CS 599: Formal Methods in Security and Privacy
Hoare Triples and Hoare Logic

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
Specifications - Hoare triple

Precondition
Program
Postcondition

$c : P \Rightarrow Q$

Precondition (a logical formula)
Program
Postcondition (a logical formula)
Rules of Hoare Logic
Composition

\[\vdash c; c' : P \Rightarrow Q \]
Rules of Hoare Logic
Composition

\[\vdash c : P \Rightarrow R \]

\[\vdash c ; c' : P \Rightarrow Q \]
Rules of Hoare Logic Composition

\[
\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q}
\]
Is this correct?
Some Instances

\[\vdash x := z \cdot 2; z := x \cdot 2 \]

\[\therefore \{ (z \cdot 2) \cdot 2 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple?
Some Instances

\[\vdash x := z \times 2; \ z := x \times 2 \]

\[\{ \left(z \times 2 \right) \times 2 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple? ✓
Some Instances

How can we prove it?

\[\vdash x := z \ast 2; z := x \ast 2 : \{(z \ast 2) \ast 2 = 8\} \Rightarrow \{z = 8\} \]
Some Instances

How can we prove it?

\[\vdash x := z \cdot 2 : \{(z \cdot 2) \cdot 2 = 8\} \Rightarrow \{x \cdot 2 = 8\} \]

\[\vdash z := x \cdot 2 : \{x \cdot 2 = 8\} \Rightarrow \{z = 8\} \]

\[\vdash x := z \cdot 2 ; z := x \cdot 2 : \{(z \cdot 2) \cdot 2 = 8\} \Rightarrow \{z = 8\} \]
Correctness Composition Rule

\[
\begin{array}{c}
\vdash c : P \Rightarrow R \\
\vdash c' : R \Rightarrow Q \\
\hline
\vdash c ; c' : P \Rightarrow Q
\end{array}
\]

To show this rule correct we need to show the validity \(c ; c' : P \Rightarrow Q \) for every \(c, c', P, Q \).
Correctness Composition Rule

\[
\frac{\Gamma \vdash c : P \Rightarrow R \quad \Gamma \vdash c' : R \Rightarrow Q}{\Gamma \vdash c; c' : P \Rightarrow Q}
\]

To show this rule correct we need to show the validity \(c; c' : P \Rightarrow Q \) for every \(c, c', P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{c, c'\}_{m=m'} \) we need \(Q(m') \).
Correctness Composition Rule

\[\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q \]

\[\vdash c ; c' : P \Rightarrow Q \]
Correctness Composition Rule

\[\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q} \]

By our semantics: \(\{ c ; c' \} _m = m' \) if and only if there is \(m'' \) such that \(\{ c \} _m = m'' \) and \(\{ c' \} _{m''} = m' \).
Correctness Composition Rule

\[\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q} \]

By our semantics: \(\{ c ; c' \}_m = m' \) if and only if there is \(m'' \) such that \(\{ c \}_m = m'' \) and \(\{ c' \}_m'' = m' \).

Assuming \(c : P \Rightarrow R \) and \(c' : R \Rightarrow Q \) valid, if \(P(m) \) we can show \(R(m''') \) and if \(R(m''') \) we can show \(Q(m') \), hence since we have \(P(m) \) we can conclude \(Q(m') \).
Correctness Composition Rule

\[\frac{\vdash c : P \Rightarrow R \quad \vdash c' : R \Rightarrow Q}{\vdash c ; c' : P \Rightarrow Q} \]

By our semantics: \(\{c ; c'\} \equiv m = m' \) if and only if there is \(m'' \) such that \(\{c\} = m'' \) and \(\{c'\} = m'' = m' \).

Assuming \(c : P \Rightarrow R \) and \(c' : R \Rightarrow Q \) valid, if \(P(m) \) we can show \(R(m'') \) and if \(R(m'') \) we can show \(Q(m') \), hence since we have \(P(m) \) we can conclude \(Q(m') \).
Some examples

⊢ \(x := z \times 2; z := x \times 2 \)

: \(\{ z \times 4 = 8 \} \Rightarrow \{ z = 8 \} \)

Is this a valid triple?
Some examples

\[\vdash x := z * 2 ; z := x * 2 \]
\[: \quad \{ z * 4 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple? ✓
Some examples

\[\vdash x := z \times 2; z := x \times 2\]

\[\vdash z \times 4 = 8 \Rightarrow \{z = 8\}\]

Is this a valid triple?

