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Where we were...



(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database by, b and for every SCR:

PriQ(bi)e S] < exp(€)Pr[Q(b2)e S] + O




Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)



apRHL

Indistinguishability Precondition
parameter (a logical formula)

| |

|_€,5C1NC2:P$Q

| |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)



Validity of apRHL judgments

We say that the 6-tuple -¢5 ci1~c2:P=0Q s
valid if and only if for every pair of memories
m; , m; such that P (m;,m>) we have:
{C1}mi=M1 and {cC2}m2=> |mpI|es

Qe, 6% (M1, M2).



R-(€,0)-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-(g,0)-coupling between them,
for RCAXB and 0<b=1, €20, if there are two
joint distributions . preD(AXB) such that:

1) z1(uL)=p1 and z2(URr)=pM2,

2) the support of u. and pr is contained in R.
Thatis, if u.(a,b)>0,then (a,b)ER,
and If Uz(a,b)>0,then (a,b)ER.

3) Ae(pLpr)<O



apRHL: skip rule

o oskip~skip:E




Correctness of Skip Rule

—o oskip~skip:P=P

To show this rule correct we need to show the
validity of the oo skip~skip: P=P.




Correctness of Skip Rule

—o oskip~skip:P=P

To show this rule correct we need to show the
validity of the oo skip~skip: P=P.

For every m; ,m; such that p(m,m") we have
{skip}r=unit(m) and {skip}n-=unit(m’)
we need P*po(unit(m),unit(m’)).
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Correctness of Skip Rule
0. osklp skip:P=P

U M1 mz2 ... m’ e M1 m2 ... m ...

m 0 0 ... 0O O mig O O ... O O
m O O ... O O m 0 0 ... O O
m O 0 ... 1 0 m O 0 ... 1 0

We need to show:
1) z1(Uz)=unit(m) and z2(uz)=unit(m’)

2) (m,m’")eP 3)Ao(uLpr)<O




apRHL: Lap rule (simplified)

x1:=$ Lap(1l/g, vi)

Fe'OX2:=$ Lap (1/¢,v2)
| yi—yo Sl = =



Laplace Distribution

1 — X
20 b skewness of
the curve,




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

e,0X1:=5Lap (1/¢, y1) ~x2:=SLap (1/¢, y2) :
lyl-y2|s1 = =,




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

e0X1:=5Lap (1/¢, y1) ~xz:=5Lap (1/¢, y2) :
lyl-y2|s1 = =.

For every m;, m; such that P(m,m") we have
{x1:=SLap (1/¢, y1) }n=let a={Lap (/¢, y1) }m
in unit(m[xl<al) and

{x1:=SLap (1/¢,vy1) }n=let a={Lap (/¢,vy1) }m
in unit (m[xl<al) we need to show that
these two terms are in the (=,0) lifting of =.




Correctness of Lap Rule

We can take:

Ur(mM1,m2)=Tm1=m2"Lap(*/¢, m (y1) )(@)* Tm1(x1)=a
and

Ur(M1,M2)=Tmi=m2*Lap(* /¢, m’ (v2) )(@)* Tm1(x2)=a




Correctness of Lap Rule

We can take:

Ur(mM1,m2)=Tm1=m2"Lap(*/¢, m (y1) )(@)* Tm1(x1)=a
and

Ur(M1,M2)=Tmi=m2*Lap(* /¢, m’ (v2) )(@)* Tm1(x2)=a

We need to show:
1) mi(dp)=let a={Lap(Y/¢,y1) }m in unit (m[xl<al)
and

m2(Mr)=1let a={Lap(/¢,y2)}m in unit (m[x2<a])

2) (mp,my)e - 3) Ac (UL PR)SO
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Correctness of Lap Rule

To prove A-(uL UR)S0 we can think about:

Lap(*/=, m(y:) ) @)  exp(-e|m(y:)-al)
Lap('/=, m” (v2) )(@)  exp(-e|m(y2)-al)
By the precondition we know | y1-vy2 |<1.
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<exp(e|m(y2)-m(y2)+1])




Correctness of Lap Rule

To prove A-(uL UR)S0 we can think about:

Lap(*/=, m(y:) ) @)  exp(-e|m(y:)-al)
Lap('/=, m” (v2) )(@)  exp(-e|m(y2)-al)
By the precondition we know | y1-vy2 |<1.

