CS 599: Formal Methods in Security and Privacy

Hoare Triples and Hoare Logic

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

Specifications - Hoare triple

Precondition
(a logical formula)

Program

Postcondition
(a logical formula)

Rules of Hoare Logic Composition

$$
\vdash C ; c^{\prime}: \quad P \Rightarrow Q
$$

Rules of Hoare Logic Composition

$$
\frac{\vdash C: P \Rightarrow R}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

Rules of Hoare Logic Composition

$$
\vdash \mathrm{C}: \mathrm{P} \Rightarrow \mathrm{R} \quad \vdash \mathrm{C}^{\prime}: \mathrm{R} \Rightarrow \mathrm{Q}
$$

$$
\vdash C ; c^{\prime}: \quad P \Rightarrow Q
$$

Rules of Hoare Logic Composition

$$
\vdash \mathrm{C}: \mathrm{P} \Rightarrow \mathrm{R} \quad \vdash \mathrm{C}^{\prime}: \mathrm{R} \Rightarrow \mathrm{Q}
$$

$$
\vdash C ; c^{\prime}: P \Rightarrow Q
$$

Is this correct?

$$
\begin{gathered}
\text { Some Instances } \\
\vdash x:=z * 2 ; z:=x * 2 \\
:\{(z * 2) * 2=8\} \Rightarrow\{z=8\} \\
\text { Is this a valid triple? }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Some Instances } \\
& \vdash x:=z * 2 ; z:=x * 2 \\
& :\left\{\left(z^{*} 2\right) * 2=8\right\} \Rightarrow\{z=8\} \\
& \text { Is this a valid triple? }
\end{aligned}
$$

Some Instances

How can we prove it?

$$
\vdash x:=z * 2 ; z:=x * 2:\{(z * 2) * 2=8\} \Rightarrow\{z=8\}
$$

Some Instances

How can we prove it?

$\vdash x:=z * 2:\left\{\left(z^{*} 2\right) * 2=8\right\} \Rightarrow\{x * 2=8\}$
$\vdash z:=x * 2:\{x * 2=8\} \Rightarrow\{z=8\}$
$\vdash x:=z^{*} 2 ; z:=x * 2:\left\{\left(z^{*} 2\right) * 2=8\right\} \Rightarrow\{z=8\}$

Correctness Composition Rule

$$
\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

To show this rule correct we need to show the validity $C ; C^{\prime}: P \Rightarrow Q$ for every c, c^{\prime}, P, Q.

Correctness Composition Rule

$$
\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

To show this rule correct we need to show the validity $C ; C^{\prime}: P \Rightarrow Q$ for every C, c^{\prime}, P, Q.

For every m such that $P(m)$ and m such that $\left\{c, c^{\prime}\right\}_{m}=m^{\prime}$ we need $Q\left(m^{\prime}\right)$.

Correctness Composition Rule $\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}$

Correctness Composition Rule

$$
\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

By our semantics: $\left\{c ; c^{\prime}\right\}_{m}=m^{\prime}$ if and only if
there is $\mathrm{m}^{\prime \prime}$ such that

$$
\{c\}_{\mathrm{m}}=\mathrm{m}^{\prime \prime} \text { and }\left\{\mathrm{c}^{\prime}\right\}_{\mathrm{m}^{\prime}}=\mathrm{m}^{\prime} .
$$

Correctness Composition Rule

$$
\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

By our semantics: $\left\{\mathrm{c} ; \mathrm{c}^{\prime}\right\}_{\mathrm{m}}=\mathrm{m}^{\prime}$ if and only if there is $\mathrm{m}^{\prime \prime}$ such that

$$
\{c\}_{\mathrm{m}}=\mathrm{m}^{\prime \prime} \text { and }\left\{\mathrm{c}^{\prime}\right\}_{\mathrm{m}^{\prime}}=\mathrm{m}^{\prime} .
$$

Assuming $c: P \Rightarrow R$ and $c^{\prime}: R \Rightarrow Q$ valid, if $P(m)$ we can show $R\left(\mathrm{~m}^{\prime \prime}\right)$ and if $R\left(\mathrm{~m}^{\prime \prime}\right)$ we can show
$Q\left(\mathrm{~m}^{\prime}\right)$, hence since we have $P(\mathrm{~m})$ we can conclude $Q\left(\mathrm{~m}^{\prime}\right)$.

Correctness Composition Rule

$$
\frac{\vdash C: P \Rightarrow R \quad \vdash C^{\prime}: R \Rightarrow Q}{\vdash C ; C^{\prime}: P \Rightarrow Q}
$$

By our semantics: $\left\{\mathrm{c} ; \mathrm{c}^{\prime}\right\}_{\mathrm{m}}=\mathrm{m}^{\prime}$ if and only if there is $\mathrm{m}^{\prime \prime}$ such that

$$
\{c\}_{\mathrm{m}}=\mathrm{m}^{\prime \prime} \text { and }\left\{\mathrm{c}^{\prime}\right\}_{\mathrm{m}^{\prime}}=\mathrm{m}^{\prime} .
$$

Assuming $c: P \Rightarrow R$ and $c^{\prime}: R \Rightarrow Q$ valid, if $P(m)$ we can show $R\left(\mathrm{~m}^{\prime \prime}\right)$ and if $R\left(\mathrm{~m}^{\prime \prime}\right)$ we can show
$Q\left(m^{\prime}\right)$, hence since we have $P(m)$ we can conclude $Q\left(\mathrm{~m}^{\prime}\right)$.

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash x:=z^{*} 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some Instances

What is the issue?

$$
\vdash x:=z^{*} 2 ; z:=x * 2:\left\{z^{*} 4=8\right\} \Rightarrow\{z=8\}
$$

Some Instances

What is the issue?

$\vdash x:=z * 2:\left\{z^{*} 4=8\right\} \Rightarrow\{x * 2=8\}$

$$
\vdash z:=x * 2:\{x * 2=8\} \Rightarrow\{z=8\}
$$

$$
\vdash x:=z^{*} 2 ; z:=x * 2:\left\{z^{*} 4=8\right\} \Rightarrow\{z=8\}
$$

Some Instances

What is the issue?

$\overline{\vdash x:=z * ?}:\left\{z^{* 4=8\} \Rightarrow\{x * 2=8}\right\}$

$$
\vdash z:=x * 2:\{x * 2=8\} \Rightarrow\{z=8\}
$$

$$
\vdash x:=z^{*} 2 ; z:=x * 2:\left\{z^{*} 4=8\right\} \Rightarrow\{z=8\}
$$

Rules of Hoare Logic Consequence

$$
\mathrm{P} \Rightarrow \mathrm{~S} \quad \vdash \mathrm{C}: \mathrm{S} \Rightarrow \mathrm{R} \quad \mathrm{R} \Rightarrow \mathrm{Q}
$$

$$
\vdash c: \quad P \Rightarrow Q
$$

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash x:=z^{*} 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some examples

$$
\begin{aligned}
\vdash x:=z * 2 ; z:= & x * 2 \\
& :\{z * 4=8\} \Rightarrow\{z=8\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some Instances

$$
\vdash x:=z * 2\{(z * 2) * 2=8\} \Rightarrow\{x * 2=8\}
$$

$$
\{z * 4=8\} \Rightarrow\{(z * 2) * 2=8\}
$$

$\vdash x:=z * 2:\left\{z^{*} 4=8\right\} \Rightarrow\{x * 2=8\} \quad \vdash z:=x * 2:\{x * 2=8\} \Rightarrow\{z=8\}$
$\vdash x:=z^{*} 2 ; z:=x^{*} 2\left\{z^{*} 4=8\right\} \Rightarrow\{z=8\}$

Rules of Hoare Logic If then else

トif e then C_{1} else C_{2} : $P \Rightarrow Q$

Rules of Hoare Logic If then else

$$
\vdash \mathrm{c}_{1}: \mathrm{P} \Rightarrow \mathrm{Q} \quad \vdash \mathrm{c}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

トif e then c_{1} else $c_{2}: P \Rightarrow Q$

Rules of Hoare Logic If then else

$$
\frac{\vdash c_{1}: P \Rightarrow Q}{\vdash \text { if } e \text { then } c_{1} \text { else } c_{2}: P \Rightarrow Q}
$$

Some examples

\vdash if $\mathrm{y}=0$ then skip else $x:=x+1 ; x:=x-1$

$$
:\{x=1\} \Rightarrow\{x=1\}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash \text { if } \mathrm{y}=0 \text { then skip else } x:= & x+1 ; x:=x-1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
\vdash \text { if } \mathrm{y}=0 \text { then skip else } x: & =x+1 ; x:=x-1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some examples

$$
\begin{aligned}
\vdash \text { if } \mathrm{y}=0 \text { then skip else } x: & x+1 ; x:=x-1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

Is this a valid triple?
Can we prove it with the rules that we have?

Some Instances

\vdash skip: $\{x=1\} \Rightarrow\{x=1\} \quad \vdash x:=x+1 ; x:=x-1:\{x=1\} \Rightarrow\{x=1\}$
\vdash if $y=0$ then skip else $x:=x+1 ; x:=x-1$

$$
:\{x=1\} \Rightarrow\{x=1\}
$$

Rules of Hoare Logic If then else

$$
\vdash \mathrm{C}_{1}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

$$
\vdash \mathrm{C}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

トif e then c_{1} else $c_{2}: P \Rightarrow Q$

Rules of Hoare Logic If then else

$$
\frac{\vdash \mathrm{c}_{1}: \mathrm{P} \Rightarrow \mathrm{Q}}{\vdash \mathrm{if} \text { e then } \mathrm{c}_{1} \text { else } \mathrm{c}_{2}: \stackrel{\mathrm{c}_{2}}{ }: \mathrm{P} \Rightarrow \mathrm{Q} \Rightarrow \mathrm{Q}}
$$

Is this strong enough?

Some examples

\vdash if false then skip else $x=x+1$

$$
:\{x=0\} \Rightarrow\{x=1\}
$$

Is this a valid triple?

Some examples

\vdash if false then skip else $x=x+1$

$$
:\{x=0\} \Rightarrow\{x=1\}
$$

Is this a valid triple?

Some examples

$$
\begin{aligned}
& \vdash \text { if false then skip else } x=x+1 \\
& \qquad\{x=0\} \Rightarrow\{x=1\}
\end{aligned}
$$

Is this a valid triple?

Can we prove it with the rules that we have?

Some examples

$$
\begin{aligned}
& \vdash \text { if false then skip else } x=x+1 \\
& \qquad\{x=0\} \Rightarrow\{x=1\}
\end{aligned}
$$

Is this a valid triple?

Can we prove it with the rules that we have?

Rules of Hoare Logic If then else

$$
\frac{\vdash c_{1}: e \wedge \mathrm{P} \Rightarrow \mathrm{Q} \quad \vdash \mathrm{c}_{2}: \neg \mathrm{e} \wedge \mathrm{P} \Rightarrow \mathrm{Q}}{\text { kif } e \text { then } \mathrm{c}_{1} \text { else } \mathrm{c}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}}
$$

Rules of Hoare Logic If then else

$$
\frac{\vdash c_{1}: e \wedge P \Rightarrow Q \quad \vdash c_{2}: \neg e \wedge P \Rightarrow Q}{\vdash \text { if } e \text { then } c_{1} \text { else } c_{2}: P \Rightarrow Q}
$$

Is this correct?

Homework

Rules of Hoare Logic: Abort

\vdash Abort: ? \Rightarrow ?

Rules of Hoare Logic: Abort

$$
\vdash \text { Abort: ? } \Rightarrow \text { ? }
$$

What can be a good specification?

Validity of Hoare triple We say that the triple $c: P \Rightarrow Q$ is valid if and only if
for every memory m such that $P(m)$ and memory m' such that $\{c\}_{m}=m^{\prime}$ we have $Q\left(m^{\prime}\right)$.

Rules of Hoare Logic: Abort

\vdash Abort: $\mathrm{P} \Rightarrow \mathrm{Q}$

Rules of Hoare Logic: Abort

$$
\vdash A b o r t: P \Rightarrow Q
$$

To show this rule correct we need to show the validity Abort: $P \Rightarrow Q$ for every P, Q.

Rules of Hoare Logic: Abort

$$
\vdash A b o r t: P \Rightarrow Q
$$

To show this rule correct we need to show the validity Abort: $P \Rightarrow Q$ for every P, Q.

For every m such that $P(m)$ and m ' such that $\{\text { Abort }\}_{m}=m^{\prime}$ we need $Q\left(m^{\prime}\right)$.

Rules of Hoare Logic: Abort

$$
\vdash A b o r t: P \Rightarrow Q
$$

To show this rule correct we need to show the validity Abort: $\mathrm{P} \Rightarrow \mathrm{Q}$ for every P, Q.

For every m such that $P(m)$ and m ' such that $\{\text { Abort }\}_{m}=m^{\prime}$ we need $Q\left(m^{\prime}\right)$.

Vacuously True

Rules of Hoare Logic While

-while e do c : ? ?