Can we prove it with the rules that we have?

✓
Some examples

\[
\Gamma \vdash x := z \times 2; \; z := x \times 2
\]

\[
: \{z \times 4 = 8\} \Rightarrow \{z = 8\}
\]

Is this a valid triple?

✓

Can we prove it with the rules that we have?

✗
Some Instances

⊢ $x := z \cdot 2; z := x \cdot 2 : \{z \cdot 4 = 8\} \Rightarrow \{z = 8\}$

What is the issue?
Some Instances

What is the issue?

\[\vdash x := z * 2 : \{z * 4 = 8\} \Rightarrow \{x * 2 = 8\}\]

\[\vdash z := x * 2 : \{x * 2 = 8\} \Rightarrow \{z = 8\}\]

\[\vdash x := z * 2; z := x * 2 : \{z * 4 = 8\} \Rightarrow \{z = 8\}\]
Some Instances

What is the issue?

\[\vdash x := z \ast 2 : \{ z \ast 4 = 8 \} \Rightarrow \{ x \ast 2 = 8 \} \]
\[\vdash z := x \ast 2 : \{ x \ast 2 = 8 \} \Rightarrow \{ z = 8 \} \]
\[\vdash x := z \ast 2; z := x \ast 2 : \{ z \ast 4 = 8 \} \Rightarrow \{ z = 8 \} \]
Rules of Hoare Logic

Consequence

\[\frac{P \Rightarrow S \quad \Gamma \vdash c : S \Rightarrow R \quad R \Rightarrow Q}{\Gamma \vdash c : P \Rightarrow Q} \]
Some examples

\[\vdash x := z \times 2; z := x \times 2 \]

\[: \{ z \times 4 = 8 \} \implies \{ z = 8 \} \]

Is this a valid triple?
Some examples

\[\vdash x \leftarrow z \cdot 2 ; z \leftarrow x \cdot 2 \]

\[: \{ z \cdot 4 = 8 \} \Rightarrow \{ z = 8 \} \]

Is this a valid triple? ✓
Some examples

\[
\vdash x := z * 2; z := x * 2 \\
: \{ z * 4 = 8 \} \Rightarrow \{ z = 8 \}
\]

Is this a valid triple? ✓
Can we prove it with the rules that we have?
Some examples

⊢ $x := z * 2; z := x * 2$

$\vdash \{ z * 4 = 8 \} \Rightarrow \{ z = 8 \}$

Is this a valid triple? ✓

Can we prove it with the rules that we have? ✓
Some Instances

\[\vdash x := z \cdot 2 \{ (z \cdot 2)^2 = 8 \} \Rightarrow \{ x \cdot 2 = 8 \} \]

\[\{ z \cdot 4 = 8 \} \Rightarrow \{ (z \cdot 2)^2 = 8 \} \]

\[\vdash x := z \cdot 2 : \{ z \cdot 4 = 8 \} \Rightarrow \{ x \cdot 2 = 8 \} \quad \vdash z := x \cdot 2 : \{ x \cdot 2 = 8 \} \Rightarrow \{ z = 8 \} \]

\[\vdash x := z \cdot 2 ; z := x \cdot 2 : \{ z \cdot 4 = 8 \} \Rightarrow \{ z = 8 \} \]
Rules of Hoare Logic

If then else

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]
Rules of Hoare Logic
If then else

\[
\begin{align*}
\vdash c_1 : P \Rightarrow Q & \quad \vdash c_2 : P \Rightarrow Q \\
\hline
\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q
\end{align*}
\]
Rules of Hoare Logic
If then else

\[
\begin{align*}
\vdash c_1 : P \Rightarrow Q \\
\vdash c_2 : P \Rightarrow Q
\end{align*}
\]

\[
\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q
\]

Is this correct?
Some examples

\[
\begin{align*}
\text{⊢ if } y = 0 \text{ then skip else } & x := x + 1; x := x - 1 \\
& : \{x = 1\} \Rightarrow \{x = 1\}
\end{align*}
\]

Is this a valid triple?
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x - 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x − 1
 : {x = 1} ⇒ {x = 1}

Is this a valid triple?

