
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 599: Formal Methods in
Security and Privacy 

Quantitative Information Flow

Quantitative Information
Flow Control

We want to quantify the confidential information
that leaks in what is considered nonconfidential.

public public

private private

Quantitative Information
Flow Control

Quantitative information flow has been used for:

• Analyzing distributed protocols and scheme,
• Analyzing side-channel vulnerabilities and

preventions.
• Analyzing crypto protocols,
• Analyze election protocols
• Analyze differential privacy mechanisms
• …

private C public
UR

Guessing Game

• The adversary has some prior 𝜋R on R and it updates
it after seeing U.

Shannon Entropy

• uncertainty about X
• expected amount of information gain by observing the

value of the random variable,
• average number of bits required to transmit X

optimally

H(X) = ∑
x∈𝒳

Pr[X = x]log(
1

Pr[X = x]
) = 𝔼[log(

1
Pr[X = x]

)]

Conditional Entropy

H(X |Y) = ∑
y

Pr[Y = y] ⋅ ∑
x∈𝒳

Pr[X = x |Y = y]log(
1

Pr[X = x |Y = y]
)

• If C is non constant and deterministic H(R|U)=0, so:

𝙻𝚎𝚊𝚔𝚊𝚐𝚎(U) = H(R)

• If C is constant H(R|U)=H(R).

Information leakage

• Which could be

𝙻𝚎𝚊𝚔𝚊𝚐𝚎(U) = H(R) − H(R |U)

Information leaked =
 initial uncertainty - remaining uncertainty

• This is the mutual information between R and U

Shannon Entropy

• This is false. E.g. for this distribution H(π)~2.44, and
2−H(π) ~ 0.18

“If a secret X has distribution π, then an adversary’s
probability of guessing the value of X correctly in one
try is at most 2−H(π)”

0

0.125

0.25

0.375

0.5

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

We could think that:

Same issue on conditional
entropy

• Consider these two programs:

if R mod 8 = 0 then U:= R else U := 1

U:= R && 07k-11k+1

And

• Assume that R is a uniformly distributed 8k-bit integer
with range 0 ≤ R < 28k, where k ≥ 2. Hence H(R) = 8k.

• In both cases H(R|U)~7k-1 suggesting that the
number of guesses needed to guess R is 2-(7k-1)

Bayes Vulnerability

• In our case it is the max probability assigned by the
prior 𝜋R.

• Best choice for a rational adversary to guess the
secret in one try.

V(X) = max
x∈𝒳

Pr[X = x]

Bayes Vulnerability examples

• Consider 𝜋R to be a uniform distribution over n
outcomes. Then, V(𝜋R)=1/n

• Consider 𝜋R to be the following distribution again, we
have V(𝜋R)=.5

V(X) = max
x∈𝒳

Pr[X = x]

0

0.125

0.25

0.375

0.5

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Min Entropy
• We can use Bayes vulnerability to define a notion of

entropy.

Hmin(X) = log
1

V(X)

• This is actually known as min entropy, and it can be
seen as the greatest lower bound of the information
content in bits of observations of X.

Conditional Min Entropy
• We can have a conditional version of the previous

notions
Hmin(X |Y) = log

1
V(X |Y)

• Where

V(X |Y) = ∑
y∈𝒴

Pr[Y = y] max
x∈𝒳

Pr[X = x |Y = y]

Information leakage v2

• Which could be

𝙻𝚎𝚊𝚔𝚊𝚐𝚎(U) = Hmin(R) − Hmin(R |U)

Information leaked =
 initial uncertainty - remaining uncertainty

private C public
UR

Bayes vulnerability and min
entropy

We have:

V(R |U) = 2Hmin(R|U)

• The expected probability that the adversary could
guess R given U decreases exponentially with
Hmin(R|U).

Conditional Min Entropy

• Consider these two programs:

if R mod 8 = 0 then U:= R else U := 1

U:= R && 07k-11k+1

And

• Assume that R is a uniformly distributed 8k-bit integer
with range 0 ≤ R < 28k, where k ≥ 2. Hence H(R) = 8k.

• For the first we have Hmin(R|U)~3 while for the
second is still Hmin(R|U)~7k-1.

