CS 599: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

(ε, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: Xⁿ \rightarrow R is (ε, δ)-differentially private iff for all adjacent database b₁, b₂ and for every S \subseteq R: Pr[Q(b₁) \in S] $\le \exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Differential Privacy as a Relational Property

c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):

 ${C}_{m1}=\mu_1 \text{ and } {C}_{m2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$

Validity of apRHL judgments

We say that the 6-tuple $\vdash_{\epsilon,\delta} c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: $\{c_1\}_{m1} = \mu_1$ and $\{c_2\}_{m2} = \mu_2$ implies $Q_{\epsilon,\delta} * (\mu_1, \mu_2)$.

$R-(\epsilon, \delta)$ – Coupling

Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, we have an R-(ϵ,δ)-coupling between them, for R \subseteq AxB and $0 \le \delta \le 1$, $\epsilon \ge 0$, if there are two joint distributions $\mu_{L,\mu_R} \in D(AxB)$ such that:

- 1) $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$,
- 2) the support of µ_L and µ_R is contained in R. That is, if µ_L(a,b)>0,then (a,b)∈R, and if µ_R(a,b)>0,then (a,b)∈R.
 3) Δ_ε(µ_L,µ_R)≤δ

Example of R-(ϵ , δ)-Coupling

 μ_1

OO 0.25O1 0.2510 0.2511 0.25

 $R(a,b) = \{a=b\}$

OO 0.20O1 0.2510 0.2511 0.30

$\mu_{\rm L}$	00	01	10	11
00	0.25			
01		0.25		
10			0.25	
11				0.25

μ_{R}	00	01	10	11
00	0.20			
01		0.25		
10			0.25	
11				0.30

 $\Delta_{0.3} (\mu_L, \mu_R) = 0$

apRHL: skip rule

To show this rule correct we need to show the validity of the $\vdash_{0,0} \text{skip} \sim \text{skip}$: $P \Rightarrow P$.

To show this rule correct we need to show the validity of the $\vdash_{0,0} \text{skip} \sim \text{skip}$: $P \Rightarrow P$.

For every m₁, m₂ such that P(m,m') we have
{skip}m=unit(m) and {skip}m'=unit(m')
we need P*0,0(unit(m), unit(m')).

$\mu_{\rm L}$	m ₁	m ₂	 m'	
m_1	0	0	 0	0
m ₂	0	0	 0	0
m	0	0	 1	0

$\mu_{\rm L}$	m_1	m ₂	 m'	
m_1	0	0	 0	0
m ₂	0	0	 0	0
m	0	0	 1	0
	•••		 	

μ_{R}	m ₁	m ₂	 m'	
m_1	0	0	 0	0
m ₂	0	0	 0	0
m	0	0	 1	0

···· ··· ··· ··· ··· ··· ··· ··· ··· ·	$\mu_{\rm L}$	m_1	m_2	 m'	
···· ··· ··· ··· ··· ··· ··· ··· ··· ·	m_1	0	0	 0	0
	m ₂	0	0	 0	0
m 0 0 1 0 m 0 0				 	
	m	0	0	 1	0

We need to show: 1) $\pi_1(\mu_L)=unit(m)$ and $\pi_2(\mu_R)=unit(m')$ 2) $(m,m') \in P$ 3) $\Delta_0(\mu_L,\mu_R) \leq 0$

apRHL: Lap rule (simplified)

 $x_1 :=$ \$ Lap (1/ ϵ , y_1) $\vdash_{\epsilon, 0} x_2 := \$ Lap(1/\epsilon, y_2)$ $: |y_1 - y_2| \leq 1 \Rightarrow =$

Laplace Distribution

To show this rule correct we need to show the validity of

 $\vdash_{\boldsymbol{\epsilon}, \boldsymbol{0}} \mathbf{x}_1 := \$ \operatorname{Lap}(1/\varepsilon, y_1) \sim \mathbf{x}_2 := \$ \operatorname{Lap}(1/\varepsilon, y_2) : |y_1 - y_2| \le 1 \implies =.$