Can we prove it with the rules that we have?
Some examples

⊢ if y = 0 then skip else x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓

Can we prove it with the rules that we have? ✓
Some Instances

⊢ \text{skip}: \{ x = 1 \} \Rightarrow \{ x = 1 \} \quad \vdash x := x + 1; x := x - 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \}

\vdash \text{if } y = 0 \text{ then skip else } x := x + 1; x := x - 1

: \{ x = 1 \} \Rightarrow \{ x = 1 \}
Rules of Hoare Logic
If then else

\[\vdash c_1 : P \Rightarrow Q \quad \vdash c_2 : P \Rightarrow Q \]

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]
Rules of Hoare Logic
If then else

\[\vdash c_1 : P \Rightarrow Q \quad \vdash c_2 : P \Rightarrow Q \]

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

Is this strong enough?
Some examples

⊢ if false then skip else \(x = x + 1 \)

: \(\{ x = 0 \} \Rightarrow \{ x = 1 \} \)

Is this a valid triple?
Some examples

⊢ if false then skip else $x = x + 1$

: $\{x = 0\} \Rightarrow \{x = 1\}$

Is this a valid triple? ✓
Some examples

⊢ if false then skip else $x = x + 1$

$: \{ x = 0 \} \Rightarrow \{ x = 1 \}$

Is this a valid triple? ✓

Can we prove it with the rules that we have?
Some examples

\[\vdash \text{if false then skip else } x = x + 1 \]
\[: \{x = 0\} \Rightarrow \{x = 1\} \]

Is this a valid triple?

Can we prove it with the rules that we have?

✓

✗
Rules of Hoare Logic
If then else

\[\vdash if \; e \; then \; c_1 \; else \; c_2 : \; P \Rightarrow Q \]

Is this correct?
Rules of Hoare Logic
If then else

\[\begin{align*}
\vdash c_1 &: e \land P \Rightarrow Q \\
\vdash c_2 &: \neg e \land P \Rightarrow Q
\end{align*} \]

\[\vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : P \Rightarrow Q \]

Is this correct?

Homework
Rules of Hoare Logic: Abort

\[\vdash Abort: \ ? \Rightarrow \ ? \]
Rules of Hoare Logic: Abort

⊢ Abort: ?⇒?

What can be a good specification?
Validity of Hoare triple
We say that the triple $c : P \implies Q$ is valid if and only if for every memory m such that $P(m)$ and memory m' such that $\{c\}_m = m'$ we have $Q(m')$.
Rules of Hoare Logic:

\[\text{Abort} \]

\[\vdash \text{Abort} : P \Rightarrow Q \]
Rules of Hoare Logic:

Abort

\[\vdash \text{Abort} : P \Rightarrow Q \]

To show this rule correct we need to show the validity \(\text{Abort} : P \Rightarrow Q \) for every \(P, Q \).
Rules of Hoare Logic: Abort

\[\vdash \text{Abort} : P \Rightarrow Q \]

To show this rule correct we need to show the validity \(\text{Abort} : P \Rightarrow Q \) for every \(P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{ \text{Abort} \}_{m=m'} \) we need \(Q(m') \).
Rules of Hoare Logic: Abort

\[\vdash \text{Abort} : P \Rightarrow Q \]

To show this rule correct we need to show the validity \(\text{Abort} : P \Rightarrow Q \) for every \(P, Q \).

For every \(m \) such that \(P(m) \) and \(m' \) such that \(\{\text{Abort}\}_{m=m'} \) we need \(Q(m') \).

