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Differential Privacy



Where we were…



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> /\ e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ Lap(eps,s) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ Lap(eps,d[i]) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



Today: more examples 
of differentially private 

programs



Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.16 Di�erential Privacy

Pr
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:
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Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Proof: Intuitively

Laplace Mechanism



Exponential Mechanism
The Exponential Mechanism can be used in more 
situations - accordingly to a score function. 

Suppose that we have a scoring function u(D,o) that to 
each pair (database, potential output) assign a score (a 
negative real number).  

We want to output approximately the element with the max 
score.



Exponential Mechanism

Exponential Mechanism:

return               with prob.

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ‖x − y‖1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =
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Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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Exponential Mechanism
Privacy theorem:
The Exponential Mechanism is differentially private.

The proof is very similar to the one for the Laplace Mechanism.
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Here we change y with x by 
paying exp(ε/2).



Exponential Mechanism
The Exponential Mechanism is a very general mechanism. 
It can actually be used as a kind of universal mechanism. 

Unfortunately, when the output space is big it can be very 
costly to sample from it - the best option is to enumerate 
all the possibilities. 

Moreover, when the output space is big also the accuracy 
get worse.
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RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output;
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Pr
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And
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[x = i |r−i] ≥ Pr
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How can we connect them?
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x

y

1-1 0

1

.5

Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

b regulates the 
skewness of 
the curve,

b=.5

b=1

Lap(b, µ)(X) =
1

2b
exp

⇣
� |µ�X|

b

⌘
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Pr

q(·)

c

Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
1

≠ ‘|q(D)≠z|
�q

2

exp
1

≠ ‘|q(DÕ)≠z|
�q

2

= exp
1

‘(|q(DÕ) ≠ z| ≠ |q(D) ≠ z|)
�q

2

Æ exp
1

‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Sliding property of the 
Laplace Distribution

Pr
x∼Lap( 1

ϵ ,μ)
[k ≤ x] ≤ ecϵ Pr

x∼Lap( 1
ϵ ,μ)

[k + c ≤ x]
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Summarizing we have:

= Pr
r∼Lap

[r ≥ r*] ≤ eϵ Pr
r∼Lap

[r ≥ 1 + r*]

Pr
x∼RNM(D)

[x = i |r−i]

≤ eϵ Pr
x∼RNM(D′ )

[x = i |r−i]
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In a similar way we can prove:

Pr
x∼RNM(D′ )

[x = i |r−i] ≤ eϵ Pr
x∼RNM(D)

[x = i |r−i]



RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output;

Report Noisy Max 



|-(ε,0) 
[adj b1 b2,GS(qi)≤1,…] 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=output2]

Report Noisy Max 



Point-wise reformulation of 
differential privacy

Given ε,δ ≥ 0, a mechanism M: db →O 
where O is discrete, is  (ε,δ)-differentially 
private iff ∀b1 ~1 b2  and ∀s∈O:
    Pr[M(b1) = s] ≤ exp(ε)· Pr[M(b2) = s] + δs

with ∑δs≤ δ.

Can we turn this definition into a rule?



apRHL: pointwise DP rule

c1~c2 :P ==> x<1> = x<2> ⊢ε,δ

c1~c2 :P ==> x<1>=r => x<2>=r ⊢ε,δr

forall r∈R

∑ δr ≤ δ



By applying the 
pointwise rule 

we get a different post

forall s, |-(ε,0) 
[adj b1 b2,GS(qi)≤1,…]  
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Report Noisy Max 



By applying the 
pointwise rule 

we get a different post

forall s, |-(ε,0) 
[adj b1 b2,GS(qi)≤1,…]  
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Notice that we focus
 on a single general s.

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
[adj b1 b2,GS(qi)≤1,…]  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can apply 
standard RHL

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, invariant]  
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Report Noisy Max 



Invariant

… (max1 < cur1 => output1=i1)
/\ (max2 < cur2 => output2=i2)
/\ i1=i2 /\ output1=output2



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv]<fun k => if k=s then ε else 0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv,(i1=s \/ i1<>s)] <fun k … >
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can now proceed
by cases

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1=s] <fun k => if k=s then ε 
else 0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Case 1

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1=s] <ε>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]
We can simplify

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1=s] <ε>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

What rule shall 
we apply now?

Report Noisy Max 



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0



Invariant

… (max1 < cur1 => output1=i1)
/\ (max2 < cur2 => output2=i2)
/\ i1=i2 /\ output1=output2



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
  cur = qi(b) + Lap(1/ε) 

[adj b1 b2,GS(qi)≤1,…, inv, i1=s, cur1=cur2] <0>
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
  cur = qi(b) + Lap(1/ε) 

[adj b1 b2,GS(qi)≤1,…, inv, i1=s, cur1=cur2] <0>
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can conclude 
this case by the

asynchronous if rule

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1<>s] <fun k => if k=s then ε 
else 0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

Case 2

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1<>s] <0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]
We can simplify

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1<>s] <0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

What rule shall 
we apply now?

