
EasyCrypt’s While Language and Hoare Logic

These slides are an example-based introduction to the features of
EasyCrypt’s while loop language that correspond to the
language we’ve studied in class so far (and that are used in the
notes by Gilles Barthe), as well as to the use of EasyCrypt’s
Hoare logic.

More information can be found in Sections 2.4–2.5 and 3.4 of the
EasyCrypt manual:
https://www.easycrypt.info/documentation/refman.pdf

But note that the manual doesn’t have self-contained sections for
each of EasyCrypt’s logics, and so you’ll also find information
about EasyCrypt’s other program logics in these sections.

The EasyCrypt tactics for Hoare logic are motivated by the ones
we’ve studied in class, but are different in some key ways.

1 / 35

https://www.easycrypt.info/documentation/refman.pdf


EasyCrypt’s Programming Language

In EasyCrypt’s while language, commands (or statements) are
enclosed in procedures, which are in turn enclosed in modules.
Furthermore, modules may have global variables, which their
procedures may read and write.

Procedures may call other procedures. But we don’t need to make
use of this feature at this point in the course. And so consequently
we’ll ignore for now the Hoare logic tactics for working with
procedure calls.

2 / 35



First Example Program

Here is a sample program, which we’ll use as our first running
example:

module M = {
var x, y : int

proc f() : unit = {
if (0 <= x) {
while (0 < x) {

x <- x - 1;
y <- y + 1;

}
}
else {
while (x < 0) {

x <- x + 1;
y <- y - 1;

}
}

}
}.

3 / 35



First Example Program

In the above program, the procedure f takes in no arguments, and
implicitly returns the single element (()) of type unit. Its
assignments are written using <-, instead of the := notation used
in class. They read and write the global variables x and y of the
module M.

We can think of the integers x and y as the inputs of the program,
and of y as the program’s output. It’s not hard to see that the
final value of y will be equal to the sum of the original values of x
and y.

4 / 35



Hoare Triple for Example Program

Because the variables x and y are modified during the running of
our example program, to state the correctness of the program as a
Hoare triple, we need a way of referring to the original values of x
and y.

5 / 35



Hoare Triples

Fortunately, we can do this in EasyCrypt using its ambient logic:

lemma correct (x_ y_ : int) :
hoare[M.f : M.x = x_ /\ M.y = y_ ==> M.y = x_ + y_].

proof.
...
qed.

The lemma is parameterized by mathematical variables x_ and y_,
which are intended to be the initial values of the program’s inputs.
Its conclusion is EasyCrypt’s expression of a Hoare triple. The
program is M.f. The precondition

M.x = x_ /\ M.y = y_

assumes that the values of M.x and M.y are x and y ,
respectively. And the postcondition

M.y = x_ + y_

requires that the final value of M.y be the sum of x_ and y_.
6 / 35



Proof of First Example

When we begin proving our lemma, we have the goal

Type variables: <none>

x_: int
y_: int
--------------------------------------------
pre = M.x = x_ /\ M.y = y_

M.f

post = M.y = x_ + y_

where the conclusion is just another way of writing the same Hoare
triple.

We begin by applying the tactic proc, which inlines the code of f,
transforming this goal into:

7 / 35



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre = M.x = x_ /\ M.y = y_

(1----) if (0 <= M.x) {
(1.1--) while (0 < M.x) {
(1.1.1) M.x <- M.x - 1
(1.1.2) M.y <- M.y + 1
(1.1--) }
(1----) } else {
(1?1--) while (M.x < 0) {
(1?1.1) M.x <- M.x + 1
(1?1.2) M.y <- M.y - 1
(1?1--) }
(1----) }

post = M.y = x_ + y_
8 / 35



Proof of First Example

Because the first statement is an if, we can use the tactic if to
split this goal into two subgoals, depending upon whether M.x is
non-negative or not:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

(1--) while (0 < M.x) {
(1.1) M.x <- M.x - 1
(1.2) M.y <- M.y + 1
(1--) }

post = M.y = x_ + y_

(for the “then” part) and
9 / 35



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre = (M.x = x_ /\ M.y = y_) /\ ! 0 <= M.x

(1--) while (M.x < 0) {
(1.1) M.x <- M.x + 1
(1.2) M.y <- M.y - 1
(1--) }

post = M.y = x_ + y_

(for the “else” part).

10 / 35



Proof of First Example

With both of these subgoals, the final (only in this case) statement
is a while loop, and thus we can apply the while tactic, for which
we need to supply an invariant. We’ll only consider the proof of
the first subgoal, the other being similar.

