CS 599: Formal Methods in Security and Privacy
Hoare Triples and Hoare Logic

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
Programming Language

c ::= abort
 | skip
 | x := e
 | c ; c
 | if e then c else c
 | while e do c

\[
x, y, z, \ldots \quad \text{program variables}
\]
\[
e_1, e_2, \ldots \quad \text{expressions}
\]
\[
c_1, c_2, \ldots \quad \text{commands}
\]
Specifications - Hoare triple

Precondition
Program
Postcondition

\[c : P \implies Q \]

Precondition (a logical formula)

Program

Postcondition (a logical formula)
Some examples

Precondition

\[x := z + 1 : \{ z + 1 > 0 \} \Rightarrow \{ x > 0 \} \]

Postcondition

Is it a good specification?
Some examples

\[x := z + 1 : \{ z + 1 > 0 \} \Rightarrow \{ x > 0 \} \]

Precondition

Is it a good specification?

Postcondition

✓
Some examples

\begin{align*}
\text{i} & := 0; \\
\text{r} & := 1; \\
\text{while} (i \leq k) \text{do} & \\
\quad \text{r} & := \text{r} \times \text{n}; \\
\quad \text{i} & := \text{i} + 1
\end{align*}

\begin{align*}
\text{Precondition} & : \{ 0 \leq k \} \Rightarrow \{ r = n^k \} \\
\text{Postcondition} & \end{align*}

Is it a good specification?
Some examples

\[
\begin{align*}
i &:= 0; \\
r &:= 1; \\
\text{while } (i \leq k) \text{ do} & \quad r := r \times n; \\
& \quad i := i + 1
\end{align*}
\]

Precondition

\[
\{ 0 \leq k \} \Rightarrow \{ r = n^k \}
\]

Postcondition

Is it a good specification?

✗
Some examples

- Precondition:
 \[\{ 0 \leq k \} \Rightarrow \{ r = n^k \} \]

- Postcondition:

- Is it a good specification?

- Initial state:
 \(m_{in} = [k = 0, n = 2, i = 0, r = 0] \)

- Final state:
 \(m_{out} = [k = 0, n = 2, i = 1, r = 2] \)

- Code snippet:

  ```
  i := 0;
  r := 1;
  while (i <= k) do
      r := r * n;
      i := i + 1
  ```
Some examples

\[
i := 0; \\
r := 1; \\
\text{while}(i \leq k) \text{do} \\
\quad r := r \times n; \\
i := i + 1
\]

Precondition

\[
\{ 0 < k \} \Rightarrow \{ r = n^k \}
\]

Postcondition

Is it a good specification?
Some examples

Precondition:

\[\{0 < k\} \Rightarrow \{r = n^k\} \]

Postcondition:

Is it a good specification? X

i := 0;
r := 1;
while (i ≤ k) do
 r := r * n;
i := i + 1
Some examples

\[i := 0;\]
\[r := 1;\]
\[\text{while}(i \leq k) \text{do}\]
\[r := r \times n;\]
\[i := i + 1\]

Precondition
\[\{0 < k\} \Rightarrow \{r = n^k\}\]

Postcondition

Is it a good specification?

\[m_{in} = [k = 1, n = 2, i = 0, r = 0]\]
\[m_{out} = [k = 1, n = 2, i = 2, r = 4]\]
Some examples

i := 0;
r := 1;
while (i < k) do
 r := r * n;
i := i + 1

Precondition

\[\{ 0 \leq k \} \Rightarrow \{ r = n^k \} \]

Postcondition

Is it a good specification?
Some examples

\[\{0 \leq k\} \Rightarrow \{r = n^k\} \]

\[
\begin{align*}
i &: = 0; \\
r &:= 1; \\
\text{while}(i < k)\text{do} \\
&\quad r := r \times n; \\
&\quad i := i + 1
\end{align*}
\]

