CS 591: Formal Methods in Security and Privacy:
An imperative programming language

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
From the previous class
Does the program comply with the specification?

Precondition: \(x \geq 0 \) and \(y \geq 0 \)

Function Add\((x: \text{ int}, y: \text{ int}) : \text{ int}\) {

\[
\begin{align*}
 r &= 0; \\
 n &= y; \\
 \text{while } n \neq 0 \\
 \{ \\
 &\quad r = r + 1; \\
 &\quad n = n - 1; \\
 \}
\]

return \(r \)

Postcondition: \(r = x + y \)
How about this one?

Precondition: \(x \geq 0 \) and \(y \geq 0 \)

Function Add(x: int, y: int) : int
{
 r = x;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}

Postcondition: \(r = x + y \)
How can we make this reasoning mathematically precise?
Formal Semantics

We need to assign a formal meaning to the different components:

Precondition
Program
Postcondition

formal semantics of programs
formal semantics of specification conditions
formal semantics of specification conditions

We also need to describe the rules which combine program and specifications.
Goal for today

• Formalize the semantics of a simple imperative programming language.
A first example

```plaintext
FastExponentiation (n, k : Nat) : Nat
n' := n; k' := k; r := 1;
if k' > 0 then
    while k' > 1 do
        if even(k') then
            n' := n' * n';
            k' := k'/2;
        else
            r := n' * r;
            n' := n' * n';
            k' := (k' - 1)/2;
        r := n' * r;
(* result is r *)
```
Programming Language

| c ::= abort |
	skip
	x := e
	c ; c
	if e then c else c
	while e do c

- **x, y, z, ...** program variables
- **e₁, e₂, ...** expressions
- **c₁, c₂, ...** commands
How would you describe the meaning of a program in a mathematically precise way?
Expressions

We want to be able to write complex programs with our language.

\[
e ::= x \quad | \quad f(e_1, \ldots, e_n)
\]

Where \(f \) can be any arbitrary operator.

Some expression examples

\[
x + 5 \quad x \mod k \quad x[i] \quad (x[i+1] \mod 4) + 5
\]
Types

In expressions we want to be able to use “arbitrary” data types.

\[
t ::= b \quad | \quad T(t_1, \ldots, t_n)
\]

We assume a collection of base types \(b \) including

\[
\text{Bool} \quad \text{Int} \quad \text{Nat} \quad \text{String}
\]

We also assume a set of type constructors \(T \) that we can use to build more complex types, such as:

\[
\text{Bool list} \quad \text{Int*Bool} \quad \text{Int*String} \rightarrow \text{Bool}
\]
Types

We also use types to guarantee that commands are well-formed.

For example, in the commands

\[
\text{while } e \text{ do } c \quad \text{if } e \text{ then } c_1 \text{ else } c_2
\]

We require that \(e \) is of type \text{Bool}.

We omit the details of the type system here but you can find them in the notes by Gilles Barthe.
Values

Values are atomic expressions whose semantics is self-evident and which do not need a further analysis.

For example, we have the following values

```
true 5 [1,2,3,4] "Hello"
```

The following are not values:

```
not true x+5 [x, x+1] x[1]
```

We could define a grammar for values, but we prefer to leave this at the intuitive level for now.
How can we give semantics to expressions and commands?

```plaintext
FastExponentiation(n, k : Nat) : Nat
    n' := n; k' := k; r := 1;
    if k' > 0 then
        while k' > 1 do
            if even(k') then
                n' := n' * n';
                k' := k'/2;
            else
                r := n' * r;
                n' := n' * n';
                k' := (k' - 1)/2;
        end
        r := n' * r;
    (* result is r *)
```
Memories

We can formalize a memory as a map m from variables to values.

$$m = [x_1 \mapsto v_1, \ldots, x_n \mapsto v_n]$$

We consider only maps that respect types.

We want to read the value associated to a particular variable:

$$m(x)$$

We want to update the value associated to a particular variable:

$$m[x \leftarrow v]$$

This is defined as

$$m[x \leftarrow v](y) = \begin{cases}
 v & \text{ If } x = y \\
 m(y) & \text{ Otherwise}
\end{cases}$$
Semantics of Expressions

What is the meaning of the following expressions?

