CS 599: Formal Methods in Security and Privacy

Differential Privacy

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

From the previous classes

Releasing the mean of Some Data

Mean(d : private data) : public real i: $=0$;
s: = 0 ;
while (i<size(d))

$$
s:=s+d[i]
$$

$$
i:=i+1 ;
$$

return (s/i)

Privacy-preserving data analysis?

- The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

Privacy-preserving data analysis?

- The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

Privacy-preserving data analysis?

- The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

(દ,ठ)-Differential Privacy

Definition

Given $\varepsilon, \delta \geq 0$, a probabilistic query $\mathrm{Q}: \mathrm{X}^{\mathrm{n}} \rightarrow \mathrm{R}$ is (ε, δ)-differentially private iff for all adjacent database b_{1}, b_{2} and for every $S \subseteq R$:

$$
\operatorname{Pr}\left[Q\left(b_{1}\right) \in S\right] \leq \exp (\varepsilon) \operatorname{Pr}\left[Q\left(b_{2}\right) \in S\right]+\delta
$$

($\varepsilon, \delta)$-indistinguishability

We can define a ε-skewed version of statistical distance. We call this notion ε-distance.
$\Delta_{\varepsilon}(\mu 1, \mu 2)=\sup _{E \subseteq A} \max \left(\mu_{1}(E)-e^{\varepsilon} \mu_{2}(E), \mu_{2}(E)-e^{\varepsilon} \mu_{1}(E), 0\right)$
We say that two distributions $\mu_{1}, \mu_{2} \in D(A)$, are at (ε, δ)-indistinguishable if:

$$
\Delta_{\varepsilon}(\mu 1, \mu 2) \leq \delta
$$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_{1} \sim m_{2}$ (extending the notion of adjacency to memories):
$\{\mathrm{c}\}_{\mathrm{m} 1}=\mu_{1}$ and $\{\mathrm{c}\}_{\mathrm{m} 2}=\mu_{2}$ implies $\Delta_{\varepsilon}\left(\mu_{1}, \mu_{2}\right) \leq \delta$

Laplace Distribution

$$
\operatorname{Lap}(b, \mu)(X)=\frac{1}{2 b} \exp \left(-\frac{|\mu-X|}{b}\right)
$$

b regulates the skewness of the curve,

Releasing privately the mean of Some Data

Mean(d : private data) : public real
i: = 0;
s:=0;
while (i<size(d))
$s:=s+d[i]$
i: =i+1;
$z:=\$$ Laplace (sens/eps,0)
$z:=(s / i)+z$
return z

Today

Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is ($\varepsilon, 0$)-differentially private.

Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is ($\varepsilon, 0$)-differentially private.
Proof: Intuitively

Laplace Mechanism

Question: How accurate is the answer that we get from the Laplace Mechanism?

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_{1} \sim m_{2}$ (extending the notion of adjacency to memories):
$\{\mathrm{c}\}_{\mathrm{m} 1}=\mu_{1}$ and $\{\mathrm{c}\}_{\mathrm{m} 2}=\mu_{2}$ implies $\Delta_{\varepsilon}\left(\mu_{1}, \mu_{2}\right) \leq \delta$

apRHL

Indistinguishability parameter

Probabilistic Program

Probabilistic Program

Precondition (a logical formula)

Postcondition
(a logical formula)

Validity of apRHL judgments

We say that the quadruple $\vdash_{\varepsilon, \delta} \quad \mathrm{C}_{1} \sim \mathrm{C}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}$ is valid if and only if for every pair of memories m_{1}, m_{2} such that $P\left(m_{1}, m_{2}\right)$ we have:
$\left\{\mathrm{C}_{1}\right\}_{\mathrm{m} 1}=\mu_{1}$ and $\left\{\mathrm{C}_{2}\right\}_{\mathrm{m} 2}=\mu_{2}$ implies
$Q_{\varepsilon, \sigma^{*}}\left(\mu_{1}, \mu_{2}\right)$.

Relational lifting

We say that two subdistributions $\mu_{1} \subseteq D(A)$ and $\mu_{2} \subseteq D(B)$ are in the relational lifting of the relation $R \subseteq A x B$, denoted $\mu_{1} R_{\varepsilon, \delta *} \mu_{2}$ if and only if we have an $\mathrm{R}-(\varepsilon, \delta)$-coupling between them.

$$
\text { R- (} \varepsilon \text {, ס) -Coupling }
$$

Given two distributions $\mu_{1} \in D(A)$, and $\mu_{2} \in D(B)$, we have an $R-(\varepsilon, \delta)$-coupling between them, for $R \subseteq A x B$ and $0 \leq \delta \leq 1, \varepsilon \geq 0$, if there are two joint distributions $\mu_{L,} \mu_{R} \in D(A x B)$ such that:

