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Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)
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Privacy-preserving data analysis!

We want to release some information to a data analyst and
protect the privacy of the individuals contributing their
data.
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Data analyst




Fundamental Law of
Information Reconstruction

The release of too many overly accurate statistics permits
reconstruction attacks.
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Reconstruction attack
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Reconstruction attack

In this class case we can use Hamming distance



Privacy vs Utility
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Quantitative notions of Privacy

® The impossibility results discussed above suggest a
quantitative notion of privacy,

® a notion where the privacy loss depends on the
number of queries that are allowed,

® and on the accuracy with which we answer them.



Differential privacy:
understanding the mathematical and

computational meaning of this trade-
off.

[Dwork, McSherry, Nissim, Smith, TCCO06]



Privacy-preserving data analysis!?

® The analyst knows no more about me after the
analysis than what she knew before the analysis.
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Privacy-preserving data analysis!?

Prior Knowledge

"

Posterior Knowledge



Privacy-preserving data analysis!?
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Privacy-preserving data analysis!?

[DworkNaor|0]



Privacy-preserving data analysis!?

® The analyst learn almost the same about me after the
analysis as what she would have learnt if | didn’t
contribute my data.
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Adjacent databases

® We can formalize the concept of contributing my data
or not in terms of a notion of distance between
datasets.

® Given two datasets D, D’eDB, their distance is defined
as:

DAD’=|{k=n | D(k)#D’(k)}|
® We will call two datasets adjacent when DAD’=1 and
we will write D~D’.



Privacy Loss

In general we can think about the following quantity as
the privacy loss incurred by observing r on the
databases b and b’.

1, PrIQ()=r]
=0 =8 PrIQ()=r]




(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database bj, b and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + O




Differential Privacy

Q iEI_bL=> R probabilistic
Q(buix}) Q(buiy))




Differential Privacy

d(Q(bu{x}),Q(bu{y}))< € with probability 1-0
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(€,0)-Differential Privacy
PrQ(bi)=r]

<€ | with probability 1-0

yd

Pr[Q(b2)=r]




(€,0)-indistinguishability

Statistical distance:
A(p1,p2)=maxeca | H1(E)-p2(E) | = 0
can be seen as a notion of o-indistinguishabillity.

We say that two distributions p1, y2 €D(A), are at
O-indistinguishable if:

A(u1,u2)< 0



(€,0)-indistinguishability

We can define a s-skewed version of statistical
distance. We call this notion s-distance.

A:(u1,u2)=supeca max(ui(E)-esu2(E), y2(E)-ecu1(E),0)

We say that two distributions 1, u2 eD(A), are at
(€,0)-indistinguishable if:

Ac(p1,p2) <0



Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz2 (extending the notion of adjacency
to memories):

{C}m1=H1 and {C}m2=M2 Implies A:(H1,U2) £ O

private private

D q C q U1
public public

V q q unit(m)
private private

D> q C q U2
public public

V q q unit(m)



Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1i)




Adding Noise




Adding Noise
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Intuitive answer: it should depend on € or the accuracy we
want to achieve, and on the scale that a change of an
individual can have on the output.

~




Global Sensitivity

GS, = max{|q(D) —q(D")| s.t. D ~ D’}
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Laplace Distribution

1 — X
20 b skewness of
the curve,




Releasing privately the
mean of Some Data

Mean (d : private data) : public real
1:=0;
s:=0;
while (i1<size (d))
s:=s + d[1i]

1:=1+1;
z:=$ Laplace (sens/eps,0)
z:= (s/1)+z

return =z




Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(e:real) : pub real
z:=$ Laplace (GS¢/e,0)
z:= T (d)+z

return z




Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(e:real) : pub real
z:=$ Laplace (GS¢/e,0)
z:= T (d)+z

return z

It turns out that we could also write it as:

Lap(d : priv data) (f: data -> real)
(e:real) : pub real
z:=$ Laplace (GSs/e, £(d))
return =z




Laplace Mechanism

4 )
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is (g,0)-differentially private.
- J

Proof: Intuitively
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Laplace Mechanism




