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Two Circa 2013 Security Projects at MIT Lincoln Laboratory
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Evaluation of Information 
Flow Control Programming 
Languages

Formalization in EasyCrypt of 
Security Proofs for 
Cryptographic Protocols



• Information Flow Control (IFC) 
- Restricts flow of data, preventing more-classified (lower-integrity) data 

from influencing less-classified (higher-integrity) results — unless 
necessary privileges are used 

• Access Control (AC) 
- Restricts data access to components holding necessary privileges, 

without controlling what may happen to data once it is accessed 
• Data Abstraction 
- Maintain invariants and limit views of / access to data 
- Can use to implement AC and IFC

Approaches to Secure Programming
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• Surprisingly little work on specifying program security 
- More specific than noninterference theorems 

• State of the art: employ numerous program security annotations, as in 
Jif 

- Attempts to capture informal policy 
- Tells an auditor where to focus — but not exactly what to look for

Defining Program Security
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Zdancewic (2004): 
“… we do not yet have the tools to easily describe desired 

security policies.  We do not understand the right high-level 
abstractions for specifying information-flow policies.”



• This talk uses a case study involving the two-player board game 
Battleship to illustrate how security definitions can be separated from 
enforcement 

• Precise definitions of security: 
- Whole program security 
- Security of one player against another — borrowing real/ideal paradigm 

of theoretical cryptography 
• Three Battleship implementations: 
- One in Concurrent ML (CML) with trusted referee 
- One in LIO/Haskell using IFC to avoid need for trusted referee 
- One in CML using AC to avoid need for trusted referee

Battleship Case Study
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Battleship Rules 
Ship Placement
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Battleship Rules 
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Battleship Rules 
Ship Placement
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Battleship Rules 
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Battleship Rules 
Shooting

12

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record



Battleship Rules 
Shooting

13

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”



Battleship Rules 
Shooting

14

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”



Battleship Rules 
Shooting

15

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”



Battleship Rules 
Shooting

16

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”



Battleship Rules 
Shooting

17

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”



Battleship Rules 
Shooting

18

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”



Battleship Rules 
Shooting

19

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”



Battleship Rules 
Shooting

20

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”



Battleship Rules 
Shooting

21

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Skipping Ahead …



Battleship Rules 
Shooting

22

A B C D E F G H I J
A
B b
C c C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”



Battleship Rules 
Shooting

23

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”



Battleship Rules 
Shooting

24

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Position Inference – Carrier



Battleship Rules 
Shooting

25

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”



Battleship Rules 
Shooting

26

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”



Battleship Rules 
Shooting

27

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”



Battleship Rules 
Shooting

28

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”



Battleship Rules 
Shooting

29

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Destroyer



Battleship Rules 
Shooting

30

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Submarine



Battleship Rules 
Shooting

31

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ S S S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record



Program Architecture and Behavior
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Referee

Player 1 Player 2

Server

Client 1 Client 2User 1 User 2

First Client to 
connect to 
Server gets to 
shoot first

Referee holds 
and updates 
both Players’ 
boards
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Whole Program Security

Referee

Player 1 Player 2

Server

• A referee is secure iff it is indistinguishable from a model referee, from 
the players’ viewpoints 

• Players are untrusted 
• First CML implementation directly implements the model referee



Splitting Referee into Mutually 
Distrustful Player Interfaces (PIs)
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Splitting Referee into Mutually 
Distrustful Player Interfaces (PIs)
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Player 
Interface 1

Player 
Interface 2

Referee

Player 1 Player 2

Our normal definition of security applies to a split referee, 
but we want also security against a malicious opponent PI

PIs will rely 
on some 
trusted 
infrastructure

How do we 
define security 
against a 
malicious PI?



Real Protocol

P1 P2

Theoretical Cryptography’s Real/Ideal Paradigm
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Ideal Functionality

Adversary

S(P2)

Adversary

boolean judgment

security: real and ideal games have close to same 
probability of returning true, for all adversaries

simulator

honest 
party 
inputs/ 
ouputs

malicious 
party 
inputs/ 
outputs

leakage

honest 
party 
inputs/ 
ouputs

simulated I/O



Referee

G M

Security Against Malicious PI (Tentative)
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots

order, 
control, 
exfiltration

security: as scheduling is possibilistic, not 
probabilistic, what do we want for security?