Conditional Min Entropy

• Consider these two programs:
if R mod 8 = 0 then U:= R else U := 1

U:= R || 08k-313
And

• Assume that R is a uniformly distributed 8k-bit integer
with range 0 ≤ R < 28k, where k ≥ 2. Hence H(R) = 8k.

• For both of them we have Hmin(R|U)~3.

Is this reasonable?

Can we have a more
general approach?

Gain function
• Suppose we have a set of secrets X and a set of

actions W, then a gain function g is a function of type:

g : X × W → ℝ
• We can think about g as a scoring function for actions

on a secret

Gain function
• Suppose we have a set of secrets X and a set of

actions W, then a gain function g is a function of type:

g : X × W → ℝ
• We can think about g as a scoring function for actions

on a secret

We could have a similar definition based on losses.

g-Vulnerability

• The best action for a rational adversary is the one that
maximizes the expected gain.

Vg(X) = max
w∈𝒲 ∑

x∈𝒳

Pr[X = x] ⋅ g(w, x)

g-Vulnerability example

g-Vulnerability example

Interesting gain functions
• Identity gain function: g(w,x)=1 if x=w and 0 otherwise.

• Gain functions induced by a metric d: g(w,x)=d(w,x)

• Binary gain functions g(w,x)=1 if x∈w and 0 otherwise.

• Penalty gain functions g(w,x)=1 if x=w, 0 if w=⊥, -1
otherwise.

• Loss functions l(w,x)=-log(w(x)) where w is a
distribution

Gain function properties
• We can show that for every gain function g, the g

vulnerability Vg is a convex function.

• Algebraic structure on gain functions translate to
algebraic structure on the associated g-vulnerability.

Vg×k(X) = k × Vg(X)

Vg+r(X) = Vg(X) + r

for k≥0

Information leakage v2

Information leaked =
 initial uncertainty - remaining uncertainty

private C public
UR

Channel
• We can abstract programs over finite data types c to

stochastic matrices.

4 Channels

Definition 4.1 (Channel matrix)

Let X and Y be finite sets, intuitively representing secret input values and
observable output values. A channel matrix C from X to Y is a matrix, indexed
by X×Y, whose rows give the distribution on outputs corresponding to each
possible input. That is, entry Cx,y denotes p(y|x), the conditional probability of
getting output y given input x. 2 Note that all entries in a channel matrix are
between 0 and 1, and each row sums to 1, which property is called stochastic
(and is how we will describe such matrices even if they might not correspond to
actual channels).
The x’th row of C is written Cx,−, and similarly the y’th column is C−,y.

Mathematically, a channel matrix has type X×Y → [0, 1]; but that is of course
isomorphic to the type X→DY that we gave previously, provided the matrix is
stochastic, i.e. has one-summing rows. But we will often prefer to write the type of a
channel more concisely as X!Y, suppressing the “syntactic noise” of the × and the
[0, 1], and thinking of it as a “probabilistic function” from X to Y.

For example, here is a channel matrix C:

C y1 y2 y3 y4

x1 1/2 1/2 0 0
x2 0 1/4 1/2 1/4

x3 1/2 1/3 1/6 0

In general, channel matrices (like C here) are (properly) probabilistic, in that the
output is not always uniquely determined by the input: for example, in C we have
p(y3|x3) = 1/6. As we said above, however, an important special case is the deterministic
channel matrix, in which each row contains a single 1, identifying the unique possible
output for that input. For example, here is a deterministic channel matrix D:

D y1 y2

x1 1 0
x2 1 0
x3 0 1

However, we will see later, in Def. 4.13, that a properly probabilistic channel matrix
can nonetheless be seen as “essentially” deterministic. 3

A disadvantage of channel matrices however is that, when X or Y are large, they can
be too big to write down explicitly. For that reason, we sometimes find it convenient
to represent channels as pseudocode. For example, a certain deterministic channel
taking as input a 64-bit unsigned X (whose channel matrix hence has 2 64 rows) can
be described by the following pseudocode:

Y := if (X mod 8) = 0 then X else 1 (4.1)

2 Here it might be objected that p(y|x) is meaningless without a joint distribution. However, we
agree with Rényi that “the basic notion of probability theory should be the notion of the conditional
probability of A under the condition B”.
3 Additional discussion of deterministic channels is given in Chap. 17, where a different generalization
is explored: demonic rather than probabilistic choice, corresponding to qualitative (or possibilistic)
rather than quantitative information flow.