To show this rule correct we need to show the validity of $\vdash_{\epsilon,0} x_1 := \text{Lap}(1/\epsilon, y_1) \sim x_2 := \text{Lap}(1/\epsilon, y_2) :$

 $|y1-y2| \le 1 \Rightarrow =$. For every m_1, m_2 such that P(m, m') we have

 $\{x_1:=\Lap(1/\varepsilon, y_1)\}_m = let a=\{Lap(1/\varepsilon, y_1)\}_m$ in unit(m[x1-a]) and

{x₂:=\$Lap($1/\epsilon$, y₂)}_{m'}=let a={Lap($1/\epsilon$, y₂)} m' in unit(m'[x2←a]) we need to show that these two terms are in the (ϵ ,0) lifting of =.

We can take:

$$\begin{split} & \mu_{L}(m_{1,}m_{2}) = \mathbb{1}_{m1=m2} * Lap(1/\epsilon, m(y_{1}))(a) * \mathbb{1}_{m1(x1)=a} \\ & \text{and} \\ & \mu_{R}(m_{1,}m_{2}) = \mathbb{1}_{m1=m2} * Lap(1/\epsilon, m'(y_{2}))(a) * \mathbb{1}_{m1(x2)=a} \end{split}$$

We can take:

 $\mu_L(m_{1,m_2})=1_{m_1=m_2}*Lap(1/\epsilon, m(y_1))(a)*1_{m_1(x_1)=a}$ and

 $\mu_{R}(m_{1,m_{2}})=\mathbb{1}_{m_{1}=m_{2}}*Lap(1/\epsilon,m'(y_{2}))(a)*\mathbb{1}_{m_{1}(x_{2})=a}$

We need to show:

1) $\pi_1(\mu_L) = \text{let } a = \{ \text{Lap}(1/\epsilon, y_1) \} \text{m in unit}(m[x1 \leftarrow a])$ and $\pi_2(\mu_R) = \text{let } a = \{ \text{Lap}(1/\epsilon, y_2) \} \text{m in unit}(m[x2 \leftarrow a])$ 2) $(m_1, m_2) \in = 3) \Delta_{\epsilon}(\mu_L, \mu_R) \leq 0$

To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:

To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:

 $Lap(1/\epsilon, m(y_1))(a)$

Lap($1/\epsilon$, m' (y_2))(a)

To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le 1$.

- To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:
- $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) a|)}{\exp(-\epsilon |m(y_2) a|)}$
- By the precondition we know $|y1-y2| \le 1$.
- Let's consider for example the case y1=y2+1

- To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:
- $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) a|)}{\exp(-\epsilon |m(y_2) a|)}$
- By the precondition we know $|y1-y2| \le 1$.
- Let's consider for example the case y1=y2+1

 $exp(-\epsilon | m(y_2) + 1 - a |)$

 $exp(-\varepsilon | m(y_2) - a |)$

To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le 1$.

Let's consider for example the case y1=y2+1

$$\frac{\exp(-\varepsilon \mid m(y_2) + 1 - a \mid)}{\exp(-\varepsilon \mid m(y_2) - a \mid)} = \exp(\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + 1 - a \mid)$$

- To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:
- $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) a|)}{\exp(-\epsilon |m(y_2) a|)}$
- By the precondition we know $|y1-y2| \le 1$.
- Let's consider for example the case y1=y2+1

$$\frac{\exp(-\varepsilon \mid m(y_2) + 1 - a \mid)}{\exp(-\varepsilon \mid m(y_2) - a \mid)} = \exp(\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + 1 - a \mid) \\ \leq \exp(\varepsilon \mid m(y_2) - m(y_2) + 1 \mid)$$

