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Hoare Triples and Hoare Logic



Programming Language
c::= abort                   
   | skip                 
   | x:=e 
   | c;c 
   | if e then c else c  
   | while e do c 

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands



Specifications - Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good 
specification?

Precondition

Postcondition



Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✗



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✗
min = [k = 0,n = 2,i = 0,r = 0]
mout = [k = 0,n = 2,i = 1,r = 2]



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✗



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✓



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✓
This is good because there is no 

memory that satisfies the precondition. 



How do we determine the 
validity of an Hoare triple?



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.

How shall we formalize 
this intuition?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Is this condition easy to check?



Hoare Logic



Floyd-Hoare reasoning

Robert W Floyd Tony Hoare



Rules of Hoare Logic: 
Skip

⊢skip: P⇒P



Rules of Hoare Logic: 
Skip

⊢skip: P⇒P
Is this correct?



Correctness of an axiom

⊢c : P ⇒ Q

We say that an  axiom is correct if we can prove 
the validity of each triple which is an instance of  
the conclusion.



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that 
{skip}m=m’ we need P(m’).



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that 
{skip}m=m’ we need P(m’).

Follow easily by our semantics: 
{skip}m=m  



Rules of Hoare Logic: 
Assignment

⊢x:=e: P⇒P[e/x]



Rules of Hoare Logic: 
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?



Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple?



Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple? ✗



Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple?



Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple? ✗



Rules of Hoare Logic: 
Assignment

⊢x:=e : P[e/x]⇒P



Rules of Hoare Logic: 
Assignment

⊢x:=e : P[e/x]⇒P
Is this correct?



Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple?



Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple? ✓



x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances



x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

✓



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 

For every m such that P[e/x](m) and m’ such 
that {x:=e}m=m’ we need P(m’).



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 

For every m such that P[e/x](m) and m’ such 
that {x:=e}m=m’ we need P(m’).

By our semantics: {x:=e}m=m[x={e}m]  and 
we can show P[e/x](m)= P(m[x={e}m]) 



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Is this correct?



Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple?



Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple? ✓



Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?



Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

⊢ x := z * 2 : {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}



Correctness Composition Rule

To show this rule correct we need to show the 
validity c;c’:P⇒Q for every c,c’,P,Q. 

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

To show this rule correct we need to show the 
validity c;c’:P⇒Q for every c,c’,P,Q. 

For every m such that P(m) and m’ such that 
{c,c’}m=m’ we need Q(m’).

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we 
can show R(m’’) and if R(m’’) we can show 
Q(m’), hence since we have P(m)we can 

conclude Q(m’).



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we 
can show R(m’’) and if R(m’’) we can show 
Q(m’), hence since we have P(m)we can 

conclude Q(m’). ✓



Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✗

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

✗



Rules of Hoare Logic 
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q



Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

✓



Some Instances

⊢ x := z * 2; z := x * 2: {z * 4 = 8} ⇒ {z = 8}

⊢ x := z * 2: {z * 4 = 8} ⇒ {x * 2 = 8} ⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

: {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}⊢ x := z * 2

{z * 4 = 8} ⇒ {(z * 2) * 2 = 8}



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple?



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✓



Some Instances

⊢ 𝚜𝚔𝚒𝚙 ⊢ x := x + 1; x := x − 1

⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

: {x = 1} ⇒ {x = 1} : {x = 1} ⇒ {x = 1}

⋮



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this strong enough?

⊢c2:P⇒Q



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple?



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✗



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Homework



Rules of Hoare Logic: 
Abort

⊢Abort: ?⇒?



Rules of Hoare Logic: 
Abort

⊢Abort: ?⇒?
What can be a good 

specification?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the 
validity Abort:P⇒Q for every P,Q. 



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the 
validity Abort:P⇒Q for every P,Q. 

For every m such that P(m) and m’ such that 
{Abort}m=m’ we need Q(m’).



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q
To show this rule correct we need to show the 
validity Abort:P⇒Q for every P,Q. 

For every m such that P(m) and m’ such that 
{Abort}m=m’ we need Q(m’).

Vacuously True



Rules of Hoare Logic 
While

⊢while e do c : ??



Rules of Hoare Logic 
While

⊢while e do c : P ⇒ P
P ⇒ ¬e



Rules of Hoare Logic 
While

⊢while e do c : P ⇒ P
P ⇒ e ⊢c : P ⇒ P



Rules of Hoare Logic 
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

Invariant



An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

How can we derive this?

: {x = 1} ⇒ {x = 1}



An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

: {x = 1} ⇒ {x = 1}

What can be a good Invariant?



An example
⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

: {x = 1} ⇒ {x = 1}

What can be a good Invariant?
Inv = {x = 1}



An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}



An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1



An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1
⊢ x := x + 1 : {x = 1 ∧ x = 0} ⇒ {x = 1}

⊢ x := x + 1 : {x + 1 = 1} ⇒ {x = 1}x = 1 ∧ x = 0 ⇒ x + 1 = 1



An example

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1 ∧ x ≠ 0} x = 1 ∧ x ≠ 0 ⇒ x = 1
⊢ x := x + 1 : {x = 1 ∧ x = 0} ⇒ {x = 1}

⊢ x := x + 1 : {x + 1 = 1} ⇒ {x = 1}x = 1 ∧ x = 0 ⇒ x + 1 = 1



Another example

How can we derive this?

: {true} ⇒ {y = 3}

x:=3; 
y:=1; 
while x > 1 do 
y := y+1;  
x := x-1; 

⊢



: {true} ⇒ {y = 3}

x:=3; 
y:=1; 
while x > 1 do 
y := y+1;  
x := x-1; 

⊢

What can be a good Invariant?

Another example



: {true} ⇒ {y = 3}

x:=3; 
y:=1; 
while x > 1 do 
y := y+1;  
x := x-1; 

⊢

What can be a good Invariant?
𝙸𝚗𝚟 = {y = 4 − x ∧ x ≥ 1}

Another example



How do we know that these 
are the right rules?



Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.



Are the rules we presented 
sound?



Completeness

⊢c : P ⇒ Q
c : P ⇒ QIf a triple is valid, then

we can derive through

the rules of the logic.



Are the rules we presented 
complete?



Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q



Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : Pre ⇒ Post

c : Pre ⇒ PostIf a triple is valid, and we 

we can derive through
the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q ,which

we can use in applications of the conseq rule, then 