50

• where Cxy=Pr[c(X)=y|X=x]

Bayes Theorem

Pr[x |y] =
Pr(y |x) Pr(x)

Pr(y)

• We can use Bayes’ theorem and a channel to
compute the posterior given a prior.

Posteriors
π = [

1
3

,
1
3

,0,
1
3

]Given

We can compute the joint channel:

And with this,
renormalizing:

4 Channels

4.3 From joint distributions to hyper-distributions

The discussion in the previous section is fundamentally based on the joint distribution
pXY . However, that turns out not to be entirely satisfactory.

A first issue is that the particular output set Y is an inessential detail of a channel
matrix C, as far as leakage is concerned. The reason is that the information available
to the adversary does not at all depend on the fact that C’s outputs belong to any
particular set Y ; renaming the outputs would make no difference to the leakage caused
by C, since the adversary’s deductions depend only on the correlation between input
values and output values, and not on the particular output values themselves. As an
example, consider a channel C taking as input a user’s medical record X, assumed to
contain both non-sensitive data (e.g. the state where the patient resides, say Florida)
and sensitive data (e.g. the patient’s diagnoses). Suppose that C is malicious and
outputs diabetes if the patient has been diagnosed with diabetes, and no diabetes if not.
Remembering that the adversary is assumed to know the channel matrix C, we see
that it would make absolutely no difference to the sensitive information leaked if the
two outputs diabetes and no diabetes were renamed to Florida and FL, respectively,
writing the patient’s state of residence in either unabbreviated or abbreviated form
according to whether or not he has diabetes. 7 But of course that change might make
the leak less obvious to a casual observer.

A second issue is that two complications can arise in going from a prior π and channel
matrix C to the posterior distributions pX|y and their (Y-marginal) probabilities p(y).
First, an output value y can be impossible, in that p(y) = 0. That happens trivially
when column y of C is all zeroes, but it also can happen when prior π is not full
support and the nonzero entries of column y occur only for inputs x that, according to
the prior, can never occur: they are on rows x where πx = 0. In that case, column y of
the joint matrix is all zeroes, preventing our normalizing it, and therefore it does not
contribute a posterior distribution at all. Second, two output values y and y′ can give
rise to the same posterior distribution, meaning that the adversary gets no benefit
from distinguishing those two outputs from each other.

As an illustration, suppose that prior π is (1/3, 1/3, 0, 1/3) and that C is

C y1 y2 y3 y4

x1 1/2 1/6 1/3 0
x2 0 1/3 2/3 0
x3 0 1/2 0 1/2

x4 1/4 1/4 1/2 0

.

7 It should however be noted that the unimportance of the particular output values relies on our
assumption (discussed at the end of Section 2.3) that adversaries are information-theoretic, without
computational resource bounds. If we were considering computationally bounded adversaries, then
the particular output values could well matter, because an output y might or might not allow the
adversary to compute information about the input efficiently, without having to scan the entire
column y of C. As an example, consider a channel matrix whose input is a 1000-bit prime p. From
an information-theoretic perspective, it would make no difference if the output were p2 or pq, for
a randomly-chosen 1001-bit prime q, since in either case there would be only one input value
corresponding to each output value. But the output p2 would let the adversary recover p efficiently
by computing a square root, while the output pq would require the adversary to solve a difficult
factorization problem. Interestingly, however, that distinction does not hold in the setting of quantum
computers, where Shor’s algorithm enables efficient integer factorization. And so relying too much on
computational limits now could lead to security issues later.

54

And4.3 From joint distributions to hyper-distributions

Here we find that the joint matrix is

J y1 y2 y3 y4

x1 1/6 1/18 1/9 0
x2 0 1/9 2/9 0
x3 0 0 0 0
x4 1/12 1/12 1/6 0

,

so that pY = (1/4, 1/4, 1/2, 0) and therefore pX|y4
is undefined. Because p(y4) is zero,

we can reduce the matrix by dropping that column, and the posterior distributions
that we get are these:

pX|y1
pX|y2

pX|y3

x1 2/3 2/9 2/9

x2 0 4/9 4/9

x3 0 0 0
x4 1/3 1/3 1/3

.