It’s perhaps obvious that the invariant should include that the sum
of M.x and M.y is equal to the sum of x_ and y_. But we’ll also
need that 0 <= M.x.

In the goal where 0 <= M.x, running

while (0 <= M.x /\ M.x + M.y = x_ + y_).

generates the two subgoals

11 / 35



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

(1) M.x <- M.x - 1
(2) M.y <- M.y + 1

post = 0 <= M.x /\ M.x + M.y = x_ + y_

(showing that the body of the loop preserves the invariant when
M.x is positive) and

12 / 35



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

post =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

(connecting the while loop to the pre- and postconditions of the
goal on which the while tactic was run). We’ll come back to this
second subgoal; but first, let’s consider how to prove the first one.

13 / 35



Proof of First Example

To prove

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

(1) M.x <- M.x - 1
(2) M.y <- M.y + 1

post = 0 <= M.x /\ M.x + M.y = x_ + y_

we can push the assignments at the end of the program (all of the
program in this case) into the postcondition, using the tactic wp,
which stands for “weakest precondition”.

14 / 35



Proof of First Example

In terms of the logic learned in class, it’s equivalent to repeated use
of the rule for assignment, combined with what the slides called
the Rule of Hoare Logic Composition. This results in the goal:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

post =
let x = M.x - 1 in
0 <= x /\ x + (M.y + 1) = x_ + y_

15 / 35



Proof of First Example

Because the program of

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

post =
let x = M.x - 1 in
0 <= x /\ x + (M.y + 1) = x_ + y_

is empty, we can use the skip tactic to reduce it to the ambient
logic formula:

16 / 35



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
forall &hr,
(0 <= M.x{hr} /\ M.x{hr} + M.y{hr} = x_ + y_) /\
0 < M.x{hr} =>
let x = M.x{hr} - 1 in
0 <= x /\ x + (M.y{hr} + 1) = x_ + y_

Here &hr stands for an arbitrary memory, and M.x{hr} and M.y{hr}

stand for the values of M.x and M.y in that memory. We can solve
this goal by running the tactic smt().

17 / 35



Proof of First Example

Now let’s go back to the second subgoal generated by running the
while tactic:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M.f

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

post =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

Here there is no program, because nothing came before the while
loop.

18 / 35



Proof of First Example

The post condition

(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),
! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

has two conjuncts.

The first is the invariant specified to the while tactic, as it must
be true that when the while loop is entered, the invariant holds.

19 / 35



Proof of First Example

Postcondition:

(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),
! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

The second part quantifies over the values x and y, representing
the values of the variables modified by the while loop at the point
where the loop is exited. It has implications assuming that the
boolean expression of the while loop is false, and the loop’s
invariant holds, and requiring us to prove that the original
postcondition (M.y = x_ + y_) holds—all expressed in terms of x
and y instead of M.x and M.y.

The combination of ! 0 < x and 0 <= x tells us that x is zero,
which is why y = x_ + y_ holds, and also why 0 <= x needed to be
part of the invariant.

20 / 35



Proof of First Example

Because the goal’s program part is empty, running skip reduces
the goal to:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
forall &hr,
(M.x{hr} = x_ /\ M.y{hr} = y_) /\ 0 <= M.x{hr} =>
(0 <= M.x{hr} /\ M.x{hr} + M.y{hr} = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

And running smt() will solve this goal.

21 / 35



Proof of First Example

Note that only the variables modified by the while loop are
universally quantified in the postcondition. Thus if the
postcondition Φ of the goal on which the while tactic is run refers
to variables used by the part of the program that comes before the
while loop, or by the precondition of the goal on which the while
tactic is run, whatever is known about those variables upon entry
to the while loop can be used when proving Φ.

22 / 35



Second Example

Because procedures can take arguments and return results, here’s
an alternative version of our example:

module M’ = {
proc f(x : int, y : int) : int = {

var x’, y’ : int;
x’ <- x; y’ <- y;
if (0 <= x’) {
while (0 < x’) {

x’ <- x’ - 1; y’ <- y’ + 1;
}

}
else {
while (x’ < 0) {

x’ <- x’ + 1; y’ <- y’ - 1;
}

}
return y’;

}
}.

23 / 35



Second Example

Here:

• x and y are arguments of f,

• the variables manipulated by the while loops are local
variables x’ and y’, and

• y’ is explicitly returned as the result of f.

This time the lemma to be proved is:

lemma correct’ (x_ y_ : int) :
hoare[M’.f : x = x_ /\ y = y_ ==> res = x_ + y_].

