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Differential Privacy



Where we were…



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



apRHL: skip rule

⊢0,0skip~skip:P⇒P



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> /\ e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ Lap(eps,s) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ Lap(eps,d[i]) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



Today: more examples 
of differentially private 

programs



Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.16 Di�erential Privacy

Pr

q(·)
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
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Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Proof: Intuitively

Laplace Mechanism



Exponential Mechanism
The Exponential Mechanism can be used in more 
situations - accordingly to a score function. 

Suppose that we have a scoring function u(D,o) that to 
each pair (database, potential output) assign a score (a 
negative real number).  

We want to output approximately the element with the max 
score.



Exponential Mechanism

Exponential Mechanism:

return               with prob.

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ‖x − y‖1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =

(
exp( εu(x,r)

2∆u )∑
r′∈R exp( εu(x,r′)

2∆u )
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= exp(ε).

Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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Exponential Mechanism
Privacy theorem:
The Exponential Mechanism is differentially private.

The proof is very similar to the one for the Laplace Mechanism.
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Here we change y with x by 
paying exp(ε/2).



Exponential Mechanism
The Exponential Mechanism is a very general mechanism. 
It can actually be used as a kind of universal mechanism. 

Unfortunately, when the output space is big it can be very 
costly to sample from it - the best option is to enumerate 
all the possibilities. 

Moreover, when the output space is big also the accuracy 
get worse.
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Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–2

3: Let u : X n ◊ X m æ R be defined as:

u(D, Di) = ≠ max
qœQ

|q(D) ≠ q(Di)|

4: Let DÕ Ω ME(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , zk

3: S0 Ω 0
4: for i Ω 1, . . . , k do
5: Si Ω Si≠1 + LapMech(q[y], ‘l, Di)
6: end for
7: return S
8: end function

Algorithm 7 Pseudo-code for Histogram
1: function Histogram(D, ‘)
2: for i Ω 1, . . . , |X | do
3: Myi(D) Ω LapMech(D, qyi , ‘)
4: end for
5: return H
6: end function

Algorithm 8 Pseudo-code for Report Noisy Max
1: function RNM(D, q1, . . . , qm, ‘)
2: for i Ω 1, . . . , m do
3: ci Ω LapMech(D, qi, ‘)
4: end for
5: return argmaxici

6: end function
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Example 1.3. Consider a set of data containing the income of di�erent
individuals. We want to print the CDF of the incomes.

In general, we could compute it by answering all the threshold
queries.

Algorithm 3 Pseudo-code for the exact CDF
1: function CDF(D)
2: for y Ω min to max do
3: Sy Ω qy(D)
4: end for
5: return S
6: end function

In general this approach may be too expensive, especially when we
have a large universe X so we may want to compute the CDF wrt some
given list of values z1, . . . , zk bucketing together several values.

Algorithm 4 Pseudo-code for CDF1
1: function CDF(D)
2: for y Ω min, z1, . . . , zk do
3: Sy Ω LapMech(q[y], ‘l, D)
4: end for
5: return S
6: end function

This algorithm is k‘l-DP. So we can set ‘l = ‘g

k . The error in each
bucket is O( 1

n‘l
) = O( k

n‘g
). Now, let’s introduce another algorithm

computing a di�erent approximation of CDF.
This algorithm is ‘l-DP. So we can set ‘g = ‘l. We would like to

have the error O( 1

n‘l
) = O( k

n‘g
). In fact, the error is O(

Ô
k

n‘l
) because we

have to account for the sum of the noise, and the canceling out - using
a Cherno� bound.

We can also imagine better algorithms.
Theorem 1.11. The algorithm Histogram is 2‘ di�erentially private.
Theorem 1.12. The algorithm RNM is ‘-di�erentially private.
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28 Di�erential Privacy

Proof. Fix D ≥ DÕ, and c = ˛q(D) and cÕ = ˛q(DÕ) be the results of the
counting queries in the two cases. For simplicity we assume that c and
cÕ have the following properties.

• i) ’j, cj Ø cÕ
j

• ii) ’j, 1

n + cÕ
j Ø cj

The general case is a little more involved but overall similar.
Let’s now fix i, we want to bound the ratio of the probability that i

is selected when running RNM on D and DÕ. Now let rj be the noise
drawn from Laplace for the round j and r≠i be the noise drawn from
Laplace for all the rounds except the i-th one.

1 We consider non-normalized queries
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use the notation Pr[i|ξ] to mean the probability that the output of the
Report Noisy Max algorithm is i, conditioned on ξ.

We first argue that Pr[i|D, r−i] ≤ eε Pr[i|D′, r−i]. Define
r∗ = min

ri
: ci + ri > cj + rj ∀j #= i.

Note that, having fixed r−i, i will be the output (the argmax noisy
count) when the database is D if and only if ri ≥ r∗.
We have, for all 1 ≤ j #= i ≤ m:

ci + r∗ > cj + rj

⇒ (1 + c′
i) + r∗ ≥ ci + r∗ > cj + rj ≥ c′

j + rj

⇒ c′
i + (r∗ + 1) > c′

j + rj .