Is it a good specification? ✅
Some examples

```
i := 0;
 r := 1;
while (i ≤ k) do
  r := r * n;
i := i + 1
```

Precondition

\[
\{ 0 \leq k \} \Rightarrow \{ r = n^i \}
\]

Is it a good specification?
Some examples

Precondition:
\[
\{0 \leq k\} \Rightarrow \{r = n^i\}
\]

Postcondition:

Is it a good specification?

```
i:=0;
r:=1;
while(i\leq k) do
    r:=r \times n;
i:=i + 1
```
Some examples

\[
\begin{align*}
i &:= 0; \\
r &:= 1; \\
\text{while}(i \leq k)\text{do} & \\
\quad r &:= r \ast n; \\
i &:= i + 1
\end{align*}
\]

Precondition

\[\{0 < k \land k < 0\} \Rightarrow \{r = n^k\}\]

Postcondition

Is it a good specification?
Some examples

```
i := 0;
r := 1;
while (i <= k) do
    r := r * n;
    i := i + 1
```

Precondition

\[\{ 0 < k \land k < 0 \} \Rightarrow \{ r = n^k \} \]

Postcondition

Is it a good specification? ✓
Some examples

\[
\begin{align*}
i &:= 0; \\
r &:= 1; \\
\text{while} (i \leq k) \text{do} \\
& \quad r := r \times n; \\
& \quad i := i + 1
\end{align*}
\]

Precondition

\[
\{ 0 < k \wedge k < 0 \} \Rightarrow \{ r = n^k \}
\]

Postcondition

Is it a good specification?

\[
\begin{array}{c}
\checkmark
\end{array}
\]

This is good because there is no memory that satisfies the precondition.
How do we determine the validity of an Hoare triple?
Validity of Hoare triple

\[c : P \implies Q \]

- **Precondition** (a logical formula)
- **Program**
- **Postcondition** (a logical formula)
Validity of Hoare triple

We are interested only in inputs that meets P and we want to have outputs satisfying Q.

$c : P \Rightarrow Q$

- **Precondition** (a logical formula)
- **Postcondition** (a logical formula)
- **Program**
Validity of Hoare triple

We are interested only in inputs that meets P and we want to have outputs satisfying Q.

How shall we formalize this intuition?
Validity of Hoare triple
We say that the triple $c: P \Rightarrow Q$ is valid if and only if for every memory m such that $P(m)$ and memory m' such that $\{c\}_m = m'$ we have $Q(m')$.
Validity of Hoare triple

We say that the triple $c: P \Rightarrow Q$ is valid if and only if for every memory m such that $P(m)$ and memory m' such that $\{c\}_m = m'$ we have $Q(m')$.

Is this condition easy to check?
Hoare Logic
Floyd-Hoare reasoning

A verification of an interpretation of a flowchart is a proof that for every command c of the flowchart, if control should enter the command by an entrance a_i with P_i true, then control must leave the command, if at all, by an exit b_j with Q_j true. A semantic definition of a particular set of command types, then, is a rule for constructing, for any command c of one of these types, a verification condition $V_c(P; Q)$ on the antecedents and consequents of c. This verification condition must be so constructed that a proof that the verification condition is satisfied for the antecedents and consequents of each command in a flowchart is a verification of the interpreted flowchart.
Rules of Hoare Logic: Skip

⊢ skip: P ⇒ P
Rules of Hoare Logic: Skip

\[\vdash \text{skip} : \ P \Rightarrow P \]

Is this correct?
We say that an axiom is correct if we can prove the validity of each triple which is an instance of the conclusion.
Correctness of Skip Rule

\[\vdash \text{skip: } P \Rightarrow P \]

To show this rule correct we need to show the validity of the triple skip: \(P \Rightarrow P \).
Correctness of Skip Rule

⊢ skip: P ⇒ P

To show this rule correct we need to show the validity of the triple skip: P ⇒ P.

For every m such that P(m) and m’ such that \{skip\}_m=m’ we need P(m’).
Correctness of Skip Rule

⊢ skip: P ⇒ P

To show this rule correct we need to show the validity of the triple skip: P ⇒ P.

For every m such that P(m) and m’ such that \{skip\}_m = m’ we need P(m’).

Follow easily by our semantics:

\{skip\}_m = m
Rules of Hoare Logic: Assignment

\[\vdash x := e : P \Rightarrow P[e/x]\]
Rules of Hoare Logic: Assignment

\[\vdash x := e : P \Rightarrow P[e/x] \]

Is this correct?
Some instances

\[x := x + 1 : \{ x < 0 \} \Rightarrow \{ x + 1 < 0 \} \]

Is this a valid triple?
Some instances

\(x := x + 1 : \{ x < 0 \} \Rightarrow \{ x + 1 < 0 \} \)

Is this a valid triple? \(\times \)
Some instances

\[x := z + 1 : \{ x > 0 \} \Rightarrow \{ z + 1 > 0 \} \]

Is this a valid triple?
Some instances

\[x := z + 1 : \{ x > 0 \} \Rightarrow \{ z + 1 > 0 \} \]

Is this a valid triple? ✗
Rules of Hoare Logic: Assignment

\[\vdash x := e \quad : \quad P[e/x] \Rightarrow P \]
Rules of Hoare Logic: Assignment

\[\text{Is this correct?} \]
Some instances

\[x := z + 1 : \{ z + 1 > 0 \} \Rightarrow \{ x > 0 \} \]

Is this a valid triple?
Some instances

\[x := z + 1 : \{ z + 1 > 0 \} \Rightarrow \{ x > 0 \} \]

Is this a valid triple? ✓
Some instances

\[x := x + 1 : \{ x + 1 < 0 \} \Rightarrow \{ x < 0 \} \]

Is this a valid triple?
Some instances

\[x := x + 1 : \{ x + 1 < 0 \} \Rightarrow \{ x < 0 \} \]

Is this a valid triple?

✓
To show this rule correct we need to show the validity $x := e : P[e/x] \Rightarrow P$ for every x, e, P.
Correctness Assignment Rule

\[\vdash x := e : P[e/x] \Rightarrow P \]

To show this rule correct we need to show the validity \[x := e : P[e/x] \Rightarrow P \] for every \(x, e, P \).

For every \(m \) such that \(P[e/x](m) \) and \(m' \) such that \(\{x := e\}_m = m' \) we need \(P(m') \).
Correctness Assignment Rule

\[\vdash x := e : P[e/x] \Rightarrow P \]

To show this rule correct we need to show the validity \(x := e : P[e/x] \Rightarrow P \) for every \(x, e, P \).

For every \(m \) such that \(P[e/x](m) \) and \(m' \) such that \(\left\{ x := e \right\}_m = m' \) we need \(P(m') \).

By our semantics: \(\left\{ x := e \right\}_m = m[x = \{ e \}_m] \) and we can show \(P[e/x](m) = P(m[x = \{ e \}_m]) \).
Rules of Hoare Logic
Composition

⊢ c; c' : P ⊢ Q
Rules of Hoare Logic Composition

\[\Gamma \vdash c : P \Rightarrow R \]

\[\Gamma \vdash c ; c' : P \Rightarrow Q \]
Rules of Hoare Logic Composition

\[\frac{\Gamma \vdash c : P \Rightarrow R \quad \Gamma \vdash c' : R \Rightarrow Q}{\Gamma \vdash c ; c' : P \Rightarrow Q} \]
Rules of Hoare Logic
Composition

\[\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q \]

\[\vdash c ; c' : P \Rightarrow Q \]

Is this correct?
Some Instances

⊢ \(x := z \cdot 2; \ z := x \cdot 2 \)

: \((z \cdot 2) \cdot 2 = 8 \) \(\Rightarrow \) \(\{ z = 8 \} \)

