
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Proofs of Protocol Security in Real/Ideal Paradigm

Real/Ideal Paradigm
• We proved IND-CPA (indistinguishability under chosen

plaintext attack) security of a symmetric encryption scheme
built from a pseudorandom function plus randomness

• Now, we’re going to consider a proof in the Real/Ideal
Paradigm of the security of a three party cryptographic
protocol

• In the real/ideal paradigm there are two games:
• A “real” game based on how the actual protocol works
• An “ideal” game that is secure by construction

• In the security proof we show that an Adversary can’t
distinguish the two games—or can only distinguish them with
negligible probability

2

Private Count Retrieval Protocol
• The Private Count Retrieval (PCR) Protocol involves three

parties:
• a Server, which holds a database
• a Client, which makes queries about the database
• an untrusted Third Party (TP), which mediates between the

Server and Client
• A database is one-dimensional: it consists of a list of elements
• Each query is also an element, and is a request for the count

of the number of times it occurs in the database

3

Private Count Retrieval Protocol
• For example, suppose the database is [0; 2; 0; 4; 2].
• If the query is 0, the answer is:

• 2
• If the query is 4, the answer is: 1
• If the query is 3, the answer is:

• 0

4

Security Goals for PCR
• Informally, the goal is for:

• Client to only learn the counts for its queries, not anything
else about the database (we’ll limit how many queries it
can make)

• Server to learn nothing about the queries made by the
Client other than the number of queries that were made

• TP to learn nothing about the database and queries other
than certain element patterns

5

Hashing
• The PCR protocol makes use of hashing, a process

transforming a value of some type into a bit string of a fixed
length
• When distinct inputs are hashed, it should be very unlikely

that the resulting bit strings are equal
• Given a bit string, it should be hard to find an input that

hashes to it
• In an implementation, we might use a member of the SHA

family of hash functions
• But in our proofs, we’ll model hashing via a random oracle

6

PCR Protocol Operation

7

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

8

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

9

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

secrets are
bit strings of

length sec_len

PCR Protocol Operation

10

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

11

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

random
shuffle

PCR Protocol Operation

12

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
elem/sec

pairs

tags are
bit strings of

length tag_len

PCR Protocol Operation

13

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

14

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

15

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
qry/sec

PCR Protocol Operation

16

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

17

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

18

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

19

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

final result

Protocol Example
• E.g., suppose the original database was [0; 1; 1; 2] and

the queries are 1, 2 and 3
• The Server’s shuffled database might be [1; 0; 2; 1]
• TP will get a hashed database [t2; t1; t3; t2] and hash

tags t2, t3 and t4, and so will return to Client counts 2, 1 and
0 (assuming no hash collisions)

20

EasyCrypt Code
• On GitHub you can find:

• All the EasyCrypt definitions and proofs
• A link to a conference paper about PCR and its proofs

• Joint work with Mayank Varia

21

https://github.com/alleystoughton/PCR

Elements, Secrets and Hashing in EasyCrypt
• Elements (type elem) may be anything
• Secrets (type sec) are bits strings of length sec_len
• Hash tags (type tag) are bit strings of length tag_len
• Hashing is done using a random oracle in which element/

secret pairs are hashed to hash tags

22

Random Oracle Theory RandomOracle
module type OR = {
 proc init() : unit
 proc hash(inp : input) : output
}.

module Or : OR = {
 var mp : (input, output) fmap

 proc init() : unit = {
 mp <- empty;
 }

 proc hash(inp : input) : output = {
 if (! dom mp inp) {
 mp.[inp] <$ output_distr;
 }
 return oget mp.[inp];
 }
}.

23

Random Oracle
clone RandomOracle as RO with
 type input <- elem * sec,
 op input_default <- (elem_default, zeros_sec),
 op output_len <- tag_len,
 type output <- tag,
 op output_default <- zeros_tag,
 op output_distr <- tag_distr
proof *.
(* realization *) … (* end *)

24

Thus RO.Or with module type RO.OR is the random oracle

Random Shuffling
module Shuffle = {
 proc shuffle(xs : elem list) : elem list = {
 var ys : elem list; var i : int;
 ys <- [];
 while (0 < size xs) {
 i <$ [0 .. size xs - 1];
 ys <- ys ++ [nth elem_default xs i];
 xs <- trim xs i;
 }
 return ys;
 }
}.