\(x + 5\) \(\mod\) \(k\) \(x[i]\) \((x[i+1] \mod 4) + 5\)

We can give the semantics as a relation between **expressions**, **memories** and **values**.

\[
\text{Exp} \star \text{Mem} \star \text{Val}
\]

We will denote this relation as:

\[
\{e\}_m = v
\]

This is commonly typeset as:

\[
[e]_m = v
\]
Semantics of Expressions

This is defined on the structure of expressions:

\[\{ x \}_m = m(x) \]

\[\{ f(e_1, \ldots, e_n) \}_m = \{ f \}(\{ e_1 \}_m, \ldots, \{ e_n \}_m) \]

where \(\{ f \} \) is the semantics associated with the basic operation we are considering.
Semantics of Expressions

Suppose we have a memory

\[m = [i \rightarrow 1, x \rightarrow [1, 2, 3], y \rightarrow 2] \]

That \(\{\text{mod}\} \) is the modulo operation and \(\{+\} \) is addition, we can derive the meaning of the following expression:

\[\{(x[i+1] \mod y) + 5\}_m \]

\[= \{(x[i+1] \mod y)\}_m \{+\}\{5\}_m \]
\[= (\{x[i+1]\}_m \{\text{mod}\} \{y\}_m) \{+\}\{5\}_m \]
\[= (\{x\}_m[\{i\}_m\{+\}\{1\}_m] \{\text{mod}\} \{y\}_m) \{+\}\{5\}_m \]
\[= (\{x\}_m[1\{+\}1] \{\text{mod}\} 2) \{+\}5 \]
\[= (\{x\}_m[2] \{\text{mod}\} 2) \{+\}5 \]
\[= (2 \{\text{mod}\} 2) \{+\}5 = 0 \{+\} 5 = 5 \]
Operational vs Denotational Semantics

The style of semantics we are using is denotational, in the sense that we describe the meaning of an expression by means of the value it denotes.

A different approach, more operational in nature, would be to describe the meaning of an expression by means of the value that the expression evaluates to in an abstract machine.
Semantics of Commands

What is the meaning of the following command?

\[k := 2; \ z := x \mod k; \ \text{if } z = 0 \text{ then } r := 1 \text{ else } r := 2 \]

We can give the semantics as a relation between \textit{command}, \textit{memories} and \textit{memories} or failure.

\[\text{Exp} \ast \text{Mem} \ast \text{Mem} \]

Would this work?
Semantics of Commands

What is the meaning of the following command?

\[k := 2; \quad z := x \mod k; \quad \text{if } z = 0 \text{ then } r := 1 \text{ else } r := 2 \]

We can give the semantics as a relation between command, memories and memories or failure.

\[\text{Exp} \ast \text{Mem} \ast (\text{Mem} \mid \bot) \]

We will denote this relation as:

\[\{ c \}_{m} = m' \quad \text{Or} \quad \{ c \}_{m} = \bot \]

This is commonly typeset as:

\[\left[c \right]_{m} = m' \]
Semantics of Commands

This is defined on the structure of commands:

\[
\begin{align*}
\{\text{abort}\}_m &= \bot \\
\{\text{skip}\}_m &= m \\
\{x:=e\}_m &= m[x\leftarrow\{e\}_m] \\
\{c; c'\}_m &= \{c'\}_{m'} \quad \text{if} \quad \{c\}_m = m' \\
\{c; c'\}_m &= \bot \quad \text{if} \quad \{c\}_m = \bot \\
\{\text{if } e \text{ then } c_t \text{ else } c_f\}_m &= \{c_t\}_m \quad \text{if} \quad \{e\}_m = \text{true} \\
\{\text{if } e \text{ then } c_t \text{ else } c_f\}_m &= \{c_f\}_m \quad \text{if} \quad \{e\}_m = \text{false}
\end{align*}
\]
Semantics of While

What about while

\{\texttt{while } e \texttt{ do } c\}_m = ???
Semantics of While

If \(\{e\}_m = \text{false} \) Then

\[\{\text{while } e \text{ do } c\}_m = m \]