Thus, if ri ≥ r∗ + 1, then the ith count will be the maximum when the
database is D′ and the noise vector is (ri, r−i). The probabilities below
are over the choice of ri ∼ Lap(1/ε).

Pr[ri ≥ 1 + r∗] ≥ e−ε Pr[ri ≥ r∗] = e−ε Pr[i|D, r−i]
⇒ Pr[i|D′, r−i] ≥ Pr[ri ≥ 1 + r∗] ≥ e−ε Pr[ri ≥ r∗] = e−ε Pr[i|D, r−i],
which, after multiplying through by eε, yields what we wanted to show:
Pr[i|D, r−i] ≤ eε Pr[i|D′, r−i].

We now argue that Pr[i|D′, r−i] ≤ eε Pr[i|D, r−i]. Define
r∗ = min

ri
: c′

i + ri > c′
j + rj ∀j #= i.

Note that, having fixed r−i, i will be the output (argmax noisy count)
when the database is D′ if and only if ri ≥ r∗.
We have, for all 1 ≤ j #= i ≤ m:

c′
i + r∗ > c′

j + rj

⇒ 1 + c′
i + r∗ > 1 + c′

j + rj

⇒ c′
i + (r∗ + 1) > (1 + c′

j) + rj

⇒ ci + (r∗ + 1) ≥ c′
i + (r∗ + 1) > (1 + c′

j) + rj ≥ cj + rj .

Thus, if ri ≥ r∗ + 1, then i will be the output (the argmax noisy
count) on database D with randomness (ri, r−i). We therefore have,
with probabilities taken over choice of ri:

Pr[i|D, r−i] ≥ Pr[ri ≥ r∗ + 1] ≥ e−ε Pr[ri ≥ r∗] = e−ε Pr[i|D′, r−i],
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which, after multiplying through by eε, yields what we wanted to show:
Pr[i|D′, r−i] ≤ eε Pr[i|D, r−i].

The proof is easiy extended to show that the release of the maximum
noisy count, and not just its index, incurs no further loss of privacy.

3.4 The exponential mechanism

In both the “most common name” and “most common condition” exam-
ples the “utility” of a response (name or medical condition, respec-
tively) we estimated counts using Laplace noise and reported the noisy
maximum. In both examples the utility of the response is directly
related to the noise values generated; that is, the popularity of the
name or condition is appropriately measured on the same scale and in
the same units as the magnitude of the noise.

The exponential mechanism was designed for situations in which
we wish to choose the “best” response but adding noise directly to the
computed quantity can completely destroy its value, such as setting a
price in an auction, where the goal is to maximize revenue, and adding a
small amount of positive noise to the optimal price (in order to protect
the privacy of a bid) could dramatically reduce the resulting revenue.

Example 3.5 (Pumpkins.). Suppose we have an abundant supply of
pumpkins and four bidders: A, F, I, K, where A, F, I each bid $1.00
and K bids $3.01. What is the optimal price? At $3.01 the revenue
is $3.01, at $3.00 and at $1.00 the revenue is $3.00, but at $3.02 the
revenue is zero!

The exponential mechanism is the natural building block for
answering queries with arbitrary utilities (and arbitrary non-numeric
range), while preserving differential privacy. Given some arbitrary
range R, the exponential mechanism is defined with respect to some
utility function u : N|X | × R → R, which maps database/output pairs
to utility scores. Intuitively, for a fixed database x, the user prefers that
the mechanism outputs some element of R with the maximum possible
utility score. Note that when we talk about the sensitivity of the utility
score u : N|X | × R → R, we care only about the sensitivity of u with
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ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; 
  best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
return max;

Report One-sided Noisy Max 
Instead of the classic Report Noisy Max, we consider
a version where we add noise from a one-sided Laplace



ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; 
  best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
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return max;

Report One-sided Noisy Max 
Instead of the classic Report Noisy Max, we consider
a version where we add noise from a one-sided Laplace

Composition doesn’t 
apply, since adding one-
sided Laplace is not 
differentially private



|-(ε,0) 
[b1 ~1 b2,∀i.∀d1~1d2. |qi(d1)-qi(d2)|≤1,…] 
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=max2]

Report One-sided Noisy Max 



Point-wise reformulation of 
differential privacy

Given ε,δ ≥ 0, a mechanism M: db →O 
where O is discrete, is  (ε,δ)-differentially 
private iff ∀b1 ~1 b2  and ∀s∈O:
    Pr[M(b1) = s] ≤ exp(ε)· Pr[M(b2) = s] + δs

with ∑δs≤ δ.

Can we turn this definition into a rule?



Pointwise rule - simplified

|-(ε,𝜹s) Pre: b1 ~1 b2
program

Post: [out1=s => out2=s]

|-(ε,𝜹) Pre: formula 

Program
Post: [out1=out2]

If for every s∈O

then

and

∑s∈O 𝜹s≤ 𝜹



Pointwise rule - simplified

|-(ε,𝜹s) Pre: b1 ~1 b2
program

Post: [out1=s => out2=s]

|-(ε,𝜹) Pre: formula 

Program
Post: [out1=out2]

If for every s∈O

then

and

∑s∈O 𝜹s≤ 𝜹



Pointwise DP in Aprhl

c1~c2 :P ==> x<1> = x<2> ⊢ε,δ

c1~c2 :P ==> x<1>=r => x<2>=r ⊢ε,δr

forall r∈R

∑ δr ≤ δ



By applying the 
pointwise rule 

we get a different post

|-(ε,0)
[b1 ~1 b2,∀i.∀d1~1d2. |qi(d1)-qi(d2)|≤1,…] 
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



By applying the 
pointwise rule 

we get a different post

|-(ε,0)
[b1 ~1 b2,∀i.∀d1~1d2. |qi(d1)-qi(d2)|≤1,…] 
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Notice that we focus
 on a single general s.

Report One-sided Noisy Max 



We can apply 
standard RHL

|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
[b1 ~1 b2,∀i.∀d1~1d2. |qi(d1)-qi(d2)|≤1,…] 
  i = 1; best = 0; 
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0;
[b1 ~1 b2,…]
  while (i ≤ k){

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 

We can apply 
standard RHL



We can now proceed
by cases

|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[b1 ~1 b2,…]

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



And use different 
properties

|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[b1 ~1 b2, i1<s => … /\ i1>s => … /\ i1=i2]

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



Invariant

   i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1
/\ i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s
/\ i1=i2



Invariant

   i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1
/\ i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s
/\ i1=i2

This part describes the situation 
before we encounter s.



Invariant

   i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1
/\ i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s
/\ i1=i2

This part describes the situation 
after we encounter s.



Invariant

   i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1
/\ i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s
/\ i1=i2

When we encounter s we switch 
from one to the other



Let us consider case 
by case

|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1]

   cur = qi(b) + Lap+(ε)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



Which rule shall
 we apply?

|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1]

   cur = qi(b) + Lap+(ε)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Report One-sided Noisy Max 



Laplace+ rule 1

|-(ε,0) Pre: true
output = input + Lap+(ε)

Post: [output1-output2=input1-input2]



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(0,0)

  cur = qi(b) + Lap+(ε/2)
[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1/\

cur1-cur2=qi(b)-qi(b)]
  if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s]

Let’s apply the rule

Report One-sided Noisy Max 



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(0,0)

  cur = qi(b) + Lap+(ε/2)
[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1/\

|cur1-cur2|≤1]
  if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s] and paid ε 
And rewrite…

Report One-sided Noisy Max 



ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(0,0)

  cur = qi(b) + Lap+(ε/2)
 if (cur > best \/ i=1)
        max = i ; 
        best = cur;

[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1/\
|cur1-cur2|≤1]
   i=i+1;
return max;

[max1=s => max2=s] and paid ε 
Proceeding…

Report One-sided Noisy Max 



ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(0,0)

  cur = qi(b) + Lap+(ε/2)
 if (cur > best \/ i=1)
        max = i ; 
        best = cur;

[i1 < s => max1 < s /\ max2 < s /\ |best1-best2|≤1/\
|cur1-cur2|≤1] paid 0
   i=i+1;
return max;

[max1=s => max2=s] and paid ε 

This preserves 
the invariant

Report One-sided Noisy Max 



ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s]

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s] and paid ε Let us consider now 
the second case

Report One-sided Noisy Max 



ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
[i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s]

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s] and paid ε What rule shall 
we apply now?

Report One-sided Noisy Max 



Laplace+ rule 2

|-(k’ε,0) Pre: 0≤k+input1-input2≤k’
output = input + Lap+(ε)
Post: [output1+k=output2]



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(ε,0)

   cur = qi(b) + Lap+(ε/2)
[(i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s)
 /\cur1+1=cur2]

   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s] and paid ε 
Let’s apply the rule

Report One-sided Noisy Max 



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(ε,0)

   cur = qi(b) + Lap+(ε/2)
[(i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s)
 /\cur1+1=cur2]

   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;
return max;

[max1=s => max2=s] and paid ε 

Now we see that 
either we don’t 

enter the if in the
first case,  or if we do,
we are guaranteed to 

enter also in the 
second case

Report One-sided Noisy Max 



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(ε,0)

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;

[(i1 ≥ s =>(max1= max2=s /\ best1+1=best2) \/ max1 ≠ s)
 /\cur1+1=cur2]

   i=i+1;
return max;

[max1=s => max2=s] and paid ε 

Continuing…

Report One-sided Noisy Max 



|-(ε,0)
ROSNM (q1,…,qk : list data → R, 
     b : list data, ε: R) : nat 
  i = 1; best = 0; 
 while (i ≤ k){
|-(ε,0)

   cur = qi(b) + Lap+(ε/2)
   if (cur > best \/ i=1)
        max = i ; 
        best = cur;
   i=i+1;

[invariant]
return max;

[max1=s => max2=s] and paid ε 

With this we can  
conclude

Report One-sided Noisy Max 