Rules of Hoars Logic While

$$
P \Rightarrow \neg
$$

\vdash while e do c : P $\Rightarrow \mathrm{P}$

Rules of Hoare Logic While
 $$
P \Rightarrow e \quad \vdash c: P \Rightarrow P
$$

\vdash while e do c : P \Rightarrow P

Rules of Hoars Logic While

$$
\vdash C: e \wedge P \Rightarrow P
$$

\vdash while e do $c: P \Rightarrow P \wedge \neg e$ $\frac{\uparrow}{\text { Invariant }}$

An example

$$
\begin{aligned}
\vdash \text { while } x=0 & \text { do } x:=x+1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

An example

$$
\begin{aligned}
\vdash \text { while } x= & 0 \text { do } x:=x+1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

What can be a good Invariant?

An example

$$
\begin{aligned}
\vdash \text { while } x= & 0 \text { do } x:=x+1 \\
& :\{x=1\} \Rightarrow\{x=1\}
\end{aligned}
$$

What can be a good Invariant?

$$
\operatorname{Inv}=\{x=1\}
$$

An example

\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1\}$

An example

\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1 \wedge x \neq 0\} \quad x=1 \wedge x \neq 0 \Rightarrow x=1$
\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1\}$

An example

$$
\frac{x=1 \wedge x=0 \Rightarrow x+1=1 \quad \vdash x:=x+1:\{x+1=1\} \Rightarrow\{x=1\}}{\vdash x:=x+1:\{x=1 \wedge x=0\} \Rightarrow\{x=1\}}
$$

\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1 \wedge x \neq 0\} \quad x=1 \wedge x \neq 0 \Rightarrow x=1$
\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1\}$

An example

$$
\frac{x=1 \wedge x=0 \Rightarrow x+1=1 \quad \vdash x:=x+1:\{x+1=1\} \Rightarrow\{x=1\}}{\vdash x:=x+1:(\{x=1 \lambda x=0\} \Rightarrow(x=1\})}
$$

\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1 \lambda x \neq 0\} \quad x=1 \wedge x \neq 0 \Rightarrow x=1$
\vdash while $x=0$ do $x:=x+1:\{x=1\} \Rightarrow\{x=1\}$

Another example

$$
\vdash \left\lvert\, \begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=1 ; \\
& \text { while } \mathrm{x}>1 \text { do }
\end{aligned} \quad\right.:\{\text { true }\} \Rightarrow\{y=3\}
$$

How can we derive this?

Another example

$$
\vdash \left\lvert\, \begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=1 ; \\
& \text { while } \mathrm{x}>1 \text { do }
\end{aligned} \quad\right.:\{\text { true }\} \Rightarrow\{y=3\}
$$

What can be a good Invariant?

Another example

$$
\vdash \left\lvert\, \begin{aligned}
& \mathrm{x}:=3 ; \\
& \mathrm{y}:=1 ; \\
& \text { while } \mathrm{x}>1 \text { do }
\end{aligned} \quad\right.:\{\text { true }\} \Rightarrow\{y=3\}
$$

What can be a good Invariant?

$$
\operatorname{Inv}=\{y=4-x \wedge x \geq 1\}
$$

How do we know that these are the right rules?

Soundness

If we can derive $\vdash C: P \Rightarrow Q$ through the rules of the logic, then the triple $C \quad \mathrm{P} \Rightarrow \mathrm{Q}$ is valid.

Are the rules we presented sound?

Completeness

If a triple $C: P \Rightarrow Q$ is valid, then we can derive $\vdash \mathrm{C}: ~ \mathrm{P} \Rightarrow \mathrm{Q}$ through the rules of the logic.

Are the rules we presented complete?

Relative Completeness

$$
\mathrm{P} \Rightarrow \mathrm{~S} \quad \vdash \mathrm{C}: S \Rightarrow \mathrm{R} \quad \mathrm{R} \Rightarrow \mathrm{Q}
$$

$$
\vdash c: \quad P \Rightarrow Q
$$

Relative Completeness

$$
P \Rightarrow S \quad \vdash C: S \rightarrow R \quad R \Rightarrow Q
$$

$$
\vdash \mathrm{C}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

If a triple C : Pre \Rightarrow Post is valid, and we have an oracle to derive all the true statements of the form $P \Rightarrow S$ and of the form $R \Rightarrow Q$,which we can use in applications of the conseq rule, then we can derive $\vdash \mathrm{C}:$ Pre \Rightarrow Post through the rules of the logic.

