
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 599: Formal Methods in
Security and Privacy 

Applying Real/Ideal Paradigm to Programming
Language-Based Security

Two Circa 2013 Security Projects at MIT Lincoln Laboratory

2

Evaluation of Information
Flow Control Programming
Languages

Formalization in EasyCrypt of
Security Proofs for
Cryptographic Protocols

• Information Flow Control (IFC)
- Restricts flow of data, preventing more-classified (lower-integrity) data

from influencing less-classified (higher-integrity) results — unless
necessary privileges are used

• Access Control (AC)
- Restricts data access to components holding necessary privileges,

without controlling what may happen to data once it is accessed
• Data Abstraction
- Maintain invariants and limit views of / access to data
- Can use to implement AC and IFC

Approaches to Secure Programming

3

• Surprisingly little work on specifying program security
- More specific than noninterference theorems

• State of the art: employ numerous program security annotations, as in
Jif

- Attempts to capture informal policy
- Tells an auditor where to focus — but not exactly what to look for

Defining Program Security

4

Zdancewic (2004):
“… we do not yet have the tools to easily describe desired

security policies. We do not understand the right high-level
abstractions for specifying information-flow policies.”

• This talk uses a case study involving the two-player board game
Battleship to illustrate how security definitions can be separated from
enforcement

• Precise definitions of security:
- Whole program security
- Security of one player against another — borrowing real/ideal paradigm

of theoretical cryptography
• Three Battleship implementations:
- One in Concurrent ML (CML) with trusted referee
- One in LIO/Haskell using IFC to avoid need for trusted referee
- One in CML using AC to avoid need for trusted referee

Battleship Case Study

5

Battleship Rules
Ship Placement

6

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Battleship Rules
Ship Placement

7

A B C D E F G H I J
A
B
C c c c c c
D
E
F
G
H
I
J

Carrier

Battleship Rules
Ship Placement

8

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G
H
I
J

Battleship

Battleship Rules
Ship Placement

9

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G s s s
H
I
J

Submarine

Battleship Rules
Ship Placement

10

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G s s s
H d
I d
J d

Destroyer

Battleship Rules
Ship Placement

11

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

Patrol
Boat

Battleship Rules
Shooting

12

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Battleship Rules
Shooting

13

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”

Battleship Rules
Shooting

14

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”

Battleship Rules
Shooting

15

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”

Battleship Rules
Shooting

16

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”

Battleship Rules
Shooting

17

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”

Battleship Rules
Shooting

18

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”

Battleship Rules
Shooting

19

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”

Battleship Rules
Shooting

20

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”

Battleship Rules
Shooting

21

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Skipping Ahead …

Battleship Rules
Shooting

22

A B C D E F G H I J
A
B b
C c C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”

Battleship Rules
Shooting

23

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”

Battleship Rules
Shooting

24

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Position Inference – Carrier

Battleship Rules
Shooting

25

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”

Battleship Rules
Shooting

26

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”

Battleship Rules
Shooting

27

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”

Battleship Rules
Shooting

28

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”

Battleship Rules
Shooting

29

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Destroyer

Battleship Rules
Shooting

30

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Submarine

Battleship Rules
Shooting

31

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ S S S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Program Architecture and Behavior

32

Referee

Player 1 Player 2

Server

Client 1 Client 2User 1 User 2

First Client to
connect to
Server gets to
shoot first

Referee holds
and updates
both Players’
boards

33

Whole Program Security

Referee

Player 1 Player 2

Server

• A referee is secure iff it is indistinguishable from a model referee, from
the players’ viewpoints

• Players are untrusted
• First CML implementation directly implements the model referee

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

34

Referee

Player 1 Player 2

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

35

Player
Interface 1

Player
Interface 2

Referee

Player 1 Player 2

Our normal definition of security applies to a split referee,
but we want also security against a malicious opponent PI

PIs will rely
on some
trusted
infrastructure

How do we
define security
against a
malicious PI?

