
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 599: Formal Methods in
Security and Privacy 

Hoare Triples and Hoare Logic

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Specifications - Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

✓

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗
min = [k = 0,n = 2,i = 0,r = 0]
mout = [k = 0,n = 2,i = 1,r = 2]

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓
This is good because there is no

memory that satisfies the precondition.

How do we determine the
validity of an Hoare triple?

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

How shall we formalize
this intuition?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Hoare Logic

Floyd-Hoare reasoning

Robert W Floyd Tony Hoare

Rules of Hoare Logic:
Skip

⊢skip: P⇒P

Rules of Hoare Logic:
Skip

⊢skip: P⇒P
Is this correct?

Correctness of an axiom

⊢c : P ⇒ Q

We say that an axiom is correct if we can prove
the validity of each triple which is an instance of
the conclusion.

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that
{skip}m=m’ we need P(m’).

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that
{skip}m=m’ we need P(m’).

Follow easily by our semantics:
{skip}m=m

Rules of Hoare Logic:
Assignment

⊢x:=e: P⇒P[e/x]

Rules of Hoare Logic:
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?

Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple?

Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple? ✗

Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple?

Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple? ✗

Rules of Hoare Logic:
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic:
Assignment

⊢x:=e : P[e/x]⇒P
Is this correct?

Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple?

Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple? ✓

x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

✓

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

For every m such that P[e/x](m) and m’ such
that {x:=e}m=m’ we need P(m’).

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

For every m such that P[e/x](m) and m’ such
that {x:=e}m=m’ we need P(m’).

By our semantics: {x:=e}m=m[x={e}m] and
we can show P[e/x](m)= P(m[x={e}m])

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Is this correct?

Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple?

Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple? ✓

Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

⊢ x := z * 2 : {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

Correctness Composition Rule

To show this rule correct we need to show the
validity c;c’:P⇒Q for every c,c’,P,Q.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

To show this rule correct we need to show the
validity c;c’:P⇒Q for every c,c’,P,Q.

For every m such that P(m) and m’ such that
{c,c’}m=m’ we need Q(m’).

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we
can show R(m’’) and if R(m’’) we can show
Q(m’), hence since we have P(m)we can

conclude Q(m’).

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we
can show R(m’’) and if R(m’’) we can show
Q(m’), hence since we have P(m)we can

conclude Q(m’). ✓

Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✗

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

✗

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

✓

Some Instances

⊢ x := z * 2; z := x * 2: {z * 4 = 8} ⇒ {z = 8}

⊢ x := z * 2: {z * 4 = 8} ⇒ {x * 2 = 8} ⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

: {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}⊢ x := z * 2

{z * 4 = 8} ⇒ {(z * 2) * 2 = 8}

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple?

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✓

Some Instances

⊢ 𝚜𝚔𝚒𝚙 ⊢ x := x + 1; x := x − 1

⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

: {x = 1} ⇒ {x = 1} : {x = 1} ⇒ {x = 1}

⋮

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this strong enough?

⊢c2:P⇒Q

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple?

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✗

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Homework

Rules of Hoare Logic:
Abort

⊢Abort: ?⇒?

Rules of Hoare Logic:
Abort

⊢Abort: ?⇒?
What can be a good

specification?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the
validity Abort:P⇒Q for every P,Q.

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the
validity Abort:P⇒Q for every P,Q.

For every m such that P(m) and m’ such that
{Abort}m=m’ we need Q(m’).

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the
validity Abort:P⇒Q for every P,Q.

For every m such that P(m) and m’ such that
{Abort}m=m’ we need Q(m’).

Vacuously True

Rules of Hoare Logic
While

⊢while e do c : ??

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P
P ⇒ ¬e

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P
P ⇒ e ⊢c : P ⇒ P

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

Invariant

An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

How can we derive this?

: {x = 1} ⇒ {x = 1}

An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

: {x = 1} ⇒ {x = 1}

What can be a good Invariant?

An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

: {x = 1} ⇒ {x = 1}

What can be a good Invariant?
Inv = {x = 1}

An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1

An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1
⊢ x := x + 1 : {x = 1 ∧ x = 0} ⇒ {x = 1}

⊢ x := x + 1 : {x + 1 = 1} ⇒ {x = 1}x = 1 ∧ x = 0 ⇒ x + 1 = 1

An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1
⊢ x := x + 1 : {x = 1 ∧ x = 0} ⇒ {x = 1}

⊢ x := x + 1 : {x + 1 = 1} ⇒ {x = 1}x = 1 ∧ x = 0 ⇒ x + 1 = 1

Another example

How can we derive this?

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

What can be a good Invariant?

Another example

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

What can be a good Invariant?
𝙸𝚗𝚟 = {y = 4 − x ∧ x ≥ 1}

Another example

How do we know that these
are the right rules?

Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.

Are the rules we presented
sound?

Completeness

⊢c : P ⇒ Q
c : P ⇒ QIf a triple is valid, then

we can derive through

the rules of the logic.

Are the rules we presented
complete?

Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : Pre ⇒ Post

c : Pre ⇒ PostIf a triple is valid, and we

we can derive through
the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q ,which

we can use in applications of the conseq rule, then