Referee

G M

Security Against Malicious PI (Tentative)
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Model Referee
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S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots

order, 
control, 
exfiltration

security: if there is an execution on one side 
resulting in b, then there is an execution on the 
other side also resulting in b



Referee

G M

Security Against Malicious PI (Tentative)

39

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots

order, 
control, 
exfiltration

security: unfortunately, if M doesn’t follow the 
protocol, the error behavior (termination) in the 
two worlds can be different



Referee

G M

Security Against Malicious PI
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots, errors

order, 
control, 
exfiltration

security: instead, we propagate errors, and 
model referee only yields a non-erroneous 
result if simulator player says OK

OK or 
error

order, board, 
shots/result, 
opponents’ 
shots, errors



Ambiguity Example: Patrol Boat
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Ambiguity Example: Patrol Boat
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• LIO is a library for Concurrent Haskell with dynamic encorcement of 
information flow control 

• Information flow labels have both secrecy and integrety components 
• Provides mutable variables, which can be shared between threads, and 

used for communication

LIO
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• PIs exchange — using trusted code — labeled boards, made of labeled cells: 

data LSR =  -- labeled shot result
       Miss       -- a miss
     | Hit        -- hit an unspecified ship
     | Sank Ship  -- sank a specified ship

data LC =  -- labeled cell
  LC
  (DCLabeled
   (Principal,  -- originating player interface
    Principal,  -- receiving player interface
    Pos,        -- position of cell
    DC LSR      -- DC action for shooting cell
   ))

LIO Battleship
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LIO Example
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LIO Example
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PI 1 PI 2

Patrol Boat 
MVar

1 : (1, 2, GC, pb) : 1 ∧ 2

1 : (1, 2, HC, pb) : 1 ∧ 2



LIO Example
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1 : (1, 2, HC, pb) : 1 ∧ 2
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LIO Example
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LIO Example
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LIO Example
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: (1, 2, HC, pb) : 1 ∧ 2Yields Hit
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LIO Example
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LIO Example
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: (1, 2, GC, pb) : 1 ∧ 2Yields Sank PatrolBoat



• Concurrent ML is a library for Standard ML (we use the Standard ML of 
New Jersey implementation) 

• It has no special security features 
• But the combination of its abstract types (provided by its rich module 

system) and mutable references can be used to program access control

Concurrent ML
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• PIs exchange — using trusted code — immutable, abstract locked 
boards, whose cells can be unlocked using unforgeable keys held by 
originating player: 

type key (* key *)
type ck  (* counted key *)
val labelKey : key * int -> ck
type lb  (* locked board *)
datatype lsr =
           Invalid       (* invalid counted key *)
         | Repeat        (* illegal repetition *)
         | Miss          (* missed a ship *)
         | Hit           (* hit an unspecified ship *)
         | Sank of ship  (* sank the given ship *)
val lockedShoot : lb * pos * ck -> lb * lsr

CML + AC Battleship
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CML + AC Example
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CML + AC Example
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CML + AC Example
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CML + AC Example
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CML + AC Example
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CML + AC Example

66

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC

HC

GC



CML + AC Example
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CML + AC Example
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lb3Sank PatrolBoat

A counted key is only applicable to a single 
locked board, and can’t be deconstructed
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Referee

G M

Construction of Simulator Player for CML + AC
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Model Referee



M

Referee

G M

Construction of Simulator Player for CML + AC
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M

S supervisor

supervisor interacts 
with M using 
reimplementation 
of locked board 
abstract type

Model Referee
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Referee

G M

CML + AC: M Doesn’t Learn More Than it Should
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CML + AC Simulator Example
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CML + AC Simulator Example

73

M

lb1

Supervisor

S(M)

GC HC

?

Model 
Referee



CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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• We used theoretical cryptography’s real/ideal paradigm to define when 
one program interface is secure against a possibly malicious program 
interface 

- This separates the definition of security from its enforcement 
• We gave two secure implementations, using our definition to guide our 

design and informally audit it 
- Using LIO and information flow control 
- Using Concurrent ML + access control 

• We found numerous security bugs during our audits

Conclusions
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• How do we know that a real/ideal paradigm definition says what we 
want? 

- Designing ideal functionalities is something of an art, and tools for 
making their design easier would be useful 

- Tools for helping the designer know they got the correct definition 
would also be helpful

Research Questions
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

suppose we 
forgot to 
include 
opponent’s 
shots

suppose we 
forgot to 
include 
opponent’s 
shots

M could learn more than it should in real world, and 
S(M) could simulate this by making different shots



• What are alternatives to the real/ideal paradigm for defining the security 
of one component against another? 

• When is it useful to split a trusted component into two mutually 
distrustful ones? 

- For Battleship, are there solutions relying on smaller trusted computing 
bases? 

• When is information flow control necessary to achieve security? 
- Why did Battleship not require information flow control?

Research Questions
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• We want to formalize our results using a proof assistant 
• It must be possible to formalize and reason about a programming 

language with 
- A rich module system, supporting abstract types 
- Concurrency 
- Mutable references 

• We need to be able to reason about thread scheduling 
• We are currently investigating whether the Coq development of the 

concurrent separation logic Iris would be a good vehicle for this work

Future Work
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