CS 599: Formal Methods in

Security and Privacy

Applying Real/ldeal Paradigm to Programming
Language-Based Security

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

Two Circa 2013 Security Projects at MIT Lincoln Laboratory

RESEARCH-ARTICLE y in @ f

You Sank My Battleship!: A Case Study in Secure : :
b i : Evaluation of Information

, , Flow Control Programming
Authors: 0 Alley Stoughton, Andrew Johnson, Samuel Beller, Karishma Chadha, Dennis Chen,
Kenneth Foner, Michael Zhivich Authors Info & Claims La n g u ag eS

PLAS'14: Proceedings of the Ninth Workshop on Programming Languages and Analysis for Security ¢ July 2014 Pages 2-
14 o https://doi.org/10.1145/2637113.2637115

Published: 28 July 2014 Publication History Home / Proceedings / CSF/ CSF 2017

2017 IEEE 30th Computer Security Foundations Symposium (CSF)

Mechanizing the Proof of Adaptive, Information-

: : : Theoretic Security of Cryptographic Protocols in the
Formalization in EasyCrypt of Random Oracle Model

Security Proofs for
Cryptographic Protocols

Authors

Alley Stoughton
Mayank Varia

Approaches to Secure Programming

* Information Flow Control (IFC)

- Restricts flow of data, preventing more-classified (lower-integrity) data
from influencing less-classified (higher-integrity) results — unless
necessary privileges are used

» Access Control (AC)
- Restricts data access to components holding necessary privileges,
without controlling what may happen to data once it is accessed
» Data Abstraction
- Maintain invariants and limit views of / access to data
- Can use to implement AC and IFC

Defining Program Security

» Surprisingly little work on specifying program security
- More specific than noninterference theorems

» State of the art: employ numerous program security annotations, as in
Jif
- Attempts to capture informal policy
- Tells an auditor where to focus — but not exactly what to look for

g Zdancewic (2004): h

“... we do not yet have the tools to easily describe desired
security policies. We do not understand the right high-level
abstractions for specifying information-flow policies.”

o /

Battleship Case Study

* This talk uses a case study involving the two-player board game
Battleship to illustrate how security definitions can be separated from
enforcement

* Precise definitions of security:

- Whole program security
- Security of one player against another — borrowing real/ideal paradigm
of theoretical cryptography

* Three Battleship implementations:

- One in Concurrent ML (CML) with trusted referee
- One In LIO/Haskell using IFC to avoid need for trusted referee
- One in CML using AC to avoid need for trusted referee

Battleship Rules
Ship Placement

B|IC DIEF G|H

C| = |T|IOIMMOIO|W|>

Battleship Rules
Ship Placement

AIB/CIDE|F|G|H

Carrier

C| = |T|IOIMMOIO|W|>

Battleship Rules
Ship Placement

C

D

G

O | O |0 | O

C| = |T|IOIMMOIO|W|>

Battleship

Battleship Rules
Ship Placement

C

D

G

O | O |0 | O

C| = |T|IOIMMOIO|W|>

Submarine

Battleship Rules
Ship Placement

C

D

G

O | O |0 | O

C| = |T|IOIMMOIO|W|>

Q| Q Q| ®»

Destroyer

10

Battleship Rules
Ship Placement

Patrol
Boat

C|D F |G
A
B b
C cC|C b
D b
E b
F
G P S|S
H P d
[d
J d

11

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

C|D F |G A C G
A A
B b B
C cC|C b C
D b D
E b E
F F
G P S|s G
H P d H
| d |
J d J

12

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

C|D FIGIH|I|J

A

B b
C c|cC b
D b
E b
F

G p S |s
H p d
I d
J d

Shoot CG —

A

C

G

C|l=|T(IAIMIMO|IO|T| >

13

Battleship Rules

Shooting
Player’s Board Opponent’s Shooting Record
C/\DIE|F|G|H|I|J A|B|(C|D|E|F|[G|H|I]J
A A
B b B
C c|c|c|b|X C *
D b D
E b E
F F
G P s|s|s G
H P d H
| d |
J d J

Shoot CG - “Miss”

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot CB -

C|D FIGIH|I|J A C G
A A
B b B
C cC|C b | % C *
D b D
E b E
F F
G P S|S G
H P d H
| d |
J d J

15

Battleship Rules

Shooting
Player’s Board Opponent’s Shooting Record
C/\DIE|F|G|H|I|J A|B|(C|D|E|F|[G|H|I]J
A A
B b B
C c|c|c|b|X C o *
D b D
E b E
F F
G P s|s|s G
H P d H
| d |
J d J