Let's consider for example the case yv1=y2+1

exp(-¢ |m(yz)+1-al)
=exp(e|m(y2)-al-«|m(y2)+1l-al)
exp(-¢ |m(y2)-al)

<exp(e|m(y2)-m(y2)+1])
= exp(¢)




Laplace Mechanism

Lap(d : priv data) (g: data -> real)
(eps:real) : pub real
z:= g(d)
z:=$ Lap (GSq/eps, z)
return =z




Global Sensitivity

GS, = max{ |g(D) —q(D")| s.t. D ~ D’}

q(bu{x}) q(bu{y})
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Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

Proof:
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Proof:

Consider D ~1 D' € X™ g : X" — R, and let p and p’ denote the
probability density function of LapMech(D, ¢, ¢) and LapMech(D’, g, ¢€)
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Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

Proof:

Consider D ~1 D' € X™ g : X" — R, and let p and p’ denote the
probability density function of LapMech(D, ¢, ¢) and LapMech(D’, g, ¢€)

We compare them at an arbitrary point z € R.

p(z) e (=15

P (2) exp ( _ 6Iq(D’)—Zl)




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

_ €lg(D)—=|
Continued proof:  p(z) eXp( Aq )

P exp (- daB=2])




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

_ €lg(D)—=|
Continued proof:  p(z) eXp( Aq )

p(z) exp ( _ €|CJ(D’)—ZI)

Aq

(lg(D") = 2| = |q(D) — ZD)

exp (¢ .




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

| exp ( — da()=2])
Continued proof:  p(?) Aqg
P2) exp (- deB)=2])
e(lg(D") — 2| = lg(D) — ZD)




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

. exp ( _ €|Q(D)—Z|)
Continued proof:  P(2) _ Aq
p'(2) exp ( — e|‘1(D’)—Z|)

Aq
— exp (€(|Q(D ) — 2| —lg(D) — ZD)




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-differentially private.

. exp ( _ €|Q(D)—Z|)
Continued proof:  P(2) _ Aq
P(2) exp (- 2aB)=2l)
e(lg(D’) — 2| — [q(D) — ZD)

~



Laplace Mechanism

Lap(d : priv data) (g: data -> real)
(eps:real) : pub real
z:= g(d)
z:=$ Lap (GSq/eps, z)
return =z




apRHL:

More general Lap rule
(still restricted)

=S Lap(l/g,vi)

:=$ Lap(l/e, YZ)
| V1 Y2|<k = =




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

ke,0 X1 :=5Lap (1/¢g, y1) ~x2:=SLap (1/¢, y2) :
lyl-y2|sk = =.




Correctness of Lap Rule

To show this rule correct we need to show the
validity of
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Correctness of Lap Rule

To prove A= (UL UR)S0 we can think about:

Lap(*/=, m(y:) ) @)  exp(-e|m(y:)-al)
Lap(*/s, m” (v2) )@)  exp(-elm(y2)-al)
By the precondition we know | v1-v2 | <K.

Let's consider for example the case y1=y2+k

exp(-¢ |m(yz) +k-al)
=exp(s|m(y2)-al-«|m(y2)+k-al)
exp(-¢ |m(y2)-al)

<exp(e|m(y2)-m(y2)+k]|)




Correctness of Lap Rule

To prove A= (UL UR)S0 we can think about:

Lap(*/=, m(y:) ) @)  exp(-e|m(y:)-al)
Lap(*/s, m” (v2) )@)  exp(-elm(y2)-al)
By the precondition we know | v1-v2 | <K.

