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Quantitative Information
Flow Control

We want to quantify the confidential information
that leaks in what is considered nonconfidential.
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Quantitative Information
Flow Control

has been used for:

* Analyzing distributed protocols and scheme,

* Analyzing side-channel vulnerabilities and
preventions.

* Analyzing crypto protocols,

* Analyze election protocols

* Analyze differential privacy mechanisms



Guessing Game

private public
R U

* The adversary has some prior 7r on R and it updates
it after seeing U.



Shannon Entropy

) = E [log(

H(X) = Z Pr[X = x]log(

)|
i Pr| X = x]

Pr| X = x]

 uncertainty about X

* expected amount of information gain by observing the
value of the random variable,

« average number of bits required to transmit X
optimally



Conditional Entropy

1
HX|Y) = ;PI[Y=y] 'x;%Pr[X=x|Y=y]log(Pr[X:X|Y:y])

 If Cis constant H(R|U)=H(R).

 If Cis non constant and deterministic H(R|U)=0, so:

Leakage(U) = H(R)



Information leakage

Information leaked =
initial uncertainty - remaining uncertainty

* Which could be
Leakage(U) = H(R) — HR|U)

 This is the mutual information between R and U



Shannon Entropy

We could think that:

" “If a secret X has distribution T, then an adversary’s

try is at most 2-H(m)”

N\

N

probability of guessing the value of X correctly in one

J

* This is false. E.g. for this distribution H(1r)~2.44, and
2-Hm ~0.18
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Same issue on conditional
entropy

« Assume that R is a uniformly distributed 8k-bit integer
with range 0 < R < 28, where k =2 2. Hence H(R) = 8k.

« Consider these two programs:

if R mod 8 = 0 then U:= R else U :=1

And

U:s= R && 07k-1]1k+1

* In both cases H(R|U)~7k-1 suggesting that the
number of guesses needed to guess R is 2-(7k-1)



Bayes Vulnerabillity

V(X) = max Pr[ X = x]
xeX

* |In our case it is the max probability assigned by the

prior 7R.

« Best choice for a rational adversary to guess the
secret in one try.



Bayes Vulnerability examples

V(X) = max Pr[ X = x]
xeX
 Consider rto be a uniform distribution over n

outcomes. Then, V(zr)=1/n

* Consider zr to be the following distribution again, we
have V(7r)=.5

0.375 [+ e oo
0.25 [ -

0125 I -+

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10



Min Entropy

* We can use Bayes vulnerability to define a notion of
entropy.

H_. (X) = log V)

* This is actually known as min entropy, and it can be
seen as the greatest lower bound of the information
content in bits of of X.



Conditional Min Entropy

* We can have a conditional version of the previous
notions

H_. (X|Y)=1lo
minX | Y) gV(Xm

 Where

V(X|Y) = Z Pr[Y = y] max Pr[X = x| Y = y]
xed
YEY



Information Ieakage V2

Information leaked =
initial uncertainty - remaining uncertainty

 Which could be

Leakage(U) = H_; (R) — (R|U)

mln



Bayes vulnerability and min

entropy
We have:
V(R‘ U) — 2Hmin(R‘U)

* The expected probability that the adversary could
guess R given U decreases exponentially with
Hmin(RlU).



Conditional Min Entropy

« Assume that R is a uniformly distributed 8k-bit integer
with range 0 < R < 28, where k =2 2. Hence H(R) = 8k.

« Consider these two programs:

if R mod 8 = 0 then U:= R else U :=1

And

U:s= R && 07k-1]1k+1

* For the first we have Hnmin(R|U)~3 while for the
second is still Hmin(R|U)~7k-1.



Conditional Min Entropy

« Assume that R is a uniformly distributed 8k-bit integer
with range 0 < R < 28, where k =2 2. Hence H(R) = 8k.

« Consider these two programs:
1f Rmod 8 = 0 then U:= R else U :=1

And
U:= R || 08k-313

* For both of them we have Hnmin(R|U)~3.

Is this reasonable?



Can we have a more
general approach?



Gain function

« Suppose we have a set of secrets X and a set of
actions W, then a gain function g is a function of type:

g: XXW->R

« We can think about g as a scoring function for actions
on a secret



Gain function

« Suppose we have a set of secrets X and a set of
actions W, then a gain function g is a function of type:

g XXW-oR

« We can think about g as a scoring function for actions
on a secret

We could have a similar definition based on losses.



g-Vulnerability

V,(X) = max Z Pr[ X =x] - g(w, x)

WEW e

* The best action for a rational adversary is the one that
maximizes the expected gain.



g-Vulnerability example

Example 3.3 With X = {z1,z2} and W = {w1, w2, w3, ws, ws}, let gain function g
have the (rather arbitrarily chosen) values shown in the following matrix:

G 1 o
w1 —1.0 1.0
w3 0.4 0.1
Wy 0.8 —-0.9
Ws 0.1 0.2

To compute the value of V; on (say) 7 = (0.3,0.7), we must compute the expected
gain for each possible action w in W, given by the expression » _ _, 7, g(w,z) for
each one, to see which of them is best. The results are as follows.

reX

Te, g(W1, T1) + T g(wr,x2) = 0.3-(—1.0)+0.7-1.0 = 0.40
o g(Wo, 1) + Ty g(wa, z2) = 0.3-0.04+0.7-0.5 = 0.35
o, g(ws, 1) + T, g(ws, z2) = 0.3-0.4+4+0.7-0.1 = 0.19
e 9(Wa, T1) + T g(we, x2) = 0.3-0.840.7-(—0.9) = —0.39
e 9(Ws, 1) + T, g(ws, T2) = 0.3-0.14+0.7-0.2 = 0.17

Thus we find that w; is the best action and V,(7) =0.4 . O



g-Vulnerability example
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Interesting gain functions

|dentity gain function: g(w,x)=1 if x=w and 0 otherwise.

