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Programming Language

c::= abort

skip

X:=e

C;C

1f e then ¢ else c
while e do ¢

X,YrZ,... program variables
e1,€2,.. expressions

Ci,C2,.. commands



Specifications - Hoare triple

Precondition
(a logical formula)

Precondition l
Program C P = Q
Postcondition °

|

Program

Postcondition
(a logical formula)
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Is it a good
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1:=0;

r:=1;

while(1i=k)do
r:=r * nj
1:=1 + 1

Precondition
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Some examples

Precondition

1:=0;
r:=1:; {0 <kAk<0) = {r=n"
while(1i<k)do Postcondition
r:=r * n; :
L s it a good J
1:=1 + 1 o L
specification?

This is good because there is no
memory that satisfies the precondition.




How do we determine the
validity of an Hoare triple?
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Validity of Hoare triple
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(a logical formula) in inputs that meets P
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Validity of Hoare triple

Precondition We are interested only
(a logical formula) in inputs that meets P
and we want to have
outputs satisfying Q.

C . P # Q How shall we formalize

I N this intuition?

Program POStCOﬂditiOn
(a logical formula)




Validity of Hoare triple
We say that the triple c : P=0Q Is valid

if and only if
for every memory m such that P (m)
and memory m such that {c},=m"’
we have Q(m"').



Validity of Hoare triple
We say that the triple c : P=0Q Is valid

if and only if
for every memory m such that P (m)
and memory m such that {c},=m"’
we have Q(m"').

Is this condition easy to check?




Hoare Logic



Floyd-Hoare reasoning

Tony Hoare

A verification of an interpretation of a flowchart is a proof that for every
command c¢ of the flowchart, if control should enter the command by an
entrance a; with P; true, then control must leave the command, if at all,
by an exit b; with @, true. A semantic definition of a particular set of command
types, then, is a rule for constructing, for any command ¢ of one of these
types, a verification condition V.(P;Q) on the antecedents and consequents
of ¢. This verification condition must be so constructed that a proof that
the verification condition is satisfied for the antecedents and consequents
of each command in a flowchart is a verification of the interpreted flowchart.
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Rules of Hoare Logic:
Skip

—skip: P=P

Is this correct?




Correctness of an axiom

Fc ¢ P = Q

We say that an axiom is correct if we can prove
the validity of each triple which is an instance of
the conclusion.
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To show this rule correct we need to show the
validity of the triple skip: P=P.




Correctness of Skip Rule
—skip: P=P

To show this rule correct we need to show the
validity of the triple skip: P=P.

For every m such that P (m) and m’ such that
{skip}n=m’ wWe need P(m').




Correctness of Skip Rule
—skip: P=P

To show this rule correct we need to show the
validity of the triple skip: P=P.

For every m such that P (m) and m’ such that
{skip}n=m’ wWe need P(m').

Follow easily by our semantics:
{skip}n=m
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Is this correct?
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s this a valid triple? ‘/
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Correctness Assignment Rule

—x:=e : Ple/x]=P

To show this rule correct we need to show the
validity x:=e:P[e/x]=P forevery x, e, P.

For every m such that P[e/x] (m) and m’ such
that {x:=e}.,=m’ weneed P(m’).

By our semantics: {x:=e},=m[x={e},] and
we can show P[e/x](m)= P(m[x={e}n])
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Composition
—C : P=R —c’ tR=0

—c,c’ ¢ P=0

Is this correct?
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Some Instances

How can we prove it?

Fx:=27z%2:{(z*2)*2 =8} => {x*2 =8}

Fz:=x*2 {x*2=8}=> {z=8}
Fxi=z%2;z:=x*%2: {(z*2)*2 =8} = {7z =8}
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Some Instances

What is the issue?

I—x:=z*X{Z*4=8} = {(x*2 =38}

Fzi=x*2:{x*2=8}=> {z=28}
Fx:i=z%2:z:=x*2:{z*4 =8} = {z=28}




Rules of Hoare Logic
Consequence

P=S —cCi: S=R R=0

Fc: P=0
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Fx:=z%2:z:=x%2
: {z*4 =8} = {z=38}

s this a valid triple? J

Can we prove it with the J
rules that we have?




Some Instances

Fx:=z%2{(z*2)*2=8} = {x*2 =28}
(2*4=8} = {(*2)*2 =8}

- ox =% (7¥4=8) = {x*2=8) Fz:=x*2:{x*2=8}= (z=8)

Fx:=z%2;z:=x*2{z*4 =8} = {z=28}
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Rules of Hoare Logic

If then else
C1: P=0 Co: P=0
—1f e then ¢ else c» : P=0

|s this correct?
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Rules of Hoare Logic

If then else
C1: P=0 Co: P=0
—1f e then c1 else c» : P=0

Is this strong enough?
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- if false then skip elsex=x+1
{x=0} = {x=1}
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Rules of Hoare Logic

If then else
ci:e N P = 0Q Cr:—me A P = 0
1f e then c¢; else ¢y : P=0

|s this correct?

Homework
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Rules of Hoare Logic:
Abort

—Abort: 7?7=7

What can be a good
specification?
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Rules of Hoare Logic:
Abort

—Abort ::P=0

To show this rule correct we need to show the
validity Abort : P=0Q for every P, Q.

For every m such that P(m) and m’ such that
(Abort},=m’” we need Q(m"’).

Vacuously True
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Rules of Hoare Logic
While

Fc : e AN P = P

while e do ¢ : P = P A —e

!

Invariant
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An example

x=1Ax=0=>x+1=1 Fx=x+1:{x+1=1}=>{x=1}

I—x:=x+1: x=0}=>

I—whilex=0dox:=x+1:{x=1}:~({x=1)\x7é0} x=1Ax#0=>x=1

Fwhilex=0dox=x+1:{x=1}=>{x=1}
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X = x-1;
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Another example

X:=3;
vi=1;
- |while x > 1 do| : {true} = {y =73}
y = y+1;
X = x-1;

What can be a good Invariant?

Inv={y=4—-xAx2>1)}



How do we know that these
are the right rules?



Soundness

If we canderive -c : P = (Q through
the rules of the logic, then the triple

c : P = O isvald.



Are the rules we presented
sound?



Completeness

Ifatriple ¢ : P = Q isvalid, then

we canderive —c : P = (O through

the rules of the logic.



Are the rules we presented
complete?
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Relative Completeness
P=5 —Cc:5=R R=Q
c: P=0

Ifatriple ¢ : Pre = Post isvalid, and we

have an oracle to derive all the true statements
of the form P=S and of the form R=0 ,which

we can use in applications of the conseq rule, then
we can derive —Cc : Pre = Post through

the rules of the logic.



