
Marco Gaboardi

gaboardi@bu.edu 

Alley Stoughton

stough@bu.edu

CS 599: Formal Methods in Security and
Privacy:

An imperative programming language  
and  

Hoare Triples

From the previous class

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r == x + y

Does the program comply with the specification?

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = 0;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r == x + y

Does the program comply with the specification?

Fail to meet

the specification

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = x;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r == x + y

How about this one?

Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
 r = x;
 n = y;
 while n != 0
 {
 r = r + 1;
 n = n - 1;
 }
 return r
}
Postcondition: r == x + y

How about this one?

It meets

the specification

How can we make this
reasoning mathematically

precise?

Formal Semantics

Precondition
Program

Postcondition

We need to assign a formal meaning to the different
components:

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components:

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditions

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditionsWe also need to describe the rules
which combine program and

specifications.

Goal for today
• Formalize the semantics of a simple imperative programming

language.

A first example
FastExponentiation(n, k : Nat) : Nat

n’:= n; k’:= k; r := 1;

if k’ > 0 then

 while k’ > 1 do

 if even(k’) then

 n’ := n’ ∗ n’;

 k’ := k’/2;

 else

 r := n’ ∗ r;

 n’ := n’ ∗ n’;

 k’ := (k’ − 1)/2;

 r := n’ ∗ r;

 (* result is r *)

Programming Language
c::= abort

 | skip

 | x:=e

 | c;c

 | if e then c else c

 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Expressions
We want to be able to write complex programs with our language.

Where f can be any arbitrary operator.

e::= x

 | f(e1,…,en)

Some expression examples

x+5 x mod k x[i] (x[i+1] mod 4)+5

Types
In expressions we want to be able to use “arbitrary” data types.

t::= b

 | T(t1,…,tn)

Types
In expressions we want to be able to use “arbitrary” data types.

t::= b

 | T(t1,…,tn)

We also assume a set of type constructors T that we can use to
build more complex types, such as:

Bool list

We assume a collection of base types b including

Bool Int Nat String

Int*Bool Int*String -> Bool

Types
We also use types to guarantee that commands are well-formed.

while e do c

We require that e is of type Bool.

For example, in the commands

if e then c1 else c2

Types
We also use types to guarantee that commands are well-formed.

while e do c

We require that e is of type Bool.

For example, in the commands

if e then c1 else c2

We omit the details of the type system here but
you can find them in the notes by Gilles Barthe

Values
Values are atomic expressions whose semantics is self-evident
and which do not need a further analysis.

true

The following are not values:

For example, we have the following values

5 [1,2,3,4] “Hello”

not true x+5 [x,x+1] x[1]

Values
Values are atomic expressions whose semantics is self-evident
and which do not need a further analysis.

true

The following are not values:

For example, we have the following values

5

We could define a grammar for values, but we
prefer to leave this at the intuitive level for now.

[1,2,3,4] “Hello”

not true x+5 [x,x+1] x[1]

How can we give semantics to
expressions and commands?

Memories
We can formalize a memory as a total map m from variables to
values. m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.

Memories
We can formalize a memory as a total map m from variables to
values. m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.
We want to read the value associated to a particular variable:

We want to update the value associated to a particular variable:
m(x)

m[x←v]
This is defined as

m[x←v](y)=
v
m(y)

If x=y
Otherwise{

Semantics of Expressions
What is the meaning of the following expressions?

x+5 x mod k x[i] (x[i+1] mod 4)+5

Semantics of Expressions
What is the meaning of the following expressions?

We can give the semantics as a relation between expressions,
memories and values.

We will denote this relation as:

Exp * Mem -> Val

{e}m=v

x+5 x mod k x[i] (x[i+1] mod 4)+5

Semantics of Expressions
What is the meaning of the following expressions?

We can give the semantics as a relation between expressions,
memories and values.

We will denote this relation as:

Exp * Mem -> Val

{e}m=v

x+5 x mod k x[i] (x[i+1] mod 4)+5

This is commonly typeset

as: JeKm = v

Semantics of Expressions
This is defined on the structure of expressions:

{x}m = m(x)

{f(e1,…,en)}m = {f}({e1}m,…,{en}m)

where {f} is the semantics associated with the basic operation
we are considering.

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m
 = ({x}m[{i}m{+}{1}m] {mod} {y}m){+}{5}m

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m
 = ({x}m[{i}m{+}{1}m] {mod} {y}m){+}{5}m
 = ({x}m[1{+}1] {mod} 2){+}5

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m
 = ({x}m[{i}m{+}{1}m] {mod} {y}m){+}{5}m
 = ({x}m[1{+}1] {mod} 2){+}5
 = ({x}m[2] {mod} 2){+}5

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Semantics of Expressions
Suppose we have a memory

m=[i⟼1,x⟼[1,2,3],y⟼2]

{(x[i+1] mod y)+5}m
 = {(x[i+1] mod y)}m{+}{5}m
 = ({x[i+1]}m {mod} {y}m){+}{5}m
 = ({x}m[{i}m{+}{1}m] {mod} {y}m){+}{5}m
 = ({x}m[1{+}1] {mod} 2){+}5
 = ({x}m[2] {mod} 2){+}5
 = (2 {mod} 2){+}5 = 0 {+} 5 = 5

That {mod} is the modulo operation and {+} is addition, we can
derive the meaning of the following expression:

Operational vs Denotational Semantics

The style of semantics we are using is denotational, in the sense
that we describe the meaning of an expression by means of the
value it denotes.

A different approach, more operational in nature, would be to
describe the meaning of an expression by means of the value that
the expression evaluates to in an abstract machine.

Semantics of Commands
What is the meaning of the following command?

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

Exp * Mem -> Mem

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

Exp * Mem -> Mem

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

Would this work?

Semantics of Commands
What is the meaning of the following command?

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

We will denote this relation as:

Exp * Mem -> (Mem ∪ {⊥})

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

{c}m=⊥Or

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

We will denote this relation as:

Exp * Mem -> (Mem ∪ {⊥})

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset

as:

JcKm = m0{c}m=⊥Or

Semantics of Commands
This is defined on the structure of commands:

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{x:=e}m = m[x←{e}m]

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{x:=e}m = m[x←{e}m]

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

Semantics of While
What about while

Semantics of While
What about while

{while e do c}m = ???

Semantics of While
What about while

{while e do c}m = ???

We omit the semantics of while, you can find it in
the notes by Gilles Barthe.

Alternatively, you can look at these notes: 
https://groups.seas.harvard.edu/courses/cs152/2016sp/lectures/

lec06-denotational.pdf 
https://web.cecs.pdx.edu/~apt/cs578_2022/imp.pdf

Hoare Triples

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition

(a logical formula)

Postcondition

(a logical formula)

Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good
specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good
specification?

Precondition

Postcondition

✓

How do we determine the
validity of an Hoare triple?

Specification can also be
imprecise.

Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good
specification?

Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good
specification? ✓

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

✓

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

✗

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

✗
min = [z = − 1,x = 2] mout = [z = − 1,x = 0]

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗
min = [k = 0,n = 2,i = 0,r = 0]
mout = [k = 0,n = 2,i = 1,r = 2]

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓
This is good because there is no

memory that satisfies the precondition.

