CS 599: Formal Methods in Security and Privacy Quantitative Information Flow

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Information Flow Control

We want to guarantee that confidential information do not flow in what is considered nonconfidential.

Comparing strings

```
s1:public
s2:private
r:private
i:public
proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
    r:=1
 i:=i+1
: n > 0 / = low \Rightarrow = low
```

Comparing strings

```
s1:public
s2:private
r:private
i:public
proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[I]=s2[i]) then
    r:=1;
    i:=n-1;
 i:=i+1
: n>0 / =low \Rightarrow =low
```

Releasing the mean of Some Data

Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>

(ε, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: Xⁿ \rightarrow R is (ε, δ)-differentially private iff for all adjacent database b₁, b₂ and for every S \subseteq R: Pr[Q(b₁) \in S] $\le \exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Quantitative Information Flow Control

We want to quantify the confidential information that leaks in what is considered nonconfidential.

Quantitative Information Flow Control

Quantitative information flow has been used for:

- Analyzing distributed protocols and scheme,
- Analyzing side-channel vulnerabilities and preventions.
- Analyzing crypto protocols,
- Analyze election protocols
- Analyze differential privacy mechanisms

Information Security and Cryptography

Mário S. Alvim Konstantinos Chatzikokolakis Annabelle McIver · Carroll Morgan Catuscia Palamidessi · Geoffrey Smith

The Science of Quantitative Information Flow

How do we quantify information (leakage)?

$$H(X) = \sum_{x \in \mathcal{X}} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) = \mathbb{E}\left[\log(\frac{1}{\Pr[X = x]})\right]$$

- uncertainty about X
- expected amount of information gain by observing the value of the random variable,
- average number of bits required to transmit X optimally

Shannon Entropy of coins

Conditional Entropy

$$H(X \mid Y) = \sum_{y} \Pr[Y = y] \cdot \sum_{x \in \mathcal{X}} \Pr[X = x \mid Y = y] \log(\frac{1}{\Pr[X = x \mid Y = y]})$$

uncertainty about X given Y

Mutual Information

$$I(X; Y) = H(X) - H(X | Y)$$

amount of information shared between X and Y

How can we use these measures for QIF?

• The adversary has some prior π_R on R and it updates it after seeing U.

Information leakage

Information leaked = initial uncertainty - remaining uncertainty

• Which could be

$$Leakage(U) = H(R) - H(R \mid U)$$

• This is the mutual information between R and U

Conditional Entropy

$$H(X|Y) = \sum_{y} \Pr[Y=y] \cdot \sum_{x \in \mathcal{X}} \Pr[X=x \mid Y=y] \log(\frac{1}{\Pr[X=x \mid Y=y]})$$

- If C is constant H(R|U)=1.
- If C is non constant and deterministic H(R|U)=0, so:

Leakage(U) = H(R)

Example

• Assume that R is a uniformly-distributed 32bit integer

Program	Leakage(U)	H(R)	H(R U)
U:=0	0	32	32
U:=R	32	32	0
U:= R && 11111	5	32	27

Properties

- If C is deterministic we have Leakage (U)=0 iff C satisfies non-interference
- We have $G(R|U) \ge 2^{H(R|U)-2}+1$ where

$$G(X \mid Y) = \sum_{i} i \cdot \Pr[X = x_i \mid Y = y]$$

Is the conditional guessing entropy, i.e. the expected number of guesses needed to guess X given Y. (We assume the probabilities to be in non-decreasing order).

Is Shannon entropy the only measure?

Let's focus on the prior

$$H(X) = \sum_{x \in \mathcal{X}} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) = \mathbb{E}\left[\log(\frac{1}{\Pr[X = x]})\right]$$

- A point distribution has Shannon entropy 0
- A uniform distribution of n values has Shannon entropy log(n).

We could think that:

"If a secret X has distribution π , then an adversary's probability of guessing the value of X correctly in one try is at most 2^{-H(π)"}

• This is false. E.g. for this distribution H(π)~2.44, and 2^{-H(π)} ~ 0.18

We could think that:

"If a secret X has distribution π , then an adversary's probability of guessing the value of X correctly in one try is at most 2^{-H(π)"}

• This is false. E.g. for this distribution $H(\pi)$ ~2.44, and $2^{-H(\pi)}$ ~ 0.18

Bayes Vulnerability

$$V(X) = \max_{x \in \mathcal{X}} \Pr[X = x]$$

- In our case it is the max probability assigned by the prior $\pi_{\rm R}$.
- Best choice for a rational adversary to guess the secret in one try.

Bayes Vulnerability examples

$$V(X) = \max_{x \in \mathcal{X}} \Pr[X = x]$$

- Consider π_R to be a uniform distribution over n outcomes. Then, V(π_R)=1/n
- Consider $\pi_{\rm R}$ to be the following distribution again, we have V($\pi_{\rm R}$)=.5

Bayes Vulnerability examples

$$V(X) = \max_{x \in \mathcal{X}} \Pr[X = x]$$

- Consider π_R to be a uniform distribution over n outcomes. Then, V(π_R)=1/n
- Consider $\pi_{\rm R}$ to be the following distribution again, we have V($\pi_{\rm R}$)=.5

How do we quantify information leakage?

- Look at how to guarantee trace-based noninterference.
- Look at how to guarantee side-channel free noninterference.
- Look at the relations between self-composition and relational logic.

Not related to Easycrypt

- Look at type systems for non-interference.
- Look at other methods for relational reasoning
- Look at declassification