1) $\pi_{1}\left(\mu_{L}\right)=\mu_{1}$ and $\pi_{2}\left(\mu_{R}\right)=\mu_{2}$,
2) the support of μ_{L} and μ_{R} is contained in R. That is, if $\mu_{\mathrm{L}}(\mathrm{a}, \mathrm{b})>0$, then $(a, b) \in R$, and if $\mu_{R}(a, b)>0$, then $(a, b) \in R$.
3) $\Delta_{\varepsilon}\left(\mu_{L}, \mu_{R}\right) \leq \delta$

(ε, δ)-indistinguishability revisited

For discrete distributions we can rewrite the notion of ε-distance as follows:
$\Delta \varepsilon(\mu 1, \mu 2)=1 / 2^{*} \Sigma a \in A \max (\mu 1(a)-e \varepsilon \mu 2(a), \mu 2(E)-e \varepsilon \mu 1(E), 0)$

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

μ_{1}
OO 0.25 010.25 100.25 110.25
μ_{2}
000.20 010.25
100.25
110.30

$\mu_{\text {L }}$	OO	01	10	11	μ_{R}	OO	01	10	11
OO	0.25				OO	0.20			
01		0.25			01		0.25		
10			0.25		10			0.25	
11				0.25	11				0.30
$\Delta_{0}\left(\mu_{L}, \mu_{R}\right)=0.05$									

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

μ_{1}
OO 0.25 010.25 100.25 110.25
μ_{2}
000.20 010.25
100.25
110.30

μ_{L}	OO	O1	10	11		μ_{R}	OO	O1	10	11
OO	0.25					OO	0.20			
O1		0.25				O1		0.25		
10			0.25		10			0.25		
11				0.25		11				0.30

$$
\Delta_{1}\left(\mu_{L}, \mu_{R}\right)=0
$$

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

μ_{1}
OO 0.25 010.25 100.25 110.25
μ_{2}
000.20 010.25
100.25
110.30

μ_{L}	OO	01	010	11		μ_{R}	OO	01	010	11
OO	0.25					00	0.20			
01		0.25				01		0.25		
10			0.25		10			0.25		
11				0.25		11				0.30

$$
\Delta_{0.3}\left(\mu_{\mathrm{L}}, \mu_{\mathrm{R}}\right)=0
$$

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

$$
\begin{aligned}
& \quad \max \left(\mu_{\mathrm{L}}(00,00)-e^{0.3 \mu R}(00,00), \mu R(00,00)-e^{0.3 \mu_{\mathrm{L}}}(00,00), 0\right)=0 \\
& +\max \left(\mu_{\mathrm{L}}(01,01)-e^{\left.0.3 \mu R(01,01), \mu R(01,01)-e^{0.3 \mu_{\mathrm{L}}}(01,01), 0\right)=0}\right. \\
& +\max \left(\mu_{\mathrm{L}}(10,10)-e^{\left.0.3 \mu R(10,10), \mu R(10,10)-e^{0.3} \mu_{\mathrm{L}}(10,10), 0\right)=0}\right. \\
& +\max \left(\mu_{\mathrm{L}}(11,11)-e^{\left.0.3 \mu R(11,11), \mu R(11,11)-e^{0.3 \mu_{\mathrm{L}}}(11,11), 0\right)=0}\right.
\end{aligned}
$$

$$
\Delta_{0.3}\left(\mu_{\mathrm{L}}, \mu_{R}\right)=0
$$

Example of $R-(\varepsilon, \delta)$-Coupling
 μ_{1}

OO 0.2
010.25 100.25
110.3

$$
R(a, b)=\{a \leq b\} \quad \begin{aligned}
& 000 \\
& 010.40 \\
& 100 \\
& 110.6
\end{aligned}
$$

$\mu_{\text {L OO }}$	0110	11	$\mu_{\mathrm{R}} \mathrm{OO}$	01	10	11
00	0.20		OO	0.20		
01	0.25		01	0.20		
10		0.25	10			0.3
11		0.30	11			0.3
$\Delta_{0}\left(\mu_{L}, \mu_{R}\right)=0.05$						

Example of R-($\varepsilon, \delta)$-Coupling

μ_{1}
μ_{2}
OO 0.25 010.25 100.25 110.25

000
010
100.5
110.5

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

μ_{1}
000.25 010.25 100.25 110.25
μ_{2}
$\begin{array}{ll}\text { OO } & 0 \\ \text { O1 } & 0 \\ 10 & 0.5 \\ 11 & 0.5\end{array}$