Note how the precondition refers to the values of f’s arguments,
and how res in the postcondition is used to stand for the result
returned by f.

24 / 35



Proof of Second Example

The proof of the second example is only slightly different from that
of the first one. We start with the goal

Type variables: <none>

x_: int
y_: int
--------------------------------------------
pre = x = x_ /\ y = y_

M’.f

post = res = x_ + y_

Running proc then gives us the goal

25 / 35



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M’.f

pre = (x, y).‘1 = x_ /\ (x, y).‘2 = y_

(1----) x’ <- x
(2----) y’ <- y
(3----) if (0 <= x’) {
(3.1--) while (0 < x’) {
(3.1.1) x’ <- x’ - 1
(3.1.2) y’ <- y’ + 1
(3.1--) }
(3----) } else {
(3?1--) while (x’ < 0) {
(3?1.1) x’ <- x’ + 1
(3?1.2) y’ <- y’ - 1
(3?1--) }
(3----) }

post = y’ = x_ + y_
26 / 35



Proof of Second Example

Note that the postcondition now involves y’ not res, since y’ is
what is returned by f.

The precondition involves the notation for selecting the first or
second component of a pair. If we run the tactic simplify, we get
the goal:

27 / 35



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M’.f

pre = x = x_ /\ y = y_

(1----) x’ <- x
(2----) y’ <- y
(3----) if (0 <= x’) {
(3.1--) while (0 < x’) {
(3.1.1) x’ <- x’ - 1
(3.1.2) y’ <- y’ + 1
(3.1--) }
(3----) } else {
(3?1--) while (x’ < 0) {
(3?1.1) x’ <- x’ + 1
(3?1.2) y’ <- y’ - 1
(3?1--) }
(3----) }

post = y’ = x_ + y_
28 / 35



Proof of Second Example

Because the if statement is not the first statement of the program,
we can’t directly run the if tactic. Instead we must use
EasyCrypt’s sequencing tactic (based on the Rule of Hoare
Logic Composition) to split this goal into one involving the first
two assignments, and one involving the if statement.

We run the tactic

seq 2 : (x’ = x_ /\ y’ = y_).

Here the 2 is the number of statements to use for the first subgoal,
and the condition will be used as the postcondition of the first
subgoal, and the precondition of the second subgoal. Here are the
goals we get after running this tactic:

29 / 35



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M’.f

pre = x = x_ /\ y = y_

(1) x’ <- x
(2) y’ <- y

post = x’ = x_ /\ y’ = y_

(which we know how to solve using wp; skip; trivial) and

30 / 35



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : M’.f

pre = x’ = x_ /\ y’ = y_

(1----) if (0 <= x’) {
(1.1--) while (0 < x’) {
(1.1.1) x’ <- x’ - 1
(1.1.2) y’ <- y’ + 1
(1.1--) }
(1----) } else {
(1?1--) while (x’ < 0) {
(1?1.1) x’ <- x’ + 1
(1?1.2) y’ <- y’ - 1
(1?1--) }
(1----) }

post = y’ = x_ + y_

(which is proved just like the analogous goal of the first example).
31 / 35



Proof of Second Example

Here is the complete proof of the second example:

lemma correct’ (x_ y_ : int) :
hoare[M’.f : x = x_ /\ y = y_ ==> res = x_ + y_].

proof.
proc; simplify.
seq 2 : (x’ = x_ /\ y’ = y_).
wp; skip; trivial.
if.
while (0 <= x’ /\ x’ + y’ = x_ + y_).
wp; skip; smt().
skip; smt().
while (x’ <= 0 /\ x’ + y’ = x_ + y_).
wp; skip; smt().
skip; smt().
qed.

32 / 35



More on wp Tactic

The wp tactic can actually push (possibly nested) conditionals and
assignment statements at the end of the program into the
postcondition. E.g., if the program is

module L = {
var w : int

proc f(x y : int) : unit = {
if (x < y) {
w <- y - x;

}
else {
w <- x - y;

}
}

}.

then running

wp.

33 / 35



More on wp Tactic

transforms the goal

Type variables: <none>

--------------------------------------------
Context : L.f

pre = true

(1--) if (x < y) {
(1.1) L.w <- y - x
(1--) } else {
(1?1) L.w <- x - y
(1--) }

post = 0 <= L.w

into

34 / 35



More on wp Tactic

transforms the goal

Type variables: <none>

--------------------------------------------
Context : L.f

pre = true

post = if x < y then 0 <= y - x else 0 <= x - y

35 / 35