25

each of the (size xs)! reorderings
of xs are equally possible (because

of duplicates, some of these
reorderings may be the same)

PCR Protocol
type db = elem list. type hdb = tag list.

…
type server_view = server_view_elem list.
type tp_view = tp_view_elem list.
type client_view = client_view_elem list.

module type ENV = {
 proc * init_and_get_db() : db option
 proc get_qry() : elem option
 proc put_qry_count(cnt : int) : unit
 proc final() : bool
}.

26

Each party has a view
variable that records

everything it sees

PCR Protocol
module Protocol (Env : ENV) = {
 module Or = RO.Or
 …
 proc main() : bool = {
 var db_opt : db option; var b : bool;
 init_views(); Or.init();
 server_gen_sec(); client_get_sec();
 db_opt <@ Env.init_and_get_db();
 if (db_opt <> None) {
 server_hash_db(oget db_opt);
 tp_get_hdb();
 client_loop();
 }
 b <@ Env.final();
 return b;
 }
}.

27

PCR Protocol
proc client_loop() : unit = {
 var cnt : int; var tag : tag;
 var qry_opt : elem option;
 var not_done : bool <- true;
 while (not_done) {
 qry_opt <@ Env.get_qry();
 cv <- cv ++ [cv_got_qry qry_opt];
 if (qry_opt = None) {
 not_done <- false;
 } else {
 tag <@ Or.hash((oget qry_opt, client_sec));
 cnt <@ tp_count_tag(tag);
 cv <- cv ++
 [cv_query_count(oget qry_opt, tag, cnt)];
 Env.put_qry_count(cnt);
 }
 }
}

28

Adversarial Model
• We are modeling what is called semi-honest or honest-but curious

security
• In this model, the Adversary is given access to a given protocol

party’s view—the party’s data—but it is not allowed to modify that
data

• The Adversary is also given access to the hash procedure of the
random oracle — this is different from having access to its map

• The Real and Ideal games for each protocol party are
parameterized by the Adversary
• The Adversary tries to learn more from the protocol’s view plus

the hash procedure’s view of the random oracle than it should
• At the end of the games, the Adversary returns a boolean

judgement, trying to make the probability it returns true be as
different as possible in the Real and Ideal games

29

Real Games
• The Real Games for the Server, Third Party and Client are

formed as specializations of Protocol
• For a given party, we define the module type ADV of

Adversaries for that party
• In calls to the Adversary, the party’s current view is

supplied
• The Real Game GReal is

• parameterized by Adv : ADV
• defined by giving Protocol an environment Env made out

of Adv

30

Example: Adversary for Server
module type ADV(O : RO.OR) = {
 proc * init_and_get_db(view : server_view) :
 db option {O.hash}
 proc get_qry(view : server_view) : elem option {O.hash}
 proc qry_done(view : server_view) : unit {O.hash}
 proc final(view : server_view) : bool {O.hash}
}.

• Adversary can do hashing when deciding which database
and queries to choose

• Queries are chosen one by one — adaptively
• qry_done is called with server view, which does not include

the count for the query
• Each time the Adversary is called, it can do hashing to try to

increase its knowledge

31

Example: Real Game for Server
module GReal(Adv : ADV) = {
 module Or = RO.Or
 module A = Adv(Or)

 module Env : ENV = {
 proc init_and_get_db() : db option = {
 var db_opt : db option;
 db_opt <@ A.init_and_get_db(Protocol.sv);
 return db_opt;
 }

 proc get_qry() : elem option = {
 var qry_opt : elem option;
 qry_opt <@ A.get_qry(Protocol.sv);
 return qry_opt;
 }

 proc put_qry_count(cnt : int) : unit = {
 A.qry_done(Protocol.sv);
 }

32

Real Game for Server
 proc final() : bool = {
 var b : bool;
 b <@ A.final(Protocol.sv);
 return b;
 }
 }

 proc main() : bool = {
 var b : bool;
 b <@ Protocol(Env).main();
 return b;
 }
}.

