.5 ú y1 if y = x

0 otherwise

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, D

Õ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e
‘ Pr[M(DÕ) = r] (1.1)
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under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases



Question: Why is group privacy important?

Group Privacy



Question: Why is group privacy important?

Answer: Because it allows to reason about privacy at 
different level of granularities!

Group Privacy



Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy 
Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of 
epsilon: εglobal= ∑ εlocal

Also making them uniforms is 
sometimes more informative.



Budget=εglobal - ε1 - ε2 - ε3

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

εglobal= ε+ε+ε+ε+ε+ε+ε+ε=8ε

εglobal= ε+ε+ε=3ε
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