Shoot CB - “Hit”

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot DB -

C|D FIGIH|I|J A C G
A A
B b B
C cC|C b | % C *
D b D
E b E
F F
G P S|S G
H P d H
| d |
J d J

17

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B(C|D F|G A|B|C G
A A
B b B
C Clic|c b | % C + *
D * b D *
E b E
F F
G P S|S G
H P d H
| d |
J d J

Shoot DB - “Miss”

18

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B(C|D FIGIH|I|J

A

B b
C Clic|c b | X%
D * b
E b
F

G p S |s
H p d
I d
J d

Shoot CC -

A|B|C G
+ *
*

C|l=|T(IAIMIMO|IO|T| >

19

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B|C|D F|G A|B|C G
A A
B b B
C C(C|c b | % C + | + *
D * b D *
E b E
F F
G P S|s G
H P d H
| d |
J d J

Shoot CC - “Hit”

20

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B|C|D F|G A|B|C G
A A
B b B
C C(C|c b | % C + | + *
D * b D *
E b E
F F
G P S|s G
H P d H
| d |
J d J

Skipping Ahead ...

21

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot CA —

B(C|D F| G A|B|C|D G
A A
B b B
C c(c|cC b | % C + |+ |+ *
D * * b D * *
E b | % E *
F F
G *x | p S|s G *
H p D H +
| * D | * =
J * *x | d J *

22

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot CA - “Sank Carrier”

B(C|D F |G A|lB|C|D G
A A
B b B
C C(C|C b | * C|(C|*|+|+ *
D * * b D * *
E b [% E e
F F
G x| p S|s G *
H p D - b
| * D | * o
J * x| d J *

23

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B(C|D F | G AIB|(C|D G
A A
B b B
C cC(C|C b | * C(C|%|* |+ *
D * * b D * *
E b [% E e
F F
G x| p S|s G *
H p D - b
| * D | * o
J * x| d J *

Position Inference — Carrier

24

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot GG -

B|C|D F|G A C|D G
A A
B b B
C clic|C b | % c|C cC|C *
D * * b D *
E b | % E *
F F
G *x [p S|s G
H p D H +
| * D | * =
J * * | d J *

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot GG - “Sank Submarine”

B|C|D F |G A C|D G
A A
B b B
C C|C|C b | X Cl|C ClC *
D * * b D *
E b | % E e
F F
G x| p S |S G S
H p D & +
| * D | * 3
J * * | d J *

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot JG -

B|C|D F|G A C|D G
A A
B b B
C clic|C b | % c|C cC|C *
D * * b D *
E b | % E *
F F
G *x [p S (S G S
H p D H +
| * D | * =
J * * | d J *

27

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Shoot JG - “Sank Destroyer”

B(C|D F | G A C|D G
A A
B b B
C C(C|C b | % C|C C|C *
D * * b D *
E b [% E e
F F
G x| p S|S G S
H p D - b
| * D | * o
J * x| D J * D

28

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Position Inference — Destroyer

B|C|D F|G A C|D G
A A
B b B
C cl(c|cC b | % c|c c|cC *
D| |[*x| [% b D *
E b | % E *
F F
G| |*x|p S|s G S
H p D - b
| * D | * i
J * * | D J * D

29

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

Position Inference — Submarine

B|C|(D F|G A C|D G
A A
B b B
C C|C|C b | X% cl|cC ClC *
D * * b D *
E b | % E e
F F
G * | p S|S G S
H p D H D
| * D | * D
J * | D J * D

30

Battleship Rules
Shooting

Player’s Board Opponent’s Shooting Record

B|C|D F |G A C|(D G
A A
B b B
C cC(C|C b [X C|C C|(C *
D * * b D *
E b [% E *
F F
G *x [p S (S G S
H P D H D
| * D | * D
J * *x | D J * D

31

Program Architecture and Behavior

4)
[User 1 J(—)[Client 1 } Client 2 (—)[User 2 J
g J
Player 1 Player 2
Referee holds First Client to

and updates connect to
both Players’ Server gets to

boards shoot first
Referee

Whole Program Security

* Areferee is secure iff it is indistinguishable from a model referee, from
the players’ viewpoints

* Players are untrusted
* First CML implementation directly implements the model referee

Player 1 Player 2

33

Splitting Referee into Mutually
Distrustful Player Interfaces (Pls)

Player 1 Player 2

4 N

Referee

Splitting Referee into Mutually
Distrustful Player Interfaces (Pls)

Pls will rely
on some
trusted
infrastructure

4) (-)

Player 1

- J _ J

4) 4)

Player ¢ 3 Player

Interface 1 Interface 2
_ J _ J

Referee

_ /

How do we

define security

against a
malicious PI?