Is this a valid triple?
Some Instances

⊢ \(x := z \times 2; z := x \times 2 \)

\[(z \times 2) \times 2 = 8 \] \(\Rightarrow \) \(\{ z = 8 \} \)

Is this a valid triple? ✓
Some Instances

How can we prove it?

\[\vdash x := z \ast 2; z := x \ast 2 : \{(z \ast 2) \ast 2 = 8\} \Rightarrow \{z = 8\} \]
Some Instances

How can we prove it?

\[
\begin{align*}
\vdash x \leftarrow z \times 2 : \{ (z \times 2) \times 2 = 8 \} & \Rightarrow \{ x \times 2 = 8 \} \\
\vdash z \leftarrow x \times 2 : \{ x \times 2 = 8 \} & \Rightarrow \{ z = 8 \} \\
\vdash x \leftarrow z \times 2; z \leftarrow x \times 2 : \{ (z \times 2) \times 2 = 8 \} & \Rightarrow \{ z = 8 \}
\end{align*}
\]
Correctness Composition Rule

\[\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q \]

\[\vdash c ; c' : P \Rightarrow Q \]

To show this rule correct we need to show the validity \(c ; c' : P \Rightarrow Q \) for every \(c, c', P, Q \).
Correctness Composition Rule

\[\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q} \]

To show this rule correct we need to show the validity \(c ; c' : P \Rightarrow Q \) for every \(c, c', P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{ c, c' \}_m = m' \) we need \(Q(m') \).
Correctness Composition Rule

\[\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q \]

\[\vdash c ; c' : P \Rightarrow Q \]
Correctness Composition Rule

\[\Gamma \vdash c : P \Rightarrow R \quad \Gamma \vdash c' : R \Rightarrow Q \]

\[\Gamma \vdash c ; c' : P \Rightarrow Q \]

By our semantics: \(\{ c ; c' \} _m = m' \) if and only if there is \(m'' \) such that \(\{ c \} _m = m'' \) and \(\{ c' \} _m'' = m' \).
Correctness Composition Rule

By our semantics: \(\{ c; c' \}_m = m' \) if and only if there is \(m'' \) such that \(\{ c \}_m = m'' \) and \(\{ c' \}_{m''} = m' \).

Assuming \(c: P \Rightarrow R \) and \(c': R \Rightarrow Q \) valid, if \(P(m) \) we can show \(R(m'') \) and if \(R(m'') \) we can show \(Q(m') \), hence since we have \(P(m) \) we can conclude \(Q(m') \).
Correctness Composition Rule

\[\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q} \]

By our semantics: \(\{ c ; c' \}_m = m' \) if and only if there is \(m'' \) such that \(\{ c \}_m = m'' \) and \(\{ c' \}_{m''} = m' \).

Assuming \(c : P \Rightarrow R \) and \(c' : R \Rightarrow Q \) valid, if \(P(m) \) we can show \(R(m''') \) and if \(R(m''') \) we can show \(Q(m') \), hence since we have \(P(m) \) we can conclude \(Q(m') \). \(\checkmark \)
Is this a valid triple?
Some examples

\[\vdash x := z \cdot 2; z := x \cdot 2 \]
\[: \{ z \cdot 4 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple? ✓
Some examples

\[\vdash x := z \cdot 2; z := x \cdot 2 \]

\[\vdash \{ z \cdot 4 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple?

Can we prove it with the rules that we have?

✓
Some examples

\[\vdash x := z \ast 2; \ z := x \ast 2 \]

: \{ z \ast 4 = 8 \} \Rightarrow \{ z = 8 \}

Is this a valid triple? \[\checkmark\]

Can we prove it with the rules that we have? \[\times\]
Some Instances

What is the issue?

\[\vdash x := z \ast 2; z := x \ast 2 : \{ z \ast 4 = 8 \} \Rightarrow \{ z = 8 \} \]
Some Instances

What is the issue?

\[
\vdash x := z \times 2 : \{z \times 4 = 8\} \Rightarrow \{x \times 2 = 8\} \\
\vdash z := x \times 2 : \{x \times 2 = 8\} \Rightarrow \{z = 8\} \\
\vdash x := z \times 2; z := x \times 2 : \{z \times 4 = 8\} \Rightarrow \{z = 8\}
\]
Some Instances

What is the issue?