But now we find that pX|y2
= pX|y3

, and hence there are only two possible adversary
“worlds”, rather than three, as it makes no difference to the adversary whether the
output is y2 or y3. Moreover, the probability of the “world” (2/9, 4/9, 0, 1/3) is actually
p(y2) + p(y3) = 1/4 + 1/2 = 3/4.

The above suggests that we could reduce the matrix again, this time merging
columns y2 and y3 together: the result is

pX|y1
pX|“y2 or y3”

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

.

Later, we will see the same “reduction” process applied to channel matrices, for similar
reasons.

In light of those two issues, we choose to forget about the particular output values
{y1, y2, y3, y4}, and to model the effect of channel C on prior π simply as a distribution
on posterior distributions, which we call a hyper-distribution and denote by [πŻC] and
pronounce “π through C”. Here is the hyper-distribution for our example above:

[πŻC] 1/4 3/4

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

It should be noted that a hyper-distribution abstracts from the “bookkeeping” that
the adversary needs to remember in order to know which outputs correspond to
which posterior distributions. In the case above, the bookkeeping would have been
remembering that output y1 corresponds to posterior distribution (2/3, 0, 0, 1/3), while
outputs y2 and y3 both correspond to posterior distribution (2/9, 4/9, 0, 1/3). But –as
we have shown– those details are irrelevant to an assessment of what information
leakage about X is caused by C under prior π.

Furthermore, it turns out that the abstraction afforded by the hyper-distribution
perspective is particularly important when we are interested in comparing channels to
try to decide whether one is more secure than the other. Here is a striking example.

55

4.3 From joint distributions to hyper-distributions

Here we find that the joint matrix is

J y1 y2 y3 y4

x1 1/6 1/18 1/9 0
x2 0 1/9 2/9 0
x3 0 0 0 0
x4 1/12 1/12 1/6 0

,

so that pY = (1/4, 1/4, 1/2, 0) and therefore pX|y4
is undefined. Because p(y4) is zero,

we can reduce the matrix by dropping that column, and the posterior distributions
that we get are these:

pX|y1
pX|y2

pX|y3

x1 2/3 2/9 2/9

x2 0 4/9 4/9

x3 0 0 0
x4 1/3 1/3 1/3

.

But now we find that pX|y2
= pX|y3

, and hence there are only two possible adversary
“worlds”, rather than three, as it makes no difference to the adversary whether the
output is y2 or y3. Moreover, the probability of the “world” (2/9, 4/9, 0, 1/3) is actually
p(y2) + p(y3) = 1/4 + 1/2 = 3/4.

The above suggests that we could reduce the matrix again, this time merging
columns y2 and y3 together: the result is

pX|y1
pX|“y2 or y3”

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

.

Later, we will see the same “reduction” process applied to channel matrices, for similar
reasons.

In light of those two issues, we choose to forget about the particular output values
{y1, y2, y3, y4}, and to model the effect of channel C on prior π simply as a distribution
on posterior distributions, which we call a hyper-distribution and denote by [πŻC] and
pronounce “π through C”. Here is the hyper-distribution for our example above:

[πŻC] 1/4 3/4

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

It should be noted that a hyper-distribution abstracts from the “bookkeeping” that
the adversary needs to remember in order to know which outputs correspond to
which posterior distributions. In the case above, the bookkeeping would have been
remembering that output y1 corresponds to posterior distribution (2/3, 0, 0, 1/3), while
outputs y2 and y3 both correspond to posterior distribution (2/9, 4/9, 0, 1/3). But –as
we have shown– those details are irrelevant to an assessment of what information
leakage about X is caused by C under prior π.

Furthermore, it turns out that the abstraction afforded by the hyper-distribution
perspective is particularly important when we are interested in comparing channels to
try to decide whether one is more secure than the other. Here is a striking example.