Real Protocol

P1 P2

Theoretical Cryptography’s Real/Ideal Paradigm

36

Ideal Functionality

Adversary

S(P2)

Adversary

boolean judgment

security: real and ideal games have close to same
probability of returning true, for all adversaries

simulator

honest
party
inputs/
ouputs

malicious
party
inputs/
outputs

leakage

honest
party
inputs/
ouputs

simulated I/O

Referee

G M

Security Against Malicious PI (Tentative)

37

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: as scheduling is possibilistic, not
probabilistic, what do we want for security?

Referee

G M

Security Against Malicious PI (Tentative)

38

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: if there is an execution on one side
resulting in b, then there is an execution on the
other side also resulting in b

Referee

G M

Security Against Malicious PI (Tentative)

39

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: unfortunately, if M doesn’t follow the
protocol, the error behavior (termination) in the
two worlds can be different

Referee

G M

Security Against Malicious PI

40

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots, errors

order,
control,
exfiltration

security: instead, we propagate errors, and
model referee only yields a non-erroneous
result if simulator player says OK

OK or
error

order, board,
shots/result,
opponents’
shots, errors

Ambiguity Example: Patrol Boat

41

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

GD
HC
GC

Ambiguity Example: Patrol Boat

42

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p p
H s d
I s d
J s d

GD
HC
GC

• LIO is a library for Concurrent Haskell with dynamic encorcement of
information flow control

• Information flow labels have both secrecy and integrety components
• Provides mutable variables, which can be shared between threads, and

used for communication

LIO

43

• PIs exchange — using trusted code — labeled boards, made of labeled cells:

data LSR = -- labeled shot result
 Miss -- a miss
 | Hit -- hit an unspecified ship
 | Sank Ship -- sank a specified ship

data LC = -- labeled cell
 LC
 (DCLabeled
 (Principal, -- originating player interface
 Principal, -- receiving player interface
 Pos, -- position of cell
 DC LSR -- DC action for shooting cell
))

LIO Battleship

44

LIO Example

45

PI 1 PI 2

Patrol Boat
MVar

LIO Example

46

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

LIO Example

47

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

LIO Example

48

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

LIO Example

49

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

LIO Example

50

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

LIO Example

51

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

LIO Example

52

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

1 : (1, 2, GC, pb) : 1 ∧ 2

LIO Example

53

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

: (1, 2, GC, pb) : 1 ∧ 2

LIO Example

54

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

: (1, 2, GC, pb) : 1 ∧ 2

LIO Example

55

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

: (1, 2, GC, pb) : 1 ∧ 2

: (1, 2, GC, pb) : 1 ∧ 2

LIO Example

56

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Yields Hit

: (1, 2, GC, pb) : 1 ∧ 2

: (1, 2, GC, pb) : 1 ∧ 2Yields Sank PatrolBoat

LIO Example

57

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2

: (1, 2, HC, pb) : 1 ∧ 2Still Yields Hit

: (1, 2, GC, pb) : 1 ∧ 2

: (1, 2, GC, pb) : 1 ∧ 2Yields Sank PatrolBoat

• Concurrent ML is a library for Standard ML (we use the Standard ML of
New Jersey implementation)

• It has no special security features
• But the combination of its abstract types (provided by its rich module

system) and mutable references can be used to program access control

Concurrent ML

58

• PIs exchange — using trusted code — immutable, abstract locked
boards, whose cells can be unlocked using unforgeable keys held by
originating player:

type key (* key *)
type ck (* counted key *)
val labelKey : key * int -> ck
type lb (* locked board *)
datatype lsr =
 Invalid (* invalid counted key *)
 | Repeat (* illegal repetition *)
 | Miss (* missed a ship *)
 | Hit (* hit an unspecified ship *)
 | Sank of ship (* sank the given ship *)
val lockedShoot : lb * pos * ck -> lb * lsr

