CS 599: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

Releasing the mean of Some Data

Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>

Privacy-preserving data analysis?

• The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

Privacy-preserving data analysis?

• The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

Privacy-preserving data analysis?

• The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

(ε, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: Xⁿ \rightarrow R is (ε, δ)-differentially private iff for all adjacent database b₁, b₂ and for every S \subseteq R: Pr[Q(b₁) \in S] $\le \exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

(ε, δ) -indistinguishability

We can define a ϵ -skewed version of statistical distance. We call this notion ϵ -distance.

 $\Delta_{\epsilon}(\mu 1, \mu 2) = \sup_{E \subseteq A} \max(\mu_1(E) - e^{\epsilon}\mu_2(E), \ \mu_2(E) - e^{\epsilon}\mu_1(E), 0)$

We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at (ϵ, δ) -indistinguishable if:

 $\Delta_{\epsilon}(\mu 1, \mu 2) \leq \delta$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 ${C}_{m1}=\mu_1 \text{ and } {C}_{m2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$

Laplace Distribution

Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Laplace(sens/eps,0)
z:= (s/i)+z
return z
```


Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Proof: Intuitively

 \Pr

Laplace Mechanism

Question: How accurate is the answer that we get from the Laplace Mechanism?

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 ${C}_{m1}=\mu_1 \text{ and } {C}_{m2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$

Validity of apRHL judgments

We say that the quadruple $\vdash_{\epsilon,\delta} c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have:

 ${c_1}_{m1} = \mu_1$ and ${c_2}_{m2} = \mu_2$ implies $Q_{\epsilon,\delta} * (\mu_1, \mu_2)$.

Relational lifting

We say that two subdistributions $\mu_1 \subseteq D(A)$ and $\mu_2 \subseteq D(B)$ are in the relational lifting of the relation $R \subseteq AxB$, denoted $\mu_1 R_{\epsilon,\delta} * \mu_2$ if and only if we have an R-(ϵ,δ)-coupling between them.

$R-(\epsilon, \delta)$ – Coupling

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, we have an R-(ϵ,δ)-coupling between them, for R \subseteq AxB and $0 \le \delta \le 1$, $\epsilon \ge 0$, if there are two joint distributions $\mu_{L,\mu_R} \in D(AxB)$ such that:

- 1) $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$,
- 2) the support of µ_L and µ_R is contained in R. That is, if µ_L(a,b)>0,then (a,b)∈R, and if µ_R(a,b)>0,then (a,b)∈R.
 3) Δ_ε(µ_L,µ_R)≤δ

(ε, δ) -indistinguishability revisited

For discrete distributions we can rewrite the notion of ε-distance as follows:

 $\Delta \epsilon(\mu 1, \mu 2) = 1/2^* \Sigma a \in A \max(\mu 1(a) - e \epsilon \mu 2(a), \mu 2(E) - e \epsilon \mu 1(E), 0)$

 μ_1

OO 0.25O1 0.2510 0.2511 0.25

 $R(a,b) = \{a=b\}$

OO 0.20O1 0.2510 0.2511 0.30

$\mu_{\rm L}$	00	01	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_R	00	01	10	11
00	0.20			
01		0.25		
10			0.25	
11				0.30

 $\Delta_0 (\mu_L, \mu_R) = 0.05$

 μ_1

OO 0.25O1 0.2510 0.2511 0.25

 $R(a,b) = \{a=b\}$

OO 0.20O1 0.2510 0.2511 0.30

$\mu_{\rm L}$	00	01	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	O1	10	11
00	0.20			
O1		0.25		
10			0.25	
11				0.30

 $\Delta_1 (\mu_L, \mu_R) = 0$

 μ_1

OO 0.25O1 0.2510 0.2511 0.25

 $R(a,b) = \{a=b\}$

OO 0.20O1 0.2510 0.2511 0.30

$\mu_{\rm L}$	00	01	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0.20			
01		0.25		
10			0.25	
11				0.30

 $\Delta_{0.3} (\mu_L, \mu_R) = 0$

μ_{L}	00	01	10	11	μ_{R}	00	01	10	•
00	0.25				00	0.20			
01		0.25			O1		0.25		
10			0.25		10			0.25	
11				0.25	11				(

e^{0.3}~1.3

 $\max (\mu_{L} (00,00) - e^{0.3}\mu_{R} (00,00), \mu_{R} (00,00) - e^{0.3}\mu_{L} (00,00), 0) = 0$ + max (\mu_{L} (01,01) - e^{0.3}\mu_{R} (01,01), \mu_{R} (01,01) - e^{0.3}\mu_{L} (01,01), 0) = 0 + max (\mu_{L} (10,10) - e^{0.3}\mu_{R} (10,10), \mu_{R} (10,10) - e^{0.3}\mu_{L} (10,10), 0) = 0 + max (\mu_{L} (11,11) - e^{0.3}\mu_{R} (11,11), \mu_{R} (11,11) - e^{0.3}\mu_{L} (11,11), 0) = 0

$$\Delta_{0.3} (\mu_{L}, \mu_{R}) = 0$$

00	0.2
01	0.25
10	0.25
11	0.3

 $R(a, b) = \{a \le b\}$

00	0
O1	0.40
10	0
11	0.6

$\mu_{\rm L}$	00	O1	10	11
00		0.20		
01		0.25		
10				0.25
11				0.30

μ_{R}	00	O1	10	11
00		0.20		
01		0.20		
10				0.3
11				0.3

 $\Delta_0 (\mu_L, \mu_R) = 0.05$

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

μ1

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

$\mu_{\rm L}$	00	O1	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_R	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

		-
00	0	.25
01		
10	\cap	25

0.25

 μ_1

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

$\mu_{\rm L}$	00	O1	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

 $\Delta_0 (\mu_L, \mu_R) = 0.5$

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

μ1

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

$\mu_{\rm L}$	00	O1	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_R	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

•		
00	0	.25
O1	0	.25
10	0	.25

0.25

11

 μ_1

 $R(a,b) = \{a=b\}$

00	0
01	0
10	0.5
11	0.5

$\mu_{\rm L}$	00	O1	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0			
01		0		
10			0.5	
11				0.5

 $\Delta_1 (\mu_L, \mu_R) = 0.25$

$R-(\epsilon, \delta)$ – Coupling and Indistinguishability

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(A)$, if we have a =-(ϵ, δ)-coupling between them, then they are (ϵ, δ)-indistinguishable.

Probabilistic Relational Hoare Logic Skip

⊢_{0,0}skip~skip:P⇒P

Probabilistic Relational Hoare Logic Skip

The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_k, \delta_1 + \delta_2 + \ldots + \delta_k)$ -DP

Let $M_1:DB \rightarrow R_1$ be a $(\varepsilon_1, \delta_1)$ -differentially private program and $M_2:DB \rightarrow R_2$ be a $(\varepsilon_2, \delta_1)$ -differentially private program. Then, their composition $M_{1,2}:DB \rightarrow R_1 \times R_2$ defined as $M_{1,2}(D) = (M_1(D), M_2(D))$ is $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$ -differentially private.

Question: Why composition is important?

Question: Why composition is important?

Answer: Because it allows to reason about privacy as a budget!

$Budget = \epsilon_{global}$

Budget=Eglobal M_1 is ε_1 -DP Noise 19144 19146 02 05 Imor 34505 11 sion 25012 03 16544 06 ...

Budget= ε_{global} - ε_1 - ε_2 - ε_3 - ε_4 - ε_5 - ε_6 - ε_7 - ε_8

X={0,1}³ ordered wrt binary encoding.

 $q^{*}_{000}(D) = .3+L(1/10^{*}\varepsilon_{1})$ $q^{*}_{001}(D) = .4+L(1/10^{*}\varepsilon_{2})$ $q^{*}_{010}(D) = .6+L(1/10^{*}\varepsilon_{3})$ $q^{*}_{011}(D) = .6+L(1/10^{*}\varepsilon_{4})$ $q^{*}_{100}(D) = .6+L(1/10^{*}\varepsilon_{5})$ $q^{*}_{101}(D) = .9+L(1/10^{*}\varepsilon_{6})$ $q^{*}_{110}(D) = 1+L(1/10^{*}\varepsilon_{7})$ $q^{*}_{111}(D) = 1+L(1/10^{*}\varepsilon_{8})$

Marginals

Budget= ε_{global} - ε_1 - ε_2 - ε_3

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y1	.3+Y ₂	.4+Y ₃

 $q_{1}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{1}))$ $q_{2}^{*}(D) = .3 + L(1/(10^{*}\varepsilon_{2}))$ $q_{3}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{3}))$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:= 0;
  s := 0;
  r:= [];
  while (i<size d)
     s := s + d[i]
     z :=  Lap (eps, s)
     r:= r ++ [z];
     i:= i+1;
  return r
```