Example of R-($\varepsilon, \delta)$-Coupling
 μ_{1}

000.25 010.25 100.25 110.25

μ_{L}	00	01	01	10
00	11			
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

Example of R-($\varepsilon, \delta)$-Coupling
 μ_{1}

000.25 010.25 100.25 110.25

$$
R(\mathrm{a}, \mathrm{~b})=\{\mathrm{a}=\mathrm{b}\} \quad \begin{aligned}
& 000 \\
& 010 \\
& 10 \\
& 10 \\
& 110.5 \\
& 110.5
\end{aligned}
$$

$\mu_{\text {L }}$	00	01	10	11	μ_{R}		0	10	11
OO	0.25				00	0			
01		0.25			01		0		
10			0.25		10				
11				0.25	11				0.5
$\Delta_{0}\left(\mu_{L}, \mu_{R}\right)=0.5$									

Example of R-($\varepsilon, \delta)$-Coupling

μ_{1}
μ_{2}
OO 0.25 010.25 100.25 110.25

000
010
100.5
110.5

Example of $\mathrm{R}-(\varepsilon, \delta)$-Coupling

μ_{1}
000.25 010.25 100.25 110.25
μ_{2}
$\begin{array}{ll}\text { OO } & 0 \\ \text { O1 } & 0 \\ 10 & 0.5 \\ 11 & 0.5\end{array}$

Example of R-($\varepsilon, \delta)$-Coupling
 μ_{1}

000.25 010.25 100.25 110.25

μ_{L}	00	01	01	10
00	11			
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

Example of R-($\varepsilon, \delta)$-Coupling
 μ_{1}

000.25 010.25 100.25 110.25

$$
R(\mathrm{a}, \mathrm{~b})=\{\mathrm{a}=\mathrm{b}\} \quad \begin{aligned}
& 000 \\
& 010 \\
& 10 \\
& 10 \\
& 110.5 \\
& 110.5
\end{aligned}
$$

$\mu_{\text {L }}$	00	01	10	11	μ_{R}	00	01	10	11
OO	0.25				OO	0			
01		0.25			01		0		
10			0.25		10			0.5	
11				0.25	11				0.5
$\Delta_{1}\left(\mu_{L}, \mu_{R}\right)=0.25$									

$R-(\varepsilon, \delta)$-Coupling and Indistinguishability

Given two distributions $\mu_{1} \in D(A)$, and $\mu_{2} \in D(A)$, if we have a =-($\varepsilon, \delta)$-coupling between them, then they are (ε, δ)-indistinguishable.

Probabilistic Relational Hoare Logic Skip

$$
\vdash_{0,0 \text { skip~skip }: P \Rightarrow P ~}^{\text {P }}
$$

Probabilistic Relational Hoare Logic Skip

$$
\begin{array}{r}
\mathrm{x}_{1}:=\$ \operatorname{Lap}\left(\varepsilon, \mathrm{Y}_{1}\right) \\
\vdash_{\varepsilon}, 0 \mathrm{x}_{2}:=\$ \operatorname{Lap}\left(\varepsilon, \mathrm{Y}_{2}\right) \\
:\left|\mathrm{Y}_{1}-\mathrm{Y}_{2}\right| \leq 1 \Rightarrow=
\end{array}
$$

Composition

Composition

M_{1} is $\left(\varepsilon_{1}, \delta_{1}\right)$-DP

Composition

Composition

Composition

The overall process is $\left(\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{k}, \delta_{1}+\delta_{2}+\ldots+\delta_{k}\right)$-DP

Composition

Let $M_{1}: D B \rightarrow R_{1}$ be a $\left(\varepsilon_{1}, \delta_{1}\right)$-differentially private program and $M_{2}: D B \rightarrow R_{2}$ be a $\left(\varepsilon_{2}, \delta_{1}\right)$-differentially private program. Then, their composition $M_{1,2}: D B \rightarrow R_{1} \times R_{2}$ defined as

$$
M_{1,2}(D)=\left(M_{1}(D), M_{2}(D)\right)
$$

is $\left(\varepsilon_{1}+\varepsilon_{2}, \delta_{1}+\delta_{2}\right)$-differentially private.

Composition

Question: Why composition is important?

Composition

Question: Why composition is important?

Answer: Because it allows to reason about privacy as a budget!