- To prove $\Delta_{\varepsilon}(\mu_{L},\mu_{R}) \leq 0$ we can think about:
- $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) a|)}{\exp(-\epsilon |m(y_2) a|)}$
- By the precondition we know $|y1-y2| \le 1$.
- Let's consider for example the case y1=y2+1

$$\frac{\exp(-\varepsilon \mid m(y_2) + 1 - a \mid)}{\exp(-\varepsilon \mid m(y_2) - a \mid)} = \exp(\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + 1 - a \mid)$$
$$\leq \exp(\varepsilon \mid m(y_2) - m(y_2) + 1 \mid)$$
$$= \exp(\varepsilon)$$

apRHL: More general Lap rule (still restricted)

$$\begin{array}{c} x_1 := \$ \operatorname{Lap}(1/\varepsilon, y_1) \\ \vdash_{k^*\varepsilon, 0} \sim \\ x_2 := \$ \operatorname{Lap}(1/\varepsilon, y_2) \\ \vdots \quad |y_1 - y_2| \leq k \Rightarrow = \end{array} \end{array}$$

To show this rule correct we need to show the validity of

 $\vdash_{\mathbf{k}^* \varepsilon, \mathbf{0}} \mathbf{x}_1 := \$ \operatorname{Lap} (1/\varepsilon, y_1) \sim \mathbf{x}_2 := \$ \operatorname{Lap} (1/\varepsilon, y_2) : |y_1 - y_2| \le \mathbf{k} \implies =.$

To show this rule correct we need to show the validity of $\vdash_{k^*\epsilon,0} x_1 := \$ Lap(1/\epsilon, y_1) \sim x_2 := \$ Lap(1/\epsilon, y_2) :$

 $|y1-y2| \leq k \Rightarrow =.$

For every m_1, m_2 such that P(m, m') we have $\{x_1:=\$Lap(1/\epsilon, y_1)\}_m=let a=\{Lap(1/\epsilon, y_1)\}_m$ in unit $(m[x1\leftarrow a])$ and $\{x_1:=\$Lap(1/\epsilon, y_1)\}_m=let a=\{Lap(1/\epsilon, y_1)\}_m$ in unit $(m[x1\leftarrow a])$ we need to show that these two terms are in the $(k^*\epsilon, 0)$ lifting of =.

We can take:

$$\begin{split} & \mu_{L}(m_{1,}m_{2}) = \mathbb{1}_{m1=m2} * Lap(1/\epsilon, m(y_{1}))(a) * \mathbb{1}_{m1(x1)=a} \\ & \text{and} \\ & \mu_{R}(m_{1,}m_{2}) = \mathbb{1}_{m1=m2} * Lap(1/\epsilon, m'(y_{2}))(a) * \mathbb{1}_{m1(x2)=a} \end{split}$$

We can take:

 $\mu_L(m_{1,m_2})=1_{m_1=m_2}*Lap(1/\epsilon, m(y_1))(a)*1_{m_1(x_1)=a}$ and

 $\mu_{R}(m_{1,m_{2}})=\mathbb{1}_{m_{1}=m_{2}}*Lap(1/\epsilon,m'(y_{2}))(a)*\mathbb{1}_{m_{1}(x_{2})=a}$

We need to show:

1) $\pi_1(\mu_L) = \text{let } a = \{ \text{Lap}(1/\epsilon, y_1) \} \text{m in unit}(m[x1 \leftarrow a])$ and $\pi_2(\mu_R) = \text{let } a = \{ \text{Lap}(1/\epsilon, y_2) \} \text{m in unit}(m[x2 \leftarrow a])$ 2) $(m_1, m_2) \in = 3 \Delta_{k^* \in (\mu_L, \mu_R)} \leq 0$

To prove $\Delta_{k^* \varepsilon}(\mu_{L,\mu_R}) \leq 0$ we can think about:

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

Lap(1/e, m(y1))(a)

Lap($1/\epsilon$, m' (y_2))(a)

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

Let's consider for example the case y1=y2+k

 $exp(-\varepsilon | m(y_2) + k - a |)$

 $exp(-\varepsilon | m(y_2) - a |)$

To prove $\Delta_{k^*\epsilon}(\mu_{L,\mu_R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

$$\frac{\exp(-\varepsilon \mid m(y_2) + k - a \mid)}{\exp(-\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + k - a \mid)} = \exp(\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + k - a \mid)$$