33

Ideal Games
• A party’s Ideal Game is also parameterized by a Simulator (in

addition to the Adversary)
• Simulator’s job is to convince the Adversary it’s interacting

with the real game: it must simulate the party’s view and the
hashing function’s view of the random oracle state

• Because we are working information-theoretically, when
assessing the information leakage from the Ideal Game to the
Simulator (and thus Adversary), we don’t have to scrutinize its
Simulator
• It can’t learn more about the database or queries by brute

force computation
• In fact, in our EasyCrypt security theorems, the Simulators are

existentially quantified

34

Two Dimensional Sequences of Games
• When proving security against a protocol party, we use

EasyCrypt’s pRHL and ambient logics to connect the party’s
Real and Ideal Games via a sequence of games
• Upper bound on distance between source and target

games is sum of intermediate transitions’ upper bounds

35

H1 H3H2

GReal GIdealG1 G2 G3

• We can prove a game transition using a previously proved
sequence of games

cryptographic
reduction

Reminder: Real Game for Server

36

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

Environment
discards count
before calling

Adversary

Real Game for Server
• What (if anything) can the Server learn about the queries and

their counts?
• We formalize this by asking what can be learned from the

Server views that are passed to the Adversary — plus the
ability to run the hash procedure of the random oracle
• We can think that each time the Adversary is called, the

Server is woken up
• To answer and prove this, we need to formalize an Ideal

Game

37

Ideal Game for Server

38

Adversary

Simulator Client

Main

db

db res res

qry

done

no hashing
generates secret,

does shuffling,
hashing

Ideal Game for Server
• The Simulator doesn’t directly learn anything about the

queries, and so the Server views it simulates can’t convey
anything about them either

• And the query loop doesn’t modify the random oracle, so
experimentation with the random oracle won’t learn anything
either

• But because the Server is woken up each iteration of the
query loop, the Server does learn the number of queries

39

Proof of Security Against Server
• We are able to prove perfect security: Real/Ideal games

equally likely to return true:
lemma GReal_GIdeal :

 exists (Sim <: SIM{GReal, GIdeal}),

 forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,

 Pr[GReal(Adv).main() @ &m : res] =

 Pr[GIdeal(Adv, Sim).main() @ &m : res].

• The only challenge is dealing with the redundant hashing
performed by the Client in the Real but not the Ideal Game

• We remove it using a variation of a technique due to Benjamin
Grégoire

40

Redundant Hashing
module type HASHING = {
 proc hash(inp : input) : output
 proc rhash(inp : input) : unit
}.

module type HASHING_ADV(H : HASHING) = {
 proc * main() : bool {H.hash H.rhash}
}.

41

Two implementations of HASHING, both built from a random oracle
O:

• NonOptHashing (``non optimized hashing''), in which rhash
hashes its input, but discards the result

• OptHashing (``optimized hashing’'), where rhash does
nothing

Redundant Hashing
module GNonOptHashing(HashAdv : HASHING_ADV) = {
 module H = NonOptHashing(Or)
 module HA = HashAdv(H)
 proc main() : bool = {
 var b : bool;
 Or.init(); b <@ HA.main();
 return b;
 }
}.

module GOptHashing(HashAdv : HASHING_ADV) = {
 module H = OptHashing(Or)
 module HA = HashAdv(H)
 proc main() : bool = {
 var b : bool;
 Or.init(); b <@ HA.main();
 return b;
 }
}.

42

Redundant Hashing
lemma GNonOptHashing_GOptHashing
 (HashAdv <: HASHING_ADV{Or}) &m :
 Pr[GNonOptHashing(HashAdv).main() @ &m : res] =
 Pr[GOptHashing(HashAdv).main() @ &m : res].

43

• Proof intuition: redundant hashing can be put off until it’s
superseded by hash or no longer necessary

• Proof uses EasyCrypt’s eager tactics

• To use in Server proof, we define a concrete adversary
HashAdv in such a way that the left side of the gap in the
sequence of games proof can be connected with
GNonOptHashing(HashAdv), and GOptHashing(HashAdv)
can be connected with the right side of the gap

Next Class: Third
Party and Client Ideal

Games and Proofs