Composition

Budget $=\varepsilon_{\text {global }}$

Composition

Budget $=\varepsilon_{\text {global }}$

Composition

Budget $=\varepsilon_{\text {global }}-\varepsilon_{1}$

M_{1} is $\varepsilon_{1}-D P$

Composition

Budget $=\varepsilon_{\text {global }}-\varepsilon_{1}$

Composition

$$
\text { Budget }=\varepsilon_{\text {global }}-\varepsilon_{1}-\varepsilon_{2}
$$

Composition

$$
\text { Budget }=\varepsilon_{\text {global }}-\varepsilon_{1}-\varepsilon_{2} \ldots
$$

Composition

$$
\text { Budget }=\varepsilon_{\text {global }}-\varepsilon_{1}-\varepsilon_{2} \ldots-\varepsilon_{n}
$$

Budget $=\varepsilon_{\text {global }}-\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}$
 $-\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}-\varepsilon_{8}$

$X=\{0,1\}^{3}$ ordered
wrt binary encoding.

$$
\begin{aligned}
& \mathrm{q}^{\star} 000(\mathrm{D})=.3+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{1}\right) \\
& \mathrm{q}^{*}{ }_{001}(\mathrm{D})=.4+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{2}\right) \\
& \mathrm{q}^{\star}{ }_{010}(\mathrm{D})=.6+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{3}\right) \\
& \mathrm{q}^{\star} 011(\mathrm{D})=.6+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{4}\right) \\
& \mathrm{q}^{\star}{ }_{100}(\mathrm{D})=.6+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{5}\right) \\
& \mathrm{q}^{*}{ }_{101}(\mathrm{D})=.9+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{6}\right) \\
& \mathrm{q}^{\star}{ }_{110}(\mathrm{D})=1+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{7}\right) \\
& \mathrm{q}^{\star}{ }_{111}(\mathrm{D})=1+\mathrm{L}\left(1 / 10^{\star} \varepsilon_{8}\right)
\end{aligned}
$$

Marginals

Budget $=\varepsilon_{\text {global }}-\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}$

		D1	D2	D3
	11	0	0	0
	12	1	0	1
	13	0	1	0
	14	1	0	1
$D \in X^{10}=$	15	0	0	0
	16	0	0	1
	17	1	1	0
$\mathrm{q}^{\star}{ }_{1}(\mathrm{D})=.4+\mathrm{L}\left(1 /\left(10^{\star} \varepsilon_{1}\right)\right)$	18	0	0	0
$\mathrm{q}^{*} 2(\mathrm{D})=.3+\mathrm{L}\left(1 /\left(10^{*} \varepsilon_{2}\right)\right)$	19 110	0	1	1
$\mathrm{q}^{*}{ }_{3}(\mathrm{D})=.4+\mathrm{L}\left(1 /\left(10^{*} \varepsilon_{3}\right)\right)$	marcin	$\frac{4+Y_{1}}{}$	$3+Y_{2}$	$\frac{4+Y_{8}}{}$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
    i:= 0;
    s:= 0;
    r:= [];
    while (i<size d)
    s:= s + d[i]
    z:=$ Lap(eps,s)
    r:= r ++ [z];
    i:= i+1;
    return r
```

I am using the easycrypt notation here where Lap (eps, a) corresponds to adding to the value a noise from the Laplace distribution with $b=1 /$ eps and mean mu=0.

Probabilistic Relational Hoare Logic Composition

$$
\vdash \varepsilon 1, \delta 1 C_{1} \sim C_{2}: P \Rightarrow R \vdash \varepsilon 2, \delta 2 C_{1}^{\prime} \sim C_{2}^{\prime}: R \Rightarrow S
$$

$$
\vdash \varepsilon 1+\varepsilon 2, \delta 1+\delta_{2} C_{1} ; C_{1}^{\prime} \sim C_{2} ; C_{2}^{\prime}: P \Rightarrow S
$$

Releasing partial sums

DummySum(d : $\{0,1\}$ list) : real list

$$
\begin{aligned}
& \text { i:=0; } \\
& \text { s:=0; } \\
& \text { r:=[]; } \\
& \text { while (i<size d) } \\
& z:=\$ \operatorname{Lap}(e p s, d[i]) \\
& s:=s+z \\
& r:=r++[s] ; \\
& i:=i+1 ; \\
& \text { return r }
\end{aligned}
$$

Parallel Composition

Let $M_{1}: D B \rightarrow R$ be a $\left(\varepsilon_{1}, \delta_{1}\right)$-differentially private program and $M_{2}: D B \rightarrow R$ be a $\left(\varepsilon_{2}, \delta_{2}\right)$-differentially private program. Suppose that we partition D in a data-independent way into two datasets D_{1} and D_{2}. Then, the composition $M_{1,2}: D B \rightarrow R$ defined as

$$
M P_{1,2}(D)=\left(M_{1}\left(D_{1}\right), M_{2}\left(D_{2}\right)\right)
$$

is $\left(\max \left(\varepsilon_{1}, \varepsilon_{2}\right), \max \left(\delta_{1}, \delta_{2}\right)\right)$-differentially private.