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

$$\frac{\exp(-\varepsilon \mid m(y_2) + k - a \mid)}{\exp(-\varepsilon \mid m(y_2) - a \mid)} = \exp(\varepsilon \mid m(y_2) - a \mid -\varepsilon \mid m(y_2) + k - a \mid)$$

$$\leq \exp(\varepsilon \mid m(y_2) - m(y_2) + k \mid)$$

To prove $\Delta_{k^* \varepsilon}(\mu_{L,}\mu_{R}) \leq 0$ we can think about:

 $\frac{\text{Lap}(1/\epsilon, m(y_1))(a)}{\text{Lap}(1/\epsilon, m'(y_2))(a)} = \frac{\exp(-\epsilon |m(y_1) - a|)}{\exp(-\epsilon |m(y_2) - a|)}$

By the precondition we know $|y1-y2| \le k$.

$$\frac{\exp(-\varepsilon | m(y_2) + k - a |)}{\exp(-\varepsilon | m(y_2) - a |)} = \exp(\varepsilon | m(y_2) - a | -\varepsilon | m(y_2) + k - a |)$$
$$\leq \exp(\varepsilon | m(y_2) - m(y_2) + k |)$$
$$= \exp(k^*\varepsilon)$$

Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Lap(sens/eps,(s/i))
return z</pre>
```

Composition

Let $M_1:DB \rightarrow R_1$ be a $(\varepsilon_1, \delta_1)$ -differentially private program and $M_2:DB \rightarrow R_2$ be a $(\varepsilon_2, \delta_1)$ -differentially private program. Then, their composition $M_{1,2}:DB \rightarrow R_1 \times R_2$ defined as $M_{1,2}(D) = (M_1(D), M_2(D))$ is $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$ -differentially private.

Probabilistic Relational Hoare Logic Composition

$\vdash_{\epsilon_1,\delta_1C_1} \sim_{C_2} : P \Rightarrow R \vdash_{\epsilon_2,\delta_2C_1} \sim_{C_2} : R \Rightarrow S$

 $\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2C_1}; C_1' \sim C_2; C_2' : P \Rightarrow S$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:= 0;
  s := 0;
  r:= [];
  while (i<size d)
     s := s + d[i]
     z :=  Lap (eps, s)
     r:= r ++ [z];
     i:= i+1;
  return r
```

I am using the easycrypt notation here where Lap(eps, a) corresponds to adding to the value a noise from the Laplace distribution with b=1/eps and mean mu=0.

Parallel Composition

Let $M_1:DB \rightarrow R$ be a $(\varepsilon_1, \delta_1)$ -differentially private program and $M_2:DB \rightarrow R$ be a $(\varepsilon_2, \delta_2)$ -differentially private program. Suppose that we partition D in a data-independent way into two datasets D₁ and D₂. Then, the composition $M_{1,2}:DB \rightarrow R$ defined as $MP_{1,2}(D)=(M_1(D_1),M_2(D_2))$ is $(\max(\varepsilon_1,\varepsilon_2),\max(\delta_1,\delta_2))$ -differentially private.

Probabilistic Relational Hoare Logic Composition

 $\vdash_{\epsilon_1,\delta_1C_1} \sim_{C_2} : P \Rightarrow R \vdash_{\epsilon_2,\delta_2C_1} \sim_{C_2} : R \Rightarrow S$

 $\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2C_1}; C_1' \sim C_2; C_2' : P \Rightarrow S$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:=0;
  s:=0;
  r:=[];
  while (i<size d)
     z :=  Lap(eps,d[i])
     s := s + z
     r:= r ++ [s];
     i:=i+1;
  return r
```

apRHL awhile

$P/\setminus e<1>\leq 0 => \neg b1<1>$

$$\begin{split} \vdash \epsilon_k, \delta_k \text{ cl} \sim \text{c2:P/\bl<l>/\b2<2>/\k=e<l> /\ e<l>in \\ ==> P /\ b1<l>=b2<2> /\k < e<l> \end{split}$$

while b1 do c1~while b2 do c2 $\sum \epsilon_{k}, \sum \delta_{k} : P/ \ b1 < 1 > = b2 < 2 > / \ e < 1 > \le n$ $= P / \ \neg b1 < 1 > / \ \neg b2 < 2 >$