Gain functions induced by a metric d: g(w,x)=d(w,X)

Binary gain functions g(w,x)=1 if xew and O otherwise.
Penalty gain functions g(w,x)=1 if x=w, 0 if w=1, -1
otherwise.

Loss functions I(w,x)=-log(w(x)) where w is a
distribution



Gain function properties

« We can show that for every gain function g, the g
vulnerability Vy is a convex function.

 Algebraic structure on gain functions translate to
algebraic structure on the associated g-vulnerability.

(X) =V, (X)+7

g+r



Information Ieakage V2

— . —
q U

Information leaked =
initial uncertainty - remaining uncertainty



Channel

* We can abstract programs over finite data types c to
stochastic matrices.

Y. Y2 Yz Y4
L1 1/2 1/2 0 0

0 a4 1/2 1/4
xr3 | /2 1/3 1/6 0

* where Cyxy=Pr[c(X)=y|X=X]



Bayes Theorem

Pr(y|x) Pr(x)

Prix|y] = Pr(y)

* We can use Bayes’ theorem and a channel to
compute the given a prior.



Posteriors

| 1 1 1
Given 7 =[—,—,0,—] And
33 3

Y1

Y2

Y3

Yq

1/

1/4

1/6
1/3
1/2
1/4

/3
2/3
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1/

0
0
1/
0

We can compute the joint channel:

J Y1 Y2 Y3 U

I3 0

ry | Yo /18 1l/9 0
o | 0 9 2/9 0
0 0

0

g | Y12 Y12 1/6 0

And with this,
renormalizing:

PX|y: | PX|y2 | PX|ys
xry | 2/3 2/9 2/9
T 0 4/9 4/9
T3 0 0 0
xrg | 13 1/3 1/3




Consider this set of posteriors

We could think about it as a distribution over posteriors

This is what we call a hyper-distribution, read as =

through C.

Hyper-distribution

PX|y: | PX|y2 | PXlys
Ty | 2/3 2/9 2/9
T 0 4/9 4/9
T3 0 0 0
Ty | 13 1/3 1/3

[meCJ | Y| 3
xr1 | 2/3 | 2/9
o 0 4/9
I3 0 0
ry | 13| 1/3




Hyper-distribution

imeC| | 1/a | 3/4
r1 | 2/3 | 2/9
L9 0 4/9
X3 0 0
ry | 1/3|1/3

We can write a hyper-distribution as:
Outer
probabilities

[z>Cl= ) Z,.[(ii]

Inner
probabilities

l



Abstract channels

We can think about channels as essentially mapping
priors to hyper-distributions.

The abstract channel C of a channel C is the mapping:

w— x> C]

We can think about this as the semantics of C

[IC]] =Ax. [z > C]

We can write a hyper-distribution as:

[z > Cl= ) af5]



Properties

« C satisfies non-interference if its abstract channel is a
lifting:

[[C]] = Azx.unitx

* We can identify canonical forms for abstract channels
and characterize abstract channels properties through
properties about their functions.

 We can also take convex combinations of abstract
channel and compose them in other abstract
channels.



Posterior g-Vulnerability

Vir > Cl= ) aV,5)

l

Assuming

[z>Cl= ) ab

l

« Expected value of g-vulnerabities.



g-Vulnerability example

Example 3.3 With X = {z1,z2} and W = {w1, w2, w3, ws, ws}, let gain function g
have the (rather arbitrarily chosen) values shown in the following matrix:

G 1 o
w1 —1.0 1.0
w3 0.4 0.1
Wy 0.8 —-0.9
Ws 0.1 0.2

To compute the value of V; on (say) 7 = (0.3,0.7), we must compute the expected
gain for each possible action w in W, given by the expression » _ _, 7, g(w,z) for
each one, to see which of them is best. The results are as follows.

reX

Te, g(W1, T1) + T g(wr,x2) = 0.3-(—1.0)+0.7-1.0 = 0.40
o g(Wo, 1) + Ty g(wa, z2) = 0.3-0.04+0.7-0.5 = 0.35
o, g(ws, 1) + T, g(ws, z2) = 0.3-0.4+4+0.7-0.1 = 0.19
e 9(Wa, T1) + T g(we, x2) = 0.3-0.840.7-(—0.9) = —0.39
e 9(Ws, 1) + T, g(ws, T2) = 0.3-0.14+0.7-0.2 = 0.17

Thus we find that w; is the best action and V,(7) =0.4 . O



Posterior g-Vulnerability

example

Let’s consider this channel

C Y1 Y2

1 | 0.79 0.25

o | 0.25 0.75
With prior (0.3,0.7) we get:.
ai=.4
a2=.6 V,[z > C] = 0.5575

51=(0.5625,0.4375)
52=(0.5625,0.4375)



Posterior g-Vulnerability
example

Comparison of Vy(m) (red) and V,[m>C] (blue) for



Many other topics

* How to apply it in practical analyses

* How to use program logics to reason about this
framework

» Geometric properties

» Stochastic properties
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