55

Hyper-distribution
Consider this set of posteriors

We could think about it as a distribution over posteriors

4.3 From joint distributions to hyper-distributions

Here we find that the joint matrix is

J y1 y2 y3 y4

x1 1/6 1/18 1/9 0
x2 0 1/9 2/9 0
x3 0 0 0 0
x4 1/12 1/12 1/6 0

,

so that pY = (1/4, 1/4, 1/2, 0) and therefore pX|y4
is undefined. Because p(y4) is zero,

we can reduce the matrix by dropping that column, and the posterior distributions
that we get are these:

pX|y1
pX|y2

pX|y3

x1 2/3 2/9 2/9

x2 0 4/9 4/9

x3 0 0 0
x4 1/3 1/3 1/3

.

But now we find that pX|y2
= pX|y3

, and hence there are only two possible adversary
“worlds”, rather than three, as it makes no difference to the adversary whether the
output is y2 or y3. Moreover, the probability of the “world” (2/9, 4/9, 0, 1/3) is actually
p(y2) + p(y3) = 1/4 + 1/2 = 3/4.

The above suggests that we could reduce the matrix again, this time merging
columns y2 and y3 together: the result is

pX|y1
pX|“y2 or y3”

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

.

Later, we will see the same “reduction” process applied to channel matrices, for similar
reasons.

In light of those two issues, we choose to forget about the particular output values
{y1, y2, y3, y4}, and to model the effect of channel C on prior π simply as a distribution
on posterior distributions, which we call a hyper-distribution and denote by [πŻC] and
pronounce “π through C”. Here is the hyper-distribution for our example above:

[πŻC] 1/4 3/4

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

It should be noted that a hyper-distribution abstracts from the “bookkeeping” that
the adversary needs to remember in order to know which outputs correspond to
which posterior distributions. In the case above, the bookkeeping would have been
remembering that output y1 corresponds to posterior distribution (2/3, 0, 0, 1/3), while
outputs y2 and y3 both correspond to posterior distribution (2/9, 4/9, 0, 1/3). But –as
we have shown– those details are irrelevant to an assessment of what information
leakage about X is caused by C under prior π.

Furthermore, it turns out that the abstraction afforded by the hyper-distribution
perspective is particularly important when we are interested in comparing channels to
try to decide whether one is more secure than the other. Here is a striking example.

55

4.3 From joint distributions to hyper-distributions

Here we find that the joint matrix is

J y1 y2 y3 y4

x1 1/6 1/18 1/9 0
x2 0 1/9 2/9 0
x3 0 0 0 0
x4 1/12 1/12 1/6 0

,

so that pY = (1/4, 1/4, 1/2, 0) and therefore pX|y4
is undefined. Because p(y4) is zero,

we can reduce the matrix by dropping that column, and the posterior distributions
that we get are these:

pX|y1
pX|y2

pX|y3

x1 2/3 2/9 2/9

x2 0 4/9 4/9

x3 0 0 0
x4 1/3 1/3 1/3

.

But now we find that pX|y2
= pX|y3

, and hence there are only two possible adversary
“worlds”, rather than three, as it makes no difference to the adversary whether the
output is y2 or y3. Moreover, the probability of the “world” (2/9, 4/9, 0, 1/3) is actually
p(y2) + p(y3) = 1/4 + 1/2 = 3/4.

The above suggests that we could reduce the matrix again, this time merging
columns y2 and y3 together: the result is

pX|y1
pX|“y2 or y3”

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

.

Later, we will see the same “reduction” process applied to channel matrices, for similar
reasons.

In light of those two issues, we choose to forget about the particular output values
{y1, y2, y3, y4}, and to model the effect of channel C on prior π simply as a distribution
on posterior distributions, which we call a hyper-distribution and denote by [πŻC] and
pronounce “π through C”. Here is the hyper-distribution for our example above:

[πŻC] 1/4 3/4

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

It should be noted that a hyper-distribution abstracts from the “bookkeeping” that
the adversary needs to remember in order to know which outputs correspond to
which posterior distributions. In the case above, the bookkeeping would have been
remembering that output y1 corresponds to posterior distribution (2/3, 0, 0, 1/3), while
outputs y2 and y3 both correspond to posterior distribution (2/9, 4/9, 0, 1/3). But –as
we have shown– those details are irrelevant to an assessment of what information
leakage about X is caused by C under prior π.