CML + AC Battleship

59

CML + AC Example

60

PI 1 PI 2

lb1

CML + AC Example

61

PI 1 PI 2

lb1 HC

CML + AC Example

62

PI 1 PI 2

lb1HC HC

CML + AC Example

63

PI 1 PI 2

lb1HC (keyHC, 1)HC

CML + AC Example

64

PI 1 PI 2

lb1HC (keyHC, 1)

lb2Hit

HC

CML + AC Example

65

PI 1 PI 2

lb1HC (keyHC, 1)

lb2Hit

HC

GC

CML + AC Example

66

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC

HC

GC

CML + AC Example

67

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC (keyGC, 2)

HC

GC

CML + AC Example

68

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC (keyGC, 2)

lb3Sank PatrolBoat

A counted key is only applicable to a single
locked board, and can’t be deconstructed

HC

GC

Referee

G M

Construction of Simulator Player for CML + AC

69

Adversary

S(M)

Adversary

boolean judgment

simulator
player

Model Referee

M

Referee

G M

Construction of Simulator Player for CML + AC

70

M

S supervisor

supervisor interacts
with M using
reimplementation
of locked board
abstract type

Model Referee

M

Referee

G M

CML + AC: M Doesn’t Learn More Than it Should

71

M

S

Model Referee

CML + AC Simulator Example

72

M

lb1

Supervisor

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

73

M

lb1

Supervisor

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

74

M

lb1 HC

Supervisor

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

75

M

lb1 HC

Supervisor

HC

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

76

M

lb1 HC

Supervisor

HC

HC

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

77

M

lb1 HC

Supervisor

HC

Hit

HC

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

78

M

lb1 HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

79

M

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

80

M

lb2Hit

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

81

M

lb2Hit

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

82

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

83

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

84

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

HC

GC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

85

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

86

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

CML + AC Simulator Example

87

M

lb2Hit (keyGC, 2)

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

CML + AC Simulator Example

88

M

lb2Hit (keyGC, 2)

lb3Sank PatrolBoat

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

M

Referee

G M

CML + AC: M Commits to a Board

89

M

S supervisor

abstract type has
two kinds of locked
boards: one for
shooting and
one for extraction;
S extracts from the
locked board M
provides its source
board, to give to G

Model Referee

Q: What is the potential pitfall
with this approach?

M

Referee

G M

CML + AC: M Commits to a Board

90

M

S supervisor

abstract type has
two kinds of locked
boards: one for
shooting and
one for extraction;
S extracts from the
locked board M
provides its source
board, to give to G

Model Referee

A: A replay attack in which M gives
G back its own locked board must be
prevented

• We used theoretical cryptography’s real/ideal paradigm to define when
one program interface is secure against a possibly malicious program
interface

- This separates the definition of security from its enforcement
• We gave two secure implementations, using our definition to guide our

design and informally audit it
- Using LIO and information flow control
- Using Concurrent ML + access control

• We found numerous security bugs during our audits

Conclusions

91

• How do we know that a real/ideal paradigm definition says what we
want?

- Designing ideal functionalities is something of an art, and tools for
making their design easier would be useful

- Tools for helping the designer know they got the correct definition
would also be helpful

Research Questions

92

Referee

G M

How Do We Know This Is What We Want?

93

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

suppose we
forgot to
include
opponent’s
shots

suppose we
forgot to
include
opponent’s
shots

M could learn more than it should in real world, and
S(M) could simulate this by making different shots

• What are alternatives to the real/ideal paradigm for defining the security
of one component against another?

• When is it useful to split a trusted component into two mutually
distrustful ones?

- For Battleship, are there solutions relying on smaller trusted computing
bases?

• When is information flow control necessary to achieve security?
- Why did Battleship not require information flow control?

Research Questions

94

• We want to formalize our results using a proof assistant
• It must be possible to formalize and reason about a programming

language with
- A rich module system, supporting abstract types
- Concurrency
- Mutable references

• We need to be able to reason about thread scheduling
• We are currently investigating whether the Coq development of the

concurrent separation logic Iris would be a good vehicle for this work

Future Work

95

