CS 599: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Releasing the mean of Some Data

Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>

Releasing the mean of Some Data

Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>

We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

Fundamental Law of Information Reconstruction

The release of too many overly accurate statistics permits reconstruction attacks.

Reconstruction attack

We say that the attacker wins if

Reconstruction attack

We say that the attacker wins if

In this class case we can use Hamming distance

Quantitative notions of Privacy

- The impossibility results discussed above suggest a quantitative notion of privacy,
- a notion where the privacy loss depends on the number of queries that are allowed,
- and on the accuracy with which we answer them.

Differential privacy: understanding the <u>mathematical</u> and <u>computational</u> meaning of this tradeoff.

[Dwork, McSherry, Nissim, Smith, TCC06]

• The analyst knows no more about me after the analysis than what she knew before the analysis.

• The analyst knows no more about me after the analysis than what she knew before the analysis.

• The analyst knows no more about me after the analysis than what she knew before the analysis.

Prior Knowledge

\sim

Posterior Knowledge

Question: What is the problem with this requirement?

If nothing can be learned about an individual, then nothing at all can be learned at all!

[DworkNaor10]

Adjacent databases

- We can formalize the concept of contributing my data or not in terms of a notion of distance between datasets.
- Given two datasets D, D'∈DB, their distance is defined as:

 $D\Delta D' = |\{k \le n \mid D(k) \ne D'(k)\}|$

 We will call two datasets adjacent when D∆D'=I and we will write D~D'.

Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r on the databases b and b'.

$$L_{b,b'}(\mathbf{r}) = \log \frac{\Pr[Q(b)=\mathbf{r}]}{\Pr[Q(b')=\mathbf{r}]}$$

(ε, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: Xⁿ \rightarrow R is (ε, δ)-differentially private iff for all adjacent database b₁, b₂ and for every S \subseteq R: Pr[Q(b₁) \in S] $\le \exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Differential Privacy

$d(Q(b \cup \{x\}), Q(b \cup \{y\})) \le E$ with probability $1-\delta$

(ε, δ) -indistinguishability

Statistical distance:

 $\Delta(\mu_1,\mu_2)=\max_{E\subseteq A} | \mu_1(E)-\mu_2(E) | = \delta$

can be seen as a notion of δ -indistinguishability.

We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at <u> δ -indistinguishable</u> if:

(ε, δ) -indistinguishability

We can define a ϵ -skewed version of statistical distance. We call this notion ϵ -distance.

 $\Delta_{\epsilon}(\mu 1, \mu 2) = \sup_{E \subseteq A} \max(\mu_1(E) - e^{\epsilon}\mu_2(E), \ \mu_2(E) - e^{\epsilon}\mu_1(E), 0)$

We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at (ϵ, δ) -indistinguishable if:

 $\Delta_{\epsilon}(\mu 1, \mu 2) \leq \delta$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 ${C}_{m1}=\mu_1 \text{ and } {C}_{m2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$

Releasing the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
return (s/i)</pre>
```

Adding Noise

Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon, 0)$ -DP?

Adding Noise

Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon, 0)$ -DP?

Intuitive answer: it should depend on ε or the accuracy we want to achieve, and on the scale that a change of an individual can have on the output.

 $GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$

 $GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$

Laplace Distribution

Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Laplace(sens/eps,0)
z:= (s/i)+z
return z
```

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,0)
  z:= f(d)+z
  return z
```

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,0)
  z:= f(d)+z
  return z
```

It turns out that we could also write it as:

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,f(d))
  return z
```

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Proof: Intuitively

 \Pr

Question: How accurate is the answer that we get from the Laplace Mechanism?