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Differential Privacy



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ

public

private private

C public

public

private private

C public

V

V

D2

D1 µ1

µ2

unit(m)

unit(m)



apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



Validity of apRHL judgments

We say that the 6-tuple ⊢ε,δ c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qε,δ*(μ1,μ2).



R-(ε,δ)-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-(ε,δ)-coupling between them, 
for R⊆AxB and 0≤δ≤1, ε≥0, if there are two 
joint distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δε(µL,µR)≤δ



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.20
O1 0.25
1O 0.25
11 0.30

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

µL µR

∆0.3(µL,µR)=0 



apRHL: skip rule

⊢0,0skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the ⊢0,0 skip~skip: P⇒P.

⊢0,0skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the ⊢0,0 skip~skip: P⇒P.

For every m1,m2 such that P(m,m’) we have 
{skip}m=unit(m) and {skip}m’=unit(m’) 
we need P*0,0(unit(m),unit(m’)).

⊢0,0skip~skip:P⇒P



Correctness of Skip Rule
⊢0,0skip~skip:P⇒P



Correctness of Skip Rule
⊢0,0skip~skip:P⇒P

μL m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …



Correctness of Skip Rule
⊢0,0skip~skip:P⇒P

μL m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …

μR m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …



Correctness of Skip Rule
⊢0,0skip~skip:P⇒P

μL m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …

We need to show: 
1) 𝜋1(μL)=unit(m) and 𝜋2(μR)=unit(m’) 
2) (m,m’)∈P 3) Δ0(µL,µR)≤0

μR m1 m2 … m’ …
m1 0 0 … 0 0
m2 0 0 … 0 0
… … … … … …
m 0 0 … 1 0
… … … … … …



apRHL: Lap rule (simplified) 

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤1 ⇒ = 

⊢ε,0



Laplace Distribution
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

b regulates the 
skewness of 
the curve,

b=.5

b=1

Lap(b, µ)(X) =
1
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exp
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Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤1 ⇒ =.



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤1 ⇒ =.

For every m1,m2 such that P(m,m’) we have 
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) and  
{x2:=$Lap(1/ε,y2)}m’=let a={Lap(1/ε,y2)}
m’ in unit(m’[x2←a]) we need to show that 
these two terms are in the (ε,0) lifting of =.



Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



We need to show: 
1) 𝜋1(μL)=let a={Lap(1/ε,y1)}m in unit(m[x1←a]) 

and  
𝜋2(μR)=let a={Lap(1/ε,y2)}m in unit(m[x2←a]) 

2) (m1,m2)∈ =    3) Δε(µL,µR)≤0

Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



Correctness of Lap Rule



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)
≤ exp(ε|m(y2)-m(y2)+1|) 



Correctness of Lap Rule
To prove Δε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤1. 
Let’s consider for example the case y1=y2+1 
exp(-ε|m(y2)+1-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+1-a|)
≤ exp(ε|m(y2)-m(y2)+1|) 
= exp(ε) 



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢k*ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤k ⇒ =.



Correctness of Lap Rule
To show this rule correct we need to show the 
validity of  
⊢k*ε,0 x1:=$Lap(1/ε,y1)~x2:=$Lap(1/ε,y2):  
|y1-y2|≤k ⇒ =.

For every m1,m2 such that P(m,m’) we have 
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) and  
{x1:=$Lap(1/ε,y1)}m=let a={Lap(1/ε,y1)}m 
in unit(m[x1←a]) we need to show that 
these two terms are in the (k*ε,0) lifting of =.



Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



We need to show: 
1) 𝜋1(μL)=let a={Lap(1/ε,y1)}m in unit(m[x1←a]) 

and  
𝜋2(μR)=let a={Lap(1/ε,y2)}m in unit(m[x2←a]) 

2) (m1,m2)∈ =    3) Δk*ε(µL,µR)≤0

Correctness of Lap Rule
We can take: 
μL(m1,m2)=𝟙m1=m2*Lap(1/ε,m(y1))(a)*𝟙m1(x1)=a 
and  
μR(m1,m2)=𝟙m1=m2*Lap(1/ε,m’(y2))(a)*𝟙m1(x2)=a



Correctness of Lap Rule



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+k-a|)



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+k-a|)
≤ exp(ε|m(y2)-m(y2)+k|) 



Correctness of Lap Rule
To prove Δk*ε(µL,µR)≤0 we can think about: 

Lap(1/ε,m’(y2))(a)
Lap(1/ε,m(y1))(a)

=
exp(-ε|m(y1)-a|)
exp(-ε|m(y2)-a|)

By the precondition we know |y1-y2|≤k. 
Let’s consider for example the case y1=y2+k 
exp(-ε|m(y2)+k-a|)
exp(-ε|m(y2)-a|)

= exp(ε|m(y2)-a|-ε|m(y2)+k-a|)
≤ exp(ε|m(y2)-m(y2)+k|) 
= exp(k*ε) 



Releasing privately the 
mean of Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i] 
    i:=i+1; 
 z:=$ Lap(sens/eps,(s/i)) 
 return z



Composition
Let M1:DB →R1 be a (ε1,δ1)-differentially private program and 
M2:DB →R2 be a (ε2,δ1)-differentially private program. Then, their 
composition M1,2:DB→R1xR2 defined as

 M1,2(D)=(M1(D),M2(D)) 
is (ε1+ε2,δ1+δ2)-differentially private.



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ Lap(eps,s) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and 
M2:DB →R be a (ε2,δ2)-differentially private program.  Suppose 
that we partition D in a data-independent way into two datasets 
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2)) 
is (max(ε1,ε2),max(δ1,δ2))-differentially private.



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ Lap(eps,d[i]) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> /\ e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk


