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(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database bj, b and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + O




Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz2 (extending the notion of adjacency
to memories):

{C}m1=H1 and {C}m2=M2 Implies A:(H1,U2) £ O

private private

D q C q U1
public public

V q q unit(m)
private private

D> q C q U2
public public

V q q unit(m)



apRHL

Indistinguishability Precondition
parameter (a logical formula)

| |

|_€5C1NCZ P:Q

| |

Probabilistic Probabilistic Postcondition
Program Program (a logical formula)



Validity of apRHL judgments

We say that the 6-tuple -¢5 ci1~c2:P=0Q is
valid if and only if for every pair of memories
m; ,my such that P (m;,m,) we have:
{c1}mi=H1 and {c2}m2=> |mpI|es

Qe,6* (M1, M2).



R-(€,0)-Coupling

Given two distributions p1eD(A), and u2eD(B),
we have an R-(€£,0)-coupling between them,
for RCAXB and 0<b=1, €20, if there are two
joint distributions p ureD(AxB) such that:

1) z1(uL)=p1 and m2(Ur)=u2,

2) the support of u. and pr is contained in R.
Thatis, if yn.(a,b)>0,then (a,b)ER,
and If Uuz(a,b)>0,then (a,b)ER.

3) Ae(pLpRr)<0O



Example of R-(€, 0)-Coupling
2

M1
00 0.25 00 0.20
10 023 Rla,p)= {a=b} &0
11 0.25 11 0.30
1, 00 01 10 11 HMrR OO 01 10 11
OO0 0.25 OO0 0.20
O1 0.25 O1 0.25
10 0.25 10 0.25
11 0.25 11 0.30

AO 3 (ULI UR) =(



apRHL: skip rule

o, 0skip~skip:k




Correctness of Skip Rule

—o oskip~skip:P=P

To show this rule correct we need to show the
validity of the oo skip~skip: P=P.




Correctness of Skip Rule

—o oskip~skip:P=P

To show this rule correct we need to show the
validity of the oo skip~skip: P=P.

For every m;, m; such that P(m,m") we have
{skip}mr=unit(m) and {skip}m-=unit(m’)
we need P*po(unit(m),unit(m’)).




Correctness of Skip Rule
o oskip~skip:P=P




Correctness of Skip Rule
—o,08kip~skip:P=P

M, M1 m2 ... m’
mi 0 O .. O O
m 0 O .. 0 O



Correctness of Skip Rule
—o,08kip~skip:P=P

U, M1t mz ... m U M1 m2 ... m ...
mg 0 O .. O O mi 0 O .. O O
m 0O O .. O O m 0 O .. O O



Correctness of Skip Rule
—o,08kip~skip:P=P

U M1 m2 ... m Ur M1 m2 ... m ...
mg O O ... O O mg O O .. O O
m O O .. O O m O O .. O O
m O 0 ... 1 O m O 0 ... 1 O

We need to show:
1) m1(Uz)=unit(m) and z2(Uz)=unit(m’)

2) (m,m’)eP 3)Ao(uLur)<0




apRHL: Lap rule (simplified)

X1 :=5 .ap('/e,yl)

|7€'OX22=$ ap(1l/e,vy2)
s | yi—y2 |21 = =




Laplace Distribution

1 — X
20 b skewness of
the curve,




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

Feox1:=SLap (1/g, y1) ~x2:=SLap (1/¢, y2) :
lyl-y2|s1 = =




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

Feo0x1:=SLap (1/¢, y1) ~x2:=$Lap (1/¢, yo) :
lyl-y2|s1 = =

For every m;, m; such that P(m,m") we have
{x1:=SLap (1/¢,vy1) }n=let a={Lap (/¢,vy1) }m
in unit (m[xl—a]) and

{x2:=$Lap (¢, y2) }mr=1let a={Lap(l/¢,y2) }
m’ in unit (m’ [x2—a]) we need to show that
these two terms are in the (=,0) lifting of =.




Correctness of Lap Rule

We can take:

Ur(m1,m2)=Tmi=m2*Lap(* /¢, m (yv1) }(@)* Tm1(x1)=a
and

Ur(M41.mM2)=Tm1=m2"Lap(*/¢, m” (v2) )(@)*Tm1x2)=a




Correctness of Lap Rule

We can take:
Ur(m1,m2)=Tmi=m2*Lap(* /¢, m (yv1) }(@)* Tm1(x1)=a
and

Ur(M41.mM2)=Tm1=m2"Lap(*/¢, m” (v2) )(@)*Tm1x2)=a

We need to show:
1) mi(Ur)=let a={Lap (l/¢,y1)}tm in unit (m[xl<al)

and
m2(Mr)=1let a={Lap(l/g,y2) }m in unit (m[x2<a])

2) (mi,mz)e€ - 3) Ac(ULUR)<O




Correctness of Lap Rule



Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:



Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(/¢, m(y1) )(a)
Lap(t/s, m" (v2) )(@)




Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(*/=,m(v:))@)  exp(-e|m(y:)-al)

Lap(*/¢, m’ (yz))(a)_ exp(-¢ m(yz) -al)




Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(*/=,m(v:))@)  exp(-¢

m(yi)—a

)

Lap(t/¢, m” (v2) )(a) ) exp(-¢

m(y>)—a

)

By the precondition we know |v1-v2|<1.
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By the precondition we know |v1-v2|<1.

Let's consider for example the case y1=y2+1



Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | yv1-vy2 |<1.

Let's consider for example the case y1=y2+1
exp(-s m(y2)+1-al)
exp(-s m(yz2)-al)




Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | yv1-vy2 |<1.

Let's consider for example the case y1=y2+1

exp(-s m(y2)+1-al)
=exp(e |m(y2)-al-e|m(y2)+1l-al)
exp(-s m(yz2)-al)




Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | yv1-vy2 |<1.

Let's consider for example the case y1=y2+1

exp(-s m(y2)+1-al)
=exp(e |m(y2)-al-e|m(y2)+1l-al)
exp(-s m(yz2)-al)

<exp(e|m(y2)-m(y2)+1])




Correctness of Lap Rule

To prove A-(uL,Ur)<0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | yv1-vy2 |<1.

Let's consider for example the case y1=y2+1

exp(-s m(y2)+1-al)
=exp(e |m(y2)-al-e|m(y2)+1l-al)
exp(-s m(yz2)-al)

<exp(e|m(y2)-m(y2)+1])
= exp(e)




apRHL: More general Lap rule
(still restricted)

x1:=$ Lap(l/¢e, v1)

x,:=5 Lap(l/e, yz)
: | yi—yo Sk = =



Correctness of Lap Rule

To show this rule correct we need to show the
validity of

Hke,0X1:=5Lap (178, y1) ~x2:=SLap (¢, y2) :
lyl-y2|sk = =




Correctness of Lap Rule

To show this rule correct we need to show the
validity of

Hke,0X1:=5Lap (178, y1) ~x2:=SLap (¢, y2) :
lyl-y2|sk = =

For every m;, m; such that P(m,m") we have
{x1:=SLap (1/¢,vy1) }n=let a={Lap (/¢,vy1) }m
in unit (m[xl—a]l) and

{x1:=SLap (1/¢, yv1) }n=let a={Lap (/¢, y1) }m
in unit (m[xl<a]l) we need to show that
these two terms are in the (k™= ,0) lifting of =.




Correctness of Lap Rule

We can take:

Ur(m1,m2)=Tmi=m2*Lap(* /¢, m (yv1) }(@)* Tm1(x1)=a
and

Ur(M41.mM2)=Tm1=m2"Lap(*/¢, m” (v2) )(@)*Tm1x2)=a




Correctness of Lap Rule

We can take:
Ur(m1,m2)=Tmi=m2*Lap(* /¢, m (yv1) }(@)* Tm1(x1)=a
and

Ur(M41.mM2)=Tm1=m2"Lap(*/¢, m” (v2) )(@)*Tm1x2)=a

We need to show:
1) mi(Ur)=let a={Lap (l/¢,y1)}tm in unit (m[xl<al)

and
m2(Mr)=1let a={Lap(l/g,y2) }m in unit (m[x2<a])

2) (mp,mz)e = 3) A= (UL, UR)<O




Correctness of Lap Rule
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To prove A« -(uL Ur)S0 we can think about:
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Correctness of Lap Rule

To prove A« -(uL Ur)S0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | v1-v2 | <k.

Let's consider for example the case yv1=v2+k
exp(-¢ |m(yz2) +k-al)
exp(-s m(yz2)-al)




Correctness of Lap Rule

To prove A« -(uL Ur)S0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | v1-v2 | <k.

Let's consider for example the case yv1=v2+k

exp(-¢ |m(yz2) +k-al)
=exp(e |m(y2)-al-e|m(y2)+k-al)
exp(-s m(yz2)-al)




Correctness of Lap Rule

To prove A« -(uL Ur)S0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | v1-v2 | <k.

Let's consider for example the case yv1=v2+k

exp(-¢ |m(yz2) +k-al)
=exp(e |m(y2)-al-e|m(y2)+k-al)
exp(-s m(yz2)-al)

<exp(e|m(y2)-m(y2)+k|)




Correctness of Lap Rule

To prove A« -(uL Ur)S0 we can think about:

Lap(/, m(v:))@) _ exp(-=m(y.)-al)
Lap(t/s, m” (yv2))@) exp(-¢|m(y.)-al)
By the precondition we know | v1-v2 | <k.

Let's consider for example the case yv1=v2+k
exp(-¢ |m(yz2) +k-al)

=exp(e |m(y2)-al-e|m(y2)+k-al)
exp(-¢ |m (v2) -al) <exp(e |m(y2)-m(y2)+k|)
= exp(k* <)




Releasing privately the
mean of Some Data

=
1)
o
.
Q.

: private data) : public real

s b
5 ee e
| N |

1<size (d))
+ df[1]
1;
(

oo(D\o e
S |I |
Q)I—'(/)A
N O +

sens/eps, (s/1))

C:{f}l—'-(/) = O O

K N
(D [ N}
|l
H




Composition

P
Let Mi:DB — R, be a (g,01)-differentially private program and
M2:DB —R; be a (€,0/)-differentially private program.Then, their
composition M| 2:DB—R xR, defined as

Mi2(D)=(Mi(D),M2(D))

s (€1 +€£,,01+02)-differentially private.




Probabilistic Relational Hoare Logic
Composition

He1,61C1~C2: P=R Fe2,62C1" ~C2” :R=5

—e1+€2,61+62C1,; C1" ~C2; C2" 1 P=5



Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= [];

while (1i<size d)
s:= s + d[1]
z:=$ Lap (eps, s)
r:=1r ++ [z];
1:= 1+1;

return r

| am using the easycrypt notation here where Lap (eps, a)
corresponds to adding to the value a noise from the
Laplace distribution with b=1/eps and mean mu=0.



Parallel Composition

-

Let M;:DB —R be a (g£,0/)-differentially private program and
M2:DB —R be a (€,,0,)-differentially private program. Suppose
that we partition D in a data-independent way into two datasets
D, and D». Then, the composition M| 2:DB—R defined as
MP12(D)=(Mi(D1),M2(D2))
\is (max(g1,€2),max(01,07))-differentially private.




Probabilistic Relational Hoare Logic
Composition

He1,61C1~C2: P=R Fe2,62C1" ~C2” :R=5

—e1+€2,61+62C1,; C1" ~C2; C2" 1 P=5



Releasing partial sums

DummySum (d : {0,1} list) : real list
1:=0;
s:=0;
r:=[1;
while (1<size d)

z:=$ Lap (eps,d[i])
S:= S + Z

r:=1r ++ [s];

1:= 1+1;

return r




apRHL
awhile
P/\ e<1>X0 => —-bll>

ek Ox cl~c2:P/\bl<1>/\b2<2>/\k=e<1> /\ e<1><n
==> P /\ Dbl<1l>=b2<2> /\k < e<1>

while bl do cl~while b2 do c?Z

=)€x,2.0k :P/\ bl<l>=b2<2>/\ e<l> < n
==> P /\ —|b1<1>/\ —p2<2>