What about when \(\{e\}_m = \text{true} \)?
Semantics of While

If \(\{e\}_m = \text{true} \) Then we would like to have:

\[
\{\text{while } e \text{ do } c\}_m = \{c; \text{while } e \text{ do } c\}_m
\]

Is this well defined?
Approximating While

We could define the following syntactic approximations of a While statement:

\[\text{while}^n \ e \ \text{do} \ c \]

This can be defined inductively on \(n \) as:

\[\text{while}^0 \ e \ \text{do} \ c = \text{skip} \]

\[\text{while}^{n+1} \ e \ \text{do} \ c = \]
\[\text{if} \ e \ \text{then} \ (c; \text{while}^n \ e \ \text{do} \ c) \ \text{else} \ \text{skip} \]
Semantics of While

We could go back and try to define the semantics using the approximations:

\[
\{\text{while } e \text{ do } c\}_m = \{\text{while}^n e \text{ do } c\}_m
\]

How do we find the \(n \)?
Information order

An idea that has been developed to solve this problem is the idea of information order.

This corresponds to the idea of order different possible denotations in terms of the information they provide.

In our case we can use the following order on possible outputs:

\[m_1 \geq m_2 \geq m_3 \geq \ldots \geq m_n \quad \ldots \]

Dana Scott
Semantics of While

Using fixpoint theorems on lattices we can try now to define the semantics using the approximations and a sup operation:

$$\{\text{while } e \text{ do } c\}_m = \sup_{n \in \text{Nat}} \{\text{while}_n \ e \ \text{do} \ c\}_m$$

Will this work?

We are missing the base case.
We could define the following lower iteration of a While statement:

\[\text{while}_n \; e \; \text{do} \; c \]

This can be defined using the approximations as:

\[\text{while}_n \; e \; \text{do} \; c = \text{while}_n \; e \; \text{do} \; c; \text{if} \; e \; \text{then} \; \text{abort} \; \text{else} \; \text{skip} \]
Semantics of While

We now have all the components to define the semantics of while:

\[
\{\text{while } e \text{ do } c\}_m = \sup_{n \in \text{Nat}} \{\text{while } n \text{ } e \text{ do } c\}_m
\]
Semantics of Commands

This is defined on the structure of commands:

\[
\begin{align*}
\{\text{abort}\}_m &= \bot \\
\{\text{skip}\}_m &= m \\
\{x:=e\}_m &= m[x\leftarrow\{e\}_m] \\
\{c; c'\}_m &= \{c'\}_m' \quad \text{if} \quad \{c\}_m = m' \\
\{c; c'\}_m &= \bot \quad \text{if} \quad \{c\}_m = \bot \\
\{\text{if } e \text{ then } c_t \text{ else } c_f\}_m &= \{c_t\}_m \quad \text{if } \{e\}_m = \text{true} \\
\{\text{if } e \text{ then } c_t \text{ else } c_f\}_m &= \{c_f\}_m \quad \text{if } \{e\}_m = \text{false} \\
\{\text{while } e \text{ do } c\}_m &= \sup_{n \in \mathbb{Nat}} \{\text{while}_n e \text{ do } c\}_m \\
\text{where} \\
\text{while}_n e \text{ do } c &= \text{while}_n e \text{ do } c; \text{if } e \text{ then } \text{abort} \text{ else } \text{skip} \\
\text{while}_0 e \text{ do } c &= \text{skip} \\
\text{while}_{n+1} e \text{ do } c &= \text{if } e \text{ then } (c; \text{while}_n e \text{ do } c) \text{ else } \text{skip}
\end{align*}
\]
Example

What is the semantics of the following program:

\[n := 2; \]
\[r := 1; \]
\[\text{while } n \geq 1 \text{ do} \]
\[\quad r := n \times r; \]
\[\quad n := n - 1; \]
What is the semantics of the following program:

```plaintext
Fact(n: Nat) : Nat
  r := 1;
  while n > 1 do
    r := n * r;
    n := n - 1;
```

Example