I am using the easycrypt notation here where Lap(eps, a) corresponds to adding to the value a noise from the Laplace distribution with b=1/eps and mean mu=0.

Probabilistic Relational Hoare Logic Composition

$\vdash_{\epsilon_1,\delta_1C_1} \sim_{C_2} : P \Rightarrow R \vdash_{\epsilon_2,\delta_2C_1} \sim_{C_2} : R \Rightarrow S$

 $\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2C_1}; C_1' \sim C_2; C_2' : P \Rightarrow S$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:=0;
  s:=0;
  r:=[];
  while (i<size d)
     z :=  Lap(eps,d[i])
     s := s + z
     r:= r ++ [s];
     i:=i+1;
  return r
```

Parallel Composition

Let $M_1:DB \rightarrow R$ be a $(\varepsilon_1, \delta_1)$ -differentially private program and $M_2:DB \rightarrow R$ be a $(\varepsilon_2, \delta_2)$ -differentially private program. Suppose that we partition D in a data-independent way into two datasets D₁ and D₂. Then, the composition $M_{1,2}:DB \rightarrow R$ defined as $MP_{1,2}(D)=(M_1(D_1),M_2(D_2))$ is $(\max(\varepsilon_1,\varepsilon_2),\max(\delta_1,\delta_2))$ -differentially private.