⊢ $x := z \times 2; \{z \times 4 = 8\} \Rightarrow \{x \times 2 = 8\}$

\Rightarrow

⊢ $z := x \times 2; \{x \times 2 = 8\} \Rightarrow \{z = 8\}$

⊢ $x := z \times 2; z := x \times 2; \{z \times 4 = 8\} \Rightarrow \{z = 8\}$

✗
Rules of Hoare Logic

Consequence

\[
\begin{align*}
P \Rightarrow S & \quad \vdash c : S \Rightarrow R & \quad \Rightarrow R \Rightarrow Q \\
\hline
\vdash c : P \Rightarrow Q
\end{align*}
\]
Some examples

\[\vdash x := z * 2; z := x * 2 \]

: \{ z * 4 = 8 \} \Rightarrow \{ z = 8 \}

Is this a valid triple?
Some examples

\[\vdash x := z \times 2; z := x \times 2 \]

: \{ z \times 4 = 8 \} \implies \{ z = 8 \}

Is this a valid triple? ✓
Some examples

\[\vdash x := z \times 2; \ z := x \times 2 \]
\[\implies \{ z \times 4 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple?

Can we prove it with the rules that we have?

✓
Some examples

<table>
<thead>
<tr>
<th>Is this a valid triple?</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can we prove it with the rules that we have?</td>
<td>✓</td>
</tr>
</tbody>
</table>
Some Instances

\[\vdash x := z \cdot 2 \{ (z \cdot 2)^2 = 8 \} \Rightarrow \{ x \cdot 2 = 8 \} \]

\[\{ z \cdot 4 = 8 \} \Rightarrow \{ (z \cdot 2)^2 = 8 \} \]

\[\vdash x := z \cdot 2 : \{ z \cdot 4 = 8 \} \Rightarrow \{ x \cdot 2 = 8 \} \quad \vdash z := x \cdot 2 : \{ x \cdot 2 = 8 \} \Rightarrow \{ z = 8 \} \]

\[\vdash x := z \cdot 2 ; z := x \cdot 2 : \{ z \cdot 4 = 8 \} \Rightarrow \{ z = 8 \} \]
Rules of Hoare Logic
If then else

⊢ if e then \(c_1\) else \(c_2\) : P \(\Rightarrow\) Q
Rules of Hoare Logic

If then else

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

\[\vdash c_1 : P \Rightarrow Q \quad \vdash c_2 : P \Rightarrow Q \]

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]
Rules of Hoare Logic
If then else

\[
\begin{align*}
\vdash c_1 : P \Rightarrow Q & \quad \vdash c_2 : P \Rightarrow Q \\
\hline
\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q
\end{align*}
\]

Is this correct?
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x − 1

: \{ x = 1 \} \Rightarrow \{ x = 1 \}

Is this a valid triple?
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓

Can we prove it with the rules that we have?
Some examples

⊢ if \(y = 0 \) then skip else \(x := x + 1 ; x := x - 1 \)

\[: \{ x = 1 \} \Rightarrow \{ x = 1 \} \]

Is this a valid triple? ✔

Can we prove it with the rules that we have? ✔
Some Instances

\[\text{\textbf{⊢}} \text{uskip: } \{x = 1\} \Rightarrow \{x = 1\} \quad \text{\textbf{⊢}} x := x + 1; x := x - 1 : \{x = 1\} \Rightarrow \{x = 1\} \]

\[\quad \text{\textbf{⊢}} \text{if } y = 0 \text{ then skip else } x := x + 1; x := x - 1 \]

\[: \{x = 1\} \Rightarrow \{x = 1\} \]
Rules of Hoare Logic
If then else

\[
\vdash c_1 : P \Rightarrow Q \quad \vdash c_2 : P \Rightarrow Q
\]

\[
\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q
\]
Rules of Hoare Logic
If then else

\[\vdash c_1 : P \Rightarrow Q \quad \vdash c_2 : P \Rightarrow Q \]