/

o

Our normal definition of security applies to a split referee,
but we want also security against a malicious opponent Pl

\

J

35

Theoretical Cryptography’s Real/ldeal Paradigm

honest
party

inputs/
ouputs

T

Adversary

-

Real Protocol

boolean judgment T
Adversary

I simulated I/O
malicious honest
party art |
inputs/ i%pu)’:s/ S(P2) simulator
outputs ouputs

I leakage
\

(Ideal Functionality)

security. real and ideal games have close to same
probability of returning true, for all adversaries

36

Security Against Malicious Pl (Tentative)

T boolean judgment T
Adversary Adversary

order, board, order I
shots/resul,t, control. S(M) simulator
opponents exfiltration player
shots

/ r N 4 A \ I

G (e——| WM (Model Referee)
_ J _ J
Referee security: as scheduling is possibilistic, not

- / probabilistic, what do we want for security?

37

Security Against Malicious Pl (Tentative)

T boolean judgment T
Adversary Adversary

order, board, order I
shots/resul,t, control, S(M) simulator
opponents exfiltration player
shots

/ r N 4 A \ I

G (e——| WM (Model Referee)
_ J _ J
_ Referee Y security: if there is an execution on one side
resulting in b, then there is an execution on the

other side also resulting in b

38

Security Against Malicious Pl (Tentative)

T boolean judgment T
Adversary Adversary

order, board, order I
shots/resul,t, control, S(M) simulator
opponents exfiltration player
shots

/ r N 4 A \ I

G (e——| WM (Model Referee)
_ J _ J
_ Referee Y security: unfortunately, if M doesn’t follow the
protocol, the error behavior (termination) in the

two worlds can be different

39

Security Against Malicious PI

T boolean judgment T
Adversary Adversary
order, board, order order, board, I
shots/result, Contrc,)l shots/result, simulator
opponents’ exfiltration opponents’ S(M) player
shots, errors shots, errors
OK or
s Y error
4) 4)
G (e——| WM (Model Referee)
_ J _ J
\ Referee y security: instead, we propagate errors, and
model referee only yields a non-erroneous

result if simulator player says OK

40

Ambiguity Example: Patrol Boat

O | O |0 | O

C| = |T|IOIMMOIO|W|>

GD
HC

41

Ambiguity Example: Patrol Boat

O | O |0 | O

C| = |T|IOIMMOIO|W|>

GD
HC

42

LIO

* LIO is a library for Concurrent Haskell with dynamic encorcement of
information flow control

* Information flow labels have both secrecy and integrety components

 Provides mutable variables, which can be shared between threads, and
used for communication

43

LIO Battleship

* Pls exchange — using trusted code — labeled boards, made of labeled cells:

data LSR = -- labeled shot result
Miss -- d MLSS
| Hit -- h1it an unspecified ship
| Sank Ship -- sank a specified ship
data LC = -- labeled cell
LC
(DCLabeled
(Principal, -- originating player 1interface
Principal, -- receiving player interface
PoS, -- position of cell
DC LSR -- DC action for shooting cell

)

LIO Example

Pl 1

Patrol Boat
MVar

Pl 2

45

LIO Example

Pl 1

Patrol Boat
MVar

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ 2]

46

LIO Example

Pl 1

{1:(1,2,HC,pb):1/\ 2]

Patrol Boat
MVar

Pl 2

[1:(1,2,GC,pb):1/\ zJ

[1:(1,2,HC,pb):1/\ 2]

47

LIO Example

Pl 1

[: (1,2, HC, pb): 1 A 2]

Patrol Boat
MVar

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ ZJ

48

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2]

Patrol Boat

MVar [HC

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ ZJ

49

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2]

Patrol Boat

MVar [HC

Pl 2

[1:(1,2,GC,pb):1/\ 2}

[1:(1,2,HC,pb):1/\ 2]

[: (1,2, HC, pb) : 1 A 2]

50

LIO Example

Pl 1

[. (1,2, HC, pb) : 1 A 2]

Yields Hit

Patrol Boat

MVar [HC

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ 2]

{ : (1,2, HC,pb): 1 A 2]

51

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2]

[1:(1,2,GC,pb):1/\ 2]

Yields Hit

Patrol Boat

MVar [HC

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ 2]

[: (1,2, HC, pb) : 1 A 2]

52

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2 J

[: (1,2, GC, pb): 1 A 2]