Report Noisy Max 



apRHL: More general Lap rule 
(still restricted)

x1:=$ Lap(1/ε,y1)  
~ 
x2:=$ Lap(1/ε,y2)  
: |y1-y2|≤k ⇒ = 

⊢k*ε,0

Can we use this rule here?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
[adj b1 b2,GS(qi)≤1,…, inv, i1<>s] <0>
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can apply this
rule with 

k1=qi<2>-qi<1>

Report Noisy Max 



Morally

|-(0,0) Pre: true
output = input + Lap(ε)

Post: [output1-output2=input1-input2]



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 

[adj b1 b2,GS(qi)≤1,…, inv, i1<>s, cur1+qi<2>-qi<1>=cur2] <0>
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can apply this
rule with 

k1=qi<2>-qi<1>

Report Noisy Max 



forall s, |-(ε,0) 
RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 

[adj b1 b2,GS(qi)≤1,…, inv, i1<>s, cur1+qi<2>-qi<1>=cur2] <0>
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output; 

[output1=s => output2=s]

We can conclude 
this case by the

asynchronous if rule 
and conclude

Report Noisy Max 



One last example of 
differentially private 

programs
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A first step: above threshold



it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
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Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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i = 1; r = n+ 1;
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂
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Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

k

Above threshold   ?
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
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this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
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have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
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designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
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marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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i = 1; r = n+ 1;
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

2

✘

✘

ε
ε



Reasoning by Composition

…
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i = 1; r = n+ 1;
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do
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i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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i = 1; r = n+ 1;
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
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have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
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the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
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marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
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following inequality inspired by differential privacy holds:
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some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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have at most n of them. However, this analysis is too coarse.
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i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
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some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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every noised query is (✏/4, 0)-differentially private and we
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We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
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identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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to be protected. However, the noise added to it can allow pay-
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appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
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one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

2

it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
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to be protected. However, the noise added to it can allow pay-
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

2

it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
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It doesn’t depend on the number of queries.



Above Threshold
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ nT /\ output = N ) 
      output = i; 
   i++ 

  return output;

1-sensitive queries 



Figure 1: A Selection of SVT Variants
Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with !.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {!,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.
Input: D,Q,∆,T = T1, T2, · · · , c.
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε − ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ε2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = !
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: D,Q,∆, T, c.
1: ε1 = ε/2, ρ = Lap (c∆/ε1)
2: ε2 = ε− ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ε1)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !, ρ = Lap (c∆/ε2)
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].
Input: D,Q,∆, T, c.
1: ε1 = ε/2, ρ = Lap (∆/ε1),
2: ε2 = ε − ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ε2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [13].
Input: D,Q,∆, T, c.
1: ε1 = ε/4, ρ = Lap (∆/ε1)
2: ε2 = ε− ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (∆/ε2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [18].
Input: D,Q,∆, T .
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε − ε1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !
7:
8: else
9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D,Q,∆,T = T1, T2, · · · .
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε− ε1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ε2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = !
7:
8: else
9: Output ai = ⊥

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ε1 ε/2 ε/2 ε/2 ε/4 ε/2 ε/2

Scale of threshold noise ρ ∆/ε1 c∆/ε1 ∆/ε1 ∆/ε1 ∆/ε1 ∆/ε1
Reset ρ after each output of ! (unnecessary) Yes

Scale of query noise νi 2c∆/ε2 2c∆/ε2 c∆/ε1 ∆/ε2 0 ∆/ε2
Outputting qi + νi instead of ! (not private) Yes
Outputting unbounded !’s (not private) Yes Yes

Privacy Property ε-DP ε-DP ∞-DP
(

1+6c
4 ε

)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1-6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.

Example 1: the sparse vector case

Min Lyu, Dong Su, Ninghui Li: 
Understanding the Sparse Vector Technique for Differential Privacy. PVLDB (2017)
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to be protected. However, the noise added to it can allow pay-
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the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)
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i = 1; r = n+ 1;
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every noised query is (✏/4, 0)-differentially private and we
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We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
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marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
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this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)
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it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

1

it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
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While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
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this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
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i.e. the privacy cost is independent of the number of queries.
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
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proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
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marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Above Threshold

AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output;
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Notice that we focus
 on a single general k.
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forall k, |-(ε,0) 
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        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[fun x => if x=k then ε/2 else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[ε/2]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[ε/2]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Above Threshold

Pr
x∼AT(D)

[x = k |r−k] = Pr
nT,rk

[nT > g(D) ∧ qk(D) + rk > nT |r−k]

g(D)=maxi<k qi(D)+ri

= Pr
nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k, cur2=cur1+1]   
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Choosing k1=1



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k, cur2=cur1+1]   
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can then reason 

by standard pRHL



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[fun x => if x=k then ε else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 2



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 2



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Above Threshold

Pr
x∼AT(D)

[x = k |r−k] = Pr
nT,rk

[nT > g(D) ∧ qk(D) + rk > nT |r−k]

g(D)=maxi<k qi(D)+ri

= Pr
nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){  

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k,cur2≤cur1+1] 
  <[0]>

   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){  

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k,cur2≤cur1+1] 
  <[0]>

   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can then reason 

by standard pRHL