Furthermore, it turns out that the abstraction afforded by the hyper-distribution
perspective is particularly important when we are interested in comparing channels to
try to decide whether one is more secure than the other. Here is a striking example.

55

This is what we call a hyper-distribution, read as 𝜋
through C.

Hyper-distribution

4.3 From joint distributions to hyper-distributions

Here we find that the joint matrix is

J y1 y2 y3 y4

x1 1/6 1/18 1/9 0
x2 0 1/9 2/9 0
x3 0 0 0 0
x4 1/12 1/12 1/6 0

,

so that pY = (1/4, 1/4, 1/2, 0) and therefore pX|y4
is undefined. Because p(y4) is zero,

we can reduce the matrix by dropping that column, and the posterior distributions
that we get are these:

pX|y1
pX|y2

pX|y3

x1 2/3 2/9 2/9

x2 0 4/9 4/9

x3 0 0 0
x4 1/3 1/3 1/3

.

But now we find that pX|y2
= pX|y3

, and hence there are only two possible adversary
“worlds”, rather than three, as it makes no difference to the adversary whether the
output is y2 or y3. Moreover, the probability of the “world” (2/9, 4/9, 0, 1/3) is actually
p(y2) + p(y3) = 1/4 + 1/2 = 3/4.

The above suggests that we could reduce the matrix again, this time merging
columns y2 and y3 together: the result is

pX|y1
pX|“y2 or y3”

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

.

Later, we will see the same “reduction” process applied to channel matrices, for similar
reasons.

In light of those two issues, we choose to forget about the particular output values
{y1, y2, y3, y4}, and to model the effect of channel C on prior π simply as a distribution
on posterior distributions, which we call a hyper-distribution and denote by [πŻC] and
pronounce “π through C”. Here is the hyper-distribution for our example above:

[πŻC] 1/4 3/4

x1 2/3 2/9

x2 0 4/9

x3 0 0
x4 1/3 1/3

It should be noted that a hyper-distribution abstracts from the “bookkeeping” that
the adversary needs to remember in order to know which outputs correspond to
which posterior distributions. In the case above, the bookkeeping would have been
remembering that output y1 corresponds to posterior distribution (2/3, 0, 0, 1/3), while
outputs y2 and y3 both correspond to posterior distribution (2/9, 4/9, 0, 1/3). But –as
we have shown– those details are irrelevant to an assessment of what information
leakage about X is caused by C under prior π.

Furthermore, it turns out that the abstraction afforded by the hyper-distribution
perspective is particularly important when we are interested in comparing channels to
try to decide whether one is more secure than the other. Here is a striking example.

55

We can write a hyper-distribution as:

[π ⊳ C] = ∑
i

ai[δi]
Inner

probabilities

Outer
probabilities

Abstract channels
We can think about channels as essentially mapping
priors to hyper-distributions.

The abstract channel C of a channel C is the mapping:

π → [π ⊳ C]
We can think about this as the semantics of C

[[C]] = λπ . [π ⊳ C]
We can write a hyper-distribution as:

[π ⊳ C] = ∑
i

ai[δi]

Properties
• C satisfies non-interference if its abstract channel is a

lifting:

[[C]] = λπ . 𝚞𝚗𝚒𝚝 π

• We can identify canonical forms for abstract channels
and characterize abstract channels properties through
properties about their functions.

• We can also take convex combinations of abstract
channel and compose them in other abstract
channels.

Posterior g-Vulnerability

• Expected value of g-vulnerabities.

Vg[π ⊳ C] = ∑
i

aiVg(δi)

[π ⊳ C] = ∑
i

aiδi

Assuming

g-Vulnerability example

Posterior g-Vulnerability
example

5.1 Posterior g-vulnerability and its basic properties

To understand posterior g-vulnerability better, let us look at some examples. We
start with an example of posterior Bayes vulnerability specifically (which of course is
the same as posterior gid-vulnerability).