Yields Hit

Patrol Boat

MVar [HC

Pl 2

[1:(1,2,GC,pb):1/\ ZJ

[1:(1,2,HC,pb):1/\ 2]

[(1,2, HC, pb) : 1 A 2]

53

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2]

[:(1,2,GC,pb):1 A 2 J

Yields Hit

Pl 2

[1:(1,2,GC,pb):1/\ 2]

[1:(1,2,HC,pb):1/\ 2]

[: (1,2, HC, pb) : 1 A 2]

Patrol Boat
MVar [GC, HC]

54

LIO Example

Pl 1

[: (1,2, HC, pb) : 1 A 2]

[:(1,2,GC,pb):1 A 2 J

Yields Hit

Pl 2

1:(1,2,GC,pb):1 A 2

1:(1,2,HC,pb): 1 A 2

: (1,2, HC, pb) : 1 A 2

|
|
|
|

:(1,2,GC,pb):1 A 2

]
]
]
]

Patrol Boat
MVar [GC, HC]

55

LIO Example

Pl 1 Pl 2

[: (1,2, HC, pb) : 1 A 2] 1:(1,2,GC,pb): 1 A 2

Yields Hit (1,2, HC, pb) : 1 A 2

Yields Sank PatrolBoat :(1,2,GC,pb):1 A 2

|]
Cazcom Az) (tame i nz)
|]
|]

Patrol Boat
MVar [GC, HC]

56

LIO Example

Pl 1 Pl 2

[: (1,2, HC, pb) : 1 A 2] 1:(1,2,GC,pb):1 A 2

Still Yields Hit (1,2, HC, pb) : 1 A 2

Yields Sank PatrolBoat :(1,2,GC,pb):1 A 2

|]
Cazecmiinz (oA 2]
|]
|]

Patrol Boat
MVar [GC, HC]

S7

Concurrent ML

» Concurrent ML is a library for Standard ML (we use the Standard ML of
New Jersey implementation)

» [t has no special security features

» But the combination of its abstract types (provided by its rich module
system) and mutable references can be used to program access control

58

CML + AC Battleship

* Pls exchange — using trusted code — immutable, abstract locked
boards, whose cells can be unlocked using unforgeable keys held by
originating player:

type key (* key *)

type ck (* counted key *)

val labelKey : key * 1int -> ck
type b (* locked board *)

datatype lsr =

Invalid (* 1nvalid counted key *)
Repeat (* 1llegal repetition *)

Miss (* missed a ship *)

Hit (* hit an unspecified ship *)
Sank of ship (* sank the given ship *)

val lockedShoot : lb * pos * ck -> lb * lsr

CML + AC Example

Pl 1

Pl 2

(o

60

CML + AC Example

Pl 1

Pl 2

oy

61

CML + AC Example

Pl 1

Pl 2

oy

62

CML + AC Example

Pl 1

Pl 2

B

63

CML + AC Example

Pl 1

Pl 2

B
Hit [b, J

64

CML + AC Example

Pl 1

Pl 2

) @8 (v
Hit [b, J -

65

CML + AC Example

Pl 1

Pl 2

{ Ib,] - {(keyHC,1)]
Hit { Ib, J -

66

CML + AC Example

Pl 1

Pl 2

o) @@ (o
Hit { Ib, J - [(kech, 2)}

67

CML + AC Example

Pl 1 Pl 2

B
Hit [Ib, J - [(keyGC, 2)]

Sank PatrolBoat [Ib; J

- p
A counted key is only applicable to a single

locked board, and can’t be deconstructed
_ Y,

Construction of Simulator Player for CML + AC

T boolean judgment T
Adversary Adversary
S(M) simulator
player
/f R 4 \\ I
G (e——| WM (Model Referee)
_ J _ J
Referee

" /

69

Construction of Simulator Player for CML + AC

Referee

_

/

supervisor interacts
with M using
reimplementation
of locked board
abstract type

1
|
|

< Model Referee)

supervisor

70

CML + AC: M Doesn’t Learn More Than it Should

G |e—m™m

Referee

_

/

r 2
M

N I y

r 2
S

N y

< Model Referee)

71

CML + AC Simulator Example

/ S(m)
Supervisor M
Model

Referee [b, J

CML + AC Simulator Example

/ S(m)
Supervisor M
Model

Referee [b, J

CML + AC Simulator Example

Model
Referee

/ S(M)
Supervisor

M

~)

~

74

CML + AC Simulator Example

Model
Referee

/ S(M)
Supervisor

e

M

~)

~

@

) el

]/

75

CML + AC Simulator Example

Model
Referee

/ S(m)
Supervisor

)

76

CML + AC Simulator Example

Model
Referee

/ S(m)
Supervisor

Hit

)

77

CML + AC Simulator Example

Model
Referee

/ S(m)
Supervisor

Hit

.