Let's consider for example the case y1=y2+k

exp(-¢ |m(yz) +k-al)
=exp(s|m(y2)-al-«|m(y2)+k-al)

OXPL-e 1 (v2) 781) < oxp(e 1 (y2) -1 (v2) k1)

= exp(k*e)




Releasing privately the
mean of Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1<s1ize(d))

s:=s + df[1i]

1:=1+1;
z:=$ Lap (sens/eps, (s/1))
return =z




Composition
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Composition

My is (€1,61)-DP

< >

Mo IS (82,62)-DP

< >

Mn is (ek,0k)-DP

< >

[ The overall process is (€1+&2+...+&k,01+02+...+6k)-DP J




Composition

P
Let M;:DB —R, be a (€,0/)-differentially private program and
M,:DB —R3 be a (€2,0)-differentially private program.Then, their
composition M| 2:DB—R xR, defined as

Mi2(D)=(Mi(D),M2(D))
is (€1+€2,01+07)-differentially private.




Probabilistic Relational Hoare Logic
Composition

—e1,61C1~C2:P=R Fe2,62C1" ~C2" : R=5

—e1+e2,61+62C1, C1" ~Co; C2" 1 P=S



Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= [];

while (1<size d)
s:= s + d[i]
z:=$ Lap (eps, s)
r:=1r ++ [z];
1:= 1+1;

return r

| am using the easycrypt notation here where Lap (eps, a)
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.



Releasing partial sums

DummySum(d : {0,1} list) : real list
1:=0;
s:=0;

r:=[];
while (1i<size d)
z:=$ Lap (eps,d[i])

S:i= s + z
r:=r ++ [s];
1:= 1+1;

return r




Parallel Composition

-

Let M;:DB —R be a (€,0)-differentially private program and

M,:DB —R be a (€2,02)-differentially private program. Suppose

that we partition D in a data-independent way into two datasets

D, and D». Then, the composition M| 2:DB—R defined as
MP12(D)=(Mi(D1),M2(D2))

is (max(€,€2),max(01,02))-differentially private.

-




Probabilistic Relational Hoare Logic
Composition

—e1,61C1~C2:P=R Fe2,62C1" ~C2" : R=5

—e1+e2,61+62C1, C1" ~Co; C2" 1 P=S



apRHL
awhile
P/\ e<1>X0 => —-bl<l>

Fex, Ok cl~c2:P/\bl<1>/\b2<2>/\k=e<1> /\ e<1><n
==> P /\ Dbl<1>=b2<2> /\k < e<1>

while bl do cl~while b2 do c?2

=)€x,2.0k :P/\ bl<l>=b2<2>/\ e<l> < n
==> P /\ —bl<l>/\ —b2<2>



Properties of
Differential Privacy



Some important properties

e Resilience to post-processing
e Group privacy
e Composition



Some important properties

e Resilience to post-processing
e Group privacy
e Composition

We will look at them in the context of (€,0)-differential privacy.
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Resilience to Post-processing

foM is e-DP

S > N




Resilience to Post-processing




Resilience to Post-processing

Answer: Because it is what allows us to publicly
release the result of a differentially private analysis!




Group Privacy

M is e-DP




Group Privacy

M is ke-DP

Pr[M(D) € S] < exp(ke) Pr[M(D’) € 5]



Group Privacy




Group Privacy

Answer: Because it allows to reason about privacy at
different level of granularities!




Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privagy
Budget: Budget=¢egiobal - 2 €iocal

a )
Sometimes is more convenient to think in terms of

epsilon: €giobai= 2 Elocal
\_ )




r )
Budget=ggiobal - €1 - €2 -€3-€4
-&5 -&E6 -E7 - €8

~ J

§ ) 000 001 010 011 100 101 110 111

Eglobal= E+E+E+E+E+E+E+E=8E

) 7 D1 D2 D3
I 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1

£ Budget:&: lobal - &1 -E» -E3 b 15 0 0 0

~ 2leeE Y, 16 0 0 1

f a 17 1 1 0
18 0 0 0

Eglobal= €+E+€=3€ o 0 1 5
~ Y 110 1 0 1

margin | .4+Y: | .3+Y2 | 4+Y3