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

Is this strong enough?
Some examples

\[
\begin{array}{c}
\downarrow \text{ if false then skip else } x = x + 1 \\
: \{ x = 0 \} \Rightarrow \{ x = 1 \}
\end{array}
\]

Is this a valid triple?
Some examples

⊢ if false then skip else $x = x + 1$

: $\{x = 0\} \Rightarrow \{x = 1\}$

Is this a valid triple? ✓
Some examples

\[\text{⊢ if false then skip else } x = x + 1 \]
\[: \{ x = 0 \} \Rightarrow \{ x = 1 \} \]

Is this a valid triple?

Can we prove it with the rules that we have?

✓
Some examples

⊢ if false then skip else \(x = x + 1 \) : \{ x = 0 \} \Rightarrow \{ x = 1 \}

Is this a valid triple? ✓

Can we prove it with the rules that we have? ✗
Rules of Hoare Logic
If then else

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

Is this correct?
Rules of Hoare Logic
If then else

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

\[\vdash c_1 : e \land P \Rightarrow Q \quad \vdash c_2 : \neg e \land P \Rightarrow Q \]

\[\text{Is this correct?} \]

\[\text{Homework} \]
Rules of Hoare Logic: Abort

\[\vdash \text{Abort}: \ ? \Rightarrow ? \]
Rules of Hoare Logic: Abort

\[\vdash \text{Abort: } ? \Rightarrow ? \]

What can be a good specification?
Validity of Hoare triple

We say that the triple $c : P \Rightarrow Q$ is valid if and only if for every memory m such that $P(m)$ and memory m' such that $\{c\}_m = m'$ we have $Q(m')$.
Rules of Hoare Logic:

\[
\text{Abort} \quad \vdash \quad \text{Abort} : P \Rightarrow Q
\]
Rules of Hoare Logic: Abort

\[\Box \text{Abort} : \Box P \Rightarrow Q \]

To show this rule correct we need to show the validity \(\Box \text{Abort} : P \Rightarrow Q \) for every \(P, Q \).
Rules of Hoare Logic:

Abort

\[\vdash \text{Abort} : P \Rightarrow Q \]

To show this rule **correct** we need to show the **validity** \(\text{Abort} : P \Rightarrow Q \) for every \(P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{ \text{Abort} \}_{m=m'} \) we need \(Q(m') \).
Rules of Hoare Logic: Abort

\[\vdash \text{Abort} : P \rightarrow Q \]

To show this rule correct we need to show the validity \(\text{Abort} : P \rightarrow Q \) for every \(P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{ \text{Abort} \}_{m=m'} \) we need \(Q(m') \).

Vacuously True
Rules of Hoare Logic

While

\[\vdash \text{while } e \text{ do } c : \text{ ??} \]
Rules of Hoare Logic

While

\[\neg e \Rightarrow P \]

\[\text{while } e \text{ do } c : P \Rightarrow P \]
Rules of Hoare Logic

While

\[\frac{P \Rightarrow e \quad \vdash c : P \Rightarrow P}{\vdash \text{while } e \text{ do } c : P \Rightarrow P} \]
Rules of Hoare Logic

While

$\vdash c : e \land P \Rightarrow P$

$\vdash \text{while } e \text{ do } c : P \Rightarrow P \land \neg e$

Invariant
An example

\[\text{while } x = 0 \text{ do } x := x + 1 \]

: \{ x = 1 \} \Rightarrow \{ x = 1 \}

How can we derive this?
An example

⊢ while \(x = 0 \) do \(x := x + 1 \)

\[: \{ x = 1 \} \Rightarrow \{ x = 1 \} \]