)

\]

) @& 1/

/8

CML + AC Simulator Example

Model
Referee

/ S(m)
Supervisor

Hit

.

(o) @8 (v

\]

) @& 1/

79

CML + AC Simulator Example

Model
Referee

/Supervisor

Hit

S(M)

Hit

\]

.

|

Ib; J - [(kGYHcs 1)]

|

™

) @& 1/

80

CML + AC Simulator Example

Model

Referee

?

/Supervisor

Hit

S(M)

Hit

\]

.

|

Ib; J - [(kGYHcs 1)]

|

™

) @& 1/

81

CML + AC Simulator Example

Model

Referee

?

/Supervisor

Hit

S(M)

Hit

\]

|

o

|

™

M

N

[(keymc, 1)]

) @& 1/

82

CML + AC Simulator Example

Model
Referee

?

/Supervisor

Hit

S(M) \

(o) @8 (v
Hit [b,] -

@

) @& 1/

83

CML + AC Simulator Example

Model
Referee

/Supervisor

Hit

S(M) \

(o) @8 (v
Hit [b,] -

@

) @& 1/

84

CML + AC Simulator Example

Model
Referee

/Supervisor

Hit

Sank PatrolBoat

S(M) \

(o) @8 (v
Hit [b,] -

@

) @& 1/

85

CML + AC Simulator Example

Model
Referee

/Supervisor

Hit

Sank PatrolBoat

S(M)

Hit

|

™

|

™

N

M
- [(keync, 1)]
o

K e e /

86

CML + AC Simulator Example

£ o N
Supervisor
Model

M
Referee - [b,] - [(keyHC,1)]
[ec]

Hit Hit [Ib,] [(keyGC, 2)]

Sank PatrolBoat

K e e /

CML + AC Simulator Example

Model
Referee

/Supervisor

Hit

Sank PatrolBoat

S(M)

Sank PatrolBoat [b,

]

: \

K B8 (sorvrovono | (B | /

38

CML + AC: M Commits to a Board

Referee

_

/

abstract type has
two kinds of locked
boards: one for
shooting and

one for extraction;
S extracts from the
locked board M
provides its source
board, to give to G

|
|
|

(Model Referee)

Q: What is the potential pitfall
with this approach?

supervisor

89

CML + AC: M Commits to a Board

abstract type has I

two kinds of locked ‘

boards: one for M

shooting and N I /
S

one for extraction;

S extracts from the 4 ~
locked board M supervisor
provides its source \ y
board, to give to G

/ 4 ™ 4 ™ \

G |«———| M (Model Referee)
_ J _ J
Referee
N / A: Areplay attack in which M gives

G back its own locked board must be

prevented
90

Conclusions

* WWe used theoretical cryptography's real/ideal paradigm to define when
one program interface is secure against a possibly malicious program
interface

- This separates the definition of security from its enforcement

* We gave two secure implementations, using our definition to guide our
design and informally audit it

- Using LIO and information flow control
- Using Concurrent ML + access control

* We found numerous security bugs during our audits

91

Research Questions

 How do we know that a real/ideal paradigm definition says what we
want?

- Designing ideal functionalities is something of an art, and tools for
making their design easier would be useful

- Tools for helping the designer know they got the correct definition
would also be helpful

92

How Do We Know This Is What We Want?

T

Adversary

suppose we

forgot to
include

opponent’'s

shots

[

Referee

_

/

boolean judgment T
Adversary
suppose we I
forgot to -
nclude s | e
opponent’s
shots I

(Model Referee)

M could learn more than it should in real world, and
S(M) could simulate this by making different shots

93

Research Questions

* \What are alternatives to the real/ideal paradigm for defining the security
of one component against another?

* When is it useful to split a trusted component into two mutually
distrustful ones?

- For Battleship, are there solutions relying on smaller trusted computing
bases?

* When is information flow control necessary to achieve security?

- Why did Battleship not require information flow control?

04

Future Work

* We want to formalize our results using a proof assistant

* [t must be possible to formalize and reason about a programming
language with

- Arich module system, supporting abstract types
- Concurrency
- Mutable references
* We need to be able to reason about thread scheduling

* We are currently investigating whether the Coq development of the
concurrent separation logic Iris would be a good vehicle for this work

95