Example 5.3 Recall that Example 4.2 presents a channel C that maps prior distribution
π = (1/4, 1/2, 1/4) to hyper-distribution

[πŻC] 1/4 1/3 7/24 1/8

x1 1/2 3/8 0 0
x2 0 3/8 6/7 1
x3 1/2 1/4 1/7 0

. (5.1)

In this case the prior Bayes vulnerability is 1/2, as the adversary’s best action a priori
is to guess x2. From (5.1) we find that the posterior Bayes vulnerability is

V1[πŻC] = 1/4 · V1(1/2, 0, 1/2) + 1/3 · V1(3/8, 3/8, 1/4) + 7/24 · V1(0, 6/7, 1/7) + 1/8 · V1(0, 1, 0)

= 1/4 · 1/2 + 1/3 · 3/8 + 7/24 · 6/7 + 1/8 · 1

= 5/8 ,

which is larger than the prior Bayes vulnerability; and that reflects the fact that
the channel outputs help the adversary to choose actions that are better for her. In
particular, the first posterior distribution in [πŻC] directs her not to guess x2 but
instead x1 or x3, which are equally good. (On the other three posterior distributions,
guessing x2 remains optimal.) Thus her probability of guessing X correctly increases
from 1/2 to 5/8. !

Example 5.4 Next let us consider posterior g-vulnerability for the gain function g from
Example 3.3, whose matrix representation is

G x1 x2

w1 −1.0 1.0
w2 0.0 0.5
w3 0.4 0.1
w4 0.8 −0.9
w5 0.1 0.2

,

and suppose that channel C is

C y1 y2

x1 0.75 0.25
x2 0.25 0.75

.

Notice that C reveals rather a lot of information about the secret: if the input is xi

(where i is 1 or 2), then three-fourths of the time the output is yi.
Now let us compute Vg[πŻC] directly from Def. 5.2 in the case when π = (0.3, 0.7).

We first find hyper-distribution [πŻC] using the process shown earlier in Example 4.2.
Scaling the rows of C with π, we get joint matrix J as here:

J y1 y2

x1 0.225 0.075
x2 0.175 0.525

73

Let’s consider this channel

With prior (0.3,0.7) we get:
a1=.4

a2=.6

δ1=(0.5625,0.4375)
δ2=(0.5625,0.4375)

Vg[π ⊳ C] = 0.5575

5.1 Posterior g-vulnerability and its basic properties

Figure 5.1 Comparison of Vg(π) (red) and Vg[πŻC] (blue) for Example 5.5

Example 5.5 To get a fuller understanding of posterior g-vulnerability for the gain
function g and channel matrix C considered in Example 5.4, let us now graph Vg[πŻC]
as a function of a general prior π = (x, 1−x), where 0≤x≤ 1. Here we get the
hyper-distribution

[πŻC] 1+2x
4

3−2x
4

x1
3x

1+2x
x

3−2x

x2
1−x
1+2x

3−3x
3−2x

.

Figure 5.1 compares the graph of Vg(π) (which was seen already in Fig. 3.1) and
Vg[πŻC] with [πŻC] from just above. As can be seen, Vg[πŻC] is often (but not always)
greater than Vg(π). This is to be expected intuitively, since channel C increases the
adversary’s knowledge about X, enabling a better choice of actions. But the particular
line segments in the graph of Vg[πŻC] might need some clarification.

Recall that in the prior situation, the adversary’s choice of which action to take
is guided only by π itself — she does not consider the channel. But in the posterior
situation, her choice can be guided by both π and the output of channel C, so that
she can choose one action if the output is y1 and another if the output is y2. If we
let wiwj denote the strategy of choosing action wi on output y1 and wj on output y2,
then we see that she has |W||Y| = 52 = 25 possible strategies. Note that those of the
form wiwi are “degenerate” strategies, since they choose action wi regardless of the
output: we therefore write them simply as wi.

Figure 5.2 plots the expected gain for seven of these strategies: they are w1,
w2w1, w3w1, w4w1, w4w3, w4w2, and w4. (Note that the graphs of the “degenerate”
strategies w1 and w4 were seen already in Fig. 3.2.) The expected gains for the
remaining 25− 7 = 18 strategies are not shown, because each of them is dominated by
the other seven, in the sense that on any π at least one of the seven gives an expected
gain that is at least as large. (Recall that in Fig. 3.2 the strategy w5 is dominated in
the same way.)

75

Posterior g-Vulnerability
example

Many other topics

• How to apply it in practical analyses
• How to use program logics to reason about this

framework
• Geometric properties
• Stochastic properties
• …

39

