
CS 591 G1—Formal Methods in Security and Privacy—Spring 2021

Assignment 1

Due by Friday, February 12, at 5pm

Submission Via Gradescope

Fill in the five gaps in the following EasyCrypt file, Assignment1.ec, which is available

on the course website. Make sure EasyCrypt is able to check your proofs.

(* ASSIGNMENT 1

Due on Gradescope by 5pm on Friday, February 12 *)

require import AllCore.

(* QUESTION 1

prove the following lemma without using the tactics ‘case‘ or

‘smt‘, and without using any lemmas from the EasyCrypt Library: *)

lemma sub (a b c : bool) :

(a => b => c) => (a => b) => a => c.

proof.

(* BEGIN FILL IN *)

(* END FILL IN *)

qed.

(* QUESTION 2

prove the following lemma without using the tactics ‘case‘ or

‘smt‘, and without using any lemmas from the EasyCrypt Library: *)

lemma peirce (a b : bool) :

(a \/ !a) => ((a => b) => a) => a.

proof.

(* BEGIN FILL IN *)

(* END FILL IN *)

qed.

(* QUESTION 3



prove the following lemma without using the ‘smt‘ tactic, and

without using any lemmas from the EasyCrypt Library (you may use

the ‘case‘ tactic): *)

lemma not_exists (P : ’a -> bool) :

(! exists (x : ’a), P x) <=> (forall (x : ’a), ! (P x)).

proof.

(* BEGIN FILL IN *)

(* END FILL IN *)

qed.

(* QUESTION 4

This question is about proving the equivalence of two definitions

of when an integer is prime. *)

require import IntDiv StdOrder. (* lemmas for integer mod and div *)

import IntOrder. (* lemmas about <, <= on int *)

(* n %/ x is the integer division of n by x, discarding any remainder

n %% x is the remainder of integer division of n by x

x %| n tests whether x divides n, i.e., n %% x = 0

%/ and %% are actually abbreviations, defined in terms of edivz;

consequently, when using ‘search‘ to look for lemmas involving

these abbreviations, one must search for ‘edivz‘ instead. But we’ve

provided (below) the lemma that needs such facts *)

(* here are two ways of defining when an integer is prime, which

you will prove are equivalent: *)

op is_prime1 (n : int) : bool =

2 <= n /\

! exists (x : int),

x %| n /\ 1 < x /\ x < n.

op is_prime2 (n : int) : bool =

2 <= n /\

forall (x : int),

x %| n => x <= 1 \/ x = n.



(* you may use the following lemma in your proof (it should probably

be provided by IntDiv): *)

lemma div_le (x n : int) :

1 <= x => 1 <= n => x %| n => x <= n.

proof.

move => ge1_x ge1_n x_div_n.

have n_eq : n = (n %/ x) * x.

by rewrite eq_sym -dvdz_eq.

rewrite n_eq -{1}mul1z ler_pmul // (lez_trans 1) //.

case (1 <= n %/ x) => //.

rewrite -ltrNge => lt1_n_div_x.

have le0_n : n <= 0.

by rewrite n_eq mulr_le0_ge0 1:-ltzS // (lez_trans 1).

have // : 1 <= 0.

by apply (lez_trans n).

qed.

(* When proving the following lemma, this lemma from the EasyCrypt

Library will be helpful:

lemma forall_iff (P P’ : ’a -> bool) :

(forall x, P x <=> P’ x) =>

(forall (x : ’a), P x) <=> (forall (x : ’a), P’ x).

*)

(* prove the following lemma without using the ‘smt‘ tactic; you

may use the ‘case‘ tactic as well as any lemmas from the EasyCrypt

Library

hint: you can use your solution to QUESTION 3, and you can use

‘search‘ to look for needed lemmas in the EasyCrypt Library. E.g.,

search [!] (/\)

searches for lemmas involving negation and conjunction

for *partial credit*, you can use ‘smt‘ or even ‘admit‘ for parts

of your proof *)

lemma prime_equiv_ge2 (n : int) :

2 <= n =>

(! (exists (x : int), x %| n /\ 1 < x /\ x < n) <=>



(forall (x : int), x %| n => x <= 1 \/ x = n)).

proof.

(* BEGIN FILL IN *)

(* END FILL IN *)

qed.

(* use prime_equiv_ge2 (but not the ‘smt‘ tactic) to prove the

following lemma asserting the equivalence of the two definitions of

primality (you won’t need ‘case‘ or lemmas from the EasyCrypt

Library, but you may use them) *)

lemma prime_equiv (n : int) :

is_prime1 n <=> is_prime2 n.

proof.

(* BEGIN FILL IN *)

(* END FILL IN *)

qed.