What can be a good Invariant?
An example

\[\text{\texttt{\textbf{\textcolor{blue}{\textbf{while}}} \quad x = 0 \quad \texttt{\textbf{do}} \quad x := x + 1} \]

\[: \{x = 1\} \Rightarrow \{x = 1\} \]

What can be a good Invariant?

\[Inv = \{x = 1\} \]
An example

\[\text{⊢ } \frac{\text{while } x = 0 \text{ do } x := x + 1: \{x = 1\}}{\{x = 1\}} \]
An example

\[\vdash \text{while } x = 0 \text{ do } x := x + 1: \{ x = 1 \} \Rightarrow \{ x = 1 \land x \neq 0 \} \quad x = 1 \land x \neq 0 \Rightarrow x = 1 \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1: \{ x = 1 \} \Rightarrow \{ x = 1 \} \]
An example

\[x = 1 \land x = 0 \Rightarrow x + 1 = 1 \]

\[\vdash x := x + 1 : \{ x + 1 = 1 \} \Rightarrow \{ x = 1 \} \]

\[\vdash x := x + 1 : \{ x = 1 \land x = 0 \} \Rightarrow \{ x = 1 \} \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \land x \neq 0 \} \]

\[x = 1 \land x \neq 0 \Rightarrow x = 1 \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \} \]
An example

\[x = 1 \land x = 0 \Rightarrow x + 1 = 1 \]

\[\vdash x := x + 1 : \{ x + 1 = 1 \} \Rightarrow \{ x = 1 \} \]

\[\vdash x := x + 1 : \{ x = 1 \land x = 0 \} \Rightarrow \{ x = 1 \} \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \land x \neq 0 \} \]

\[x = 1 \land x \neq 0 \Rightarrow x = 1 \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \} \]
Another example

How can we derive this?

\[
\begin{array}{l}
x := 3; \\
y := 1; \\
\text{while } x > 1 \text{ do} \\
y := y + 1; \\
x := x - 1;
\end{array}
\]

\[\vdash \{ \text{true} \} \Rightarrow \{ y = 3 \} \]
Another example

\begin{align*}
\text{x:=3;} \\
y:=1; \\
\text{while } x > 1 \text{ do} \\
\quad y := y+1; \\
\quad x := x-1;
\end{align*}

\therefore \quad \{true\} \Rightarrow \{y = 3\}

What can be a good Invariant?
Another example

```plaintext
x := 3;
y := 1;
while x > 1 do
  y := y + 1;
x := x - 1;
```

⊢ : \{true\} ⇒ \{y = 3\}

What can be a good Invariant?

\[\text{Inv} = \{y = 4 - x \land x \geq 1\} \]
How do we know that these are the right rules?
Soundness

If we can derive $\vdash c : P \Rightarrow Q$ through the rules of the logic, then the triple $c : P \Rightarrow Q$ is valid.
Are the rules we presented sound?
Completeness

If a triple $c : P \Rightarrow Q$ is valid, then we can derive $\vdash c : P \Rightarrow Q$ through the rules of the logic.
Are the rules we presented complete?
Relative Completeness

\[P \Rightarrow S \quad \vdash c : S \Rightarrow R \quad R \Rightarrow Q \]

\[\vdash c : P \Rightarrow Q \]
Relative Completeness

\[P \Rightarrow S \quad \vdash c : S \Rightarrow R \quad R \Rightarrow Q \]

\[\vdash c : P \Rightarrow Q \]

If a triple \(c : \text{Pre} \Rightarrow \text{Post} \) is valid, and we have an oracle to derive all the true statements of the form \(P \Rightarrow S \) and of the form \(R \Rightarrow Q \), which we can use in applications of the conseq rule, then we can derive \(\vdash c : \text{Pre} \Rightarrow \text{Post} \) through the rules of the logic.