Vacuously True
Rules of Hoare Logic
While

\[\vdash \text{while } e \text{ do } c : ?? \]
Rules of Hoare Logic

While

\[\Gamma \vdash \text{while } e \text{ do } c : P \Rightarrow P \]
Rules of Hoare Logic

While

\[P \Rightarrow e \quad \vdash \neg c : P \Rightarrow P \]

\[\vdash \text{while e do c} : P \Rightarrow P \]
Rules of Hoare Logic

While

\[\vdash \text{while } e \text{ do } c : P \Rightarrow P\]

\[\vdash c : e \land P \Rightarrow P\]

\[\vdash \text{while } e \text{ do } c : P \Rightarrow P \land \neg e\]

Invariant
An example

\[\text{\texttt{while} } x = 0 \text{ do } x := x + 1 \Rightarrow \{x = 1\} \Rightarrow \{x = 1\} \]

How can we derive this?
An example

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 \]
\[: \{ x = 1 \} \Rightarrow \{ x = 1 \} \]

What can be a good Invariant?
An example

\[\text{while } x = 0 \text{ do } x := x + 1 \Rightarrow \{ x = 1 \} \]

What can be a good Invariant?

\[Inv = \{ x = 1 \} \]
An example

⊢ while \(x = 0 \) do \(x := x + 1 \): \{x = 1\} ⇒ \{x = 1\}
An example

\[\text{\textbf{\# Example \#}}\]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1: \{x = 1\} \Rightarrow \{x = 1 \land x \neq 0\} \quad x = 1 \land x \neq 0 \Rightarrow x = 1\]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1: \{x = 1\} \Rightarrow \{x = 1\}\]
An example

\[x = 1 \land x = 0 \Rightarrow x + 1 = 1 \]

\[\vdash x := x + 1 : \{x + 1 = 1\} \Rightarrow \{x = 1\} \]

\[\vdash x := x + 1 : \{x = 1 \land x = 0\} \Rightarrow \{x = 1\} \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{x = 1\} \Rightarrow \{x = 1 \land x \neq 0\} \quad x = 1 \land x \neq 0 \Rightarrow x = 1 \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{x = 1\} \Rightarrow \{x = 1\} \]
An example

\[x = 1 \land x = 0 \Rightarrow x + 1 = 1 \]

\[\vdash x := x + 1 : \{ x + 1 = 1 \} \Rightarrow \{ x = 1 \} \]

\[\vdash x := x + 1 : \{ x = 1 \} \land x = 0 \Rightarrow \{ x = 1 \} \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \land x \neq 0 \} \quad x = 1 \land x \neq 0 \Rightarrow x = 1 \]

\[\vdash \text{while } x = 0 \text{ do } x := x + 1 : \{ x = 1 \} \Rightarrow \{ x = 1 \} \]
Another example

\[
\begin{align*}
x &:= 3; \\
y &:= 1; \\
\text{while } x > 1 \text{ do} & \\
& \quad y := y + 1; \\
x &:= x - 1;
\end{align*}
\]

\[\vdash \{ true \} \Rightarrow \{ y = 3 \}\]

How can we derive this?
Another example

\[x := 3; \]
\[y := 1; \]
\[\text{while } x > 1 \text{ do} \]
\[y := y + 1; \]
\[x := x - 1; \]

\[: \{\text{true}\} \Rightarrow \{y = 3\} \]

What can be a good Invariant?
Another example

\begin{verbatim}
x:=3;
y:=1;
while x > 1 do
 y := y+1;
 x := x-1;
\end{verbatim}

\[\vdash \{ true \} \Rightarrow \{ y = 3 \}\]

What can be a good Invariant?

\[\text{Inv} = \{ y = 4 - x \land x \geq 1 \}\]
How do we know that these are the right rules?
If we can derive $\vdash c : P \Rightarrow Q$ through the rules of the logic, then the triple $c : P \Rightarrow Q$ is valid.
Are the rules we presented sound?
Completeness

If a triple $c : P \Rightarrow Q$ is valid, then we can derive $\vdash c : P \Rightarrow Q$ through the rules of the logic.
Are the rules we presented complete?
Relative Completeness

P ⇒ S

⊢ c : S ⇒ R

R ⇒ Q

⊢ c : P ⇒ Q
Relative Completeness

\[\begin{align*}
& P \Rightarrow S && \vdash c : S \Rightarrow R && R \Rightarrow Q \\
\hline
& \vdash c : P \Rightarrow Q
\end{align*} \]

If a triple \(c : Pre \Rightarrow Post \) is valid, and we have an oracle to derive all the true statements of the form \(P \Rightarrow S \) and of the form \(R \Rightarrow Q \), which we can use in applications of the conseq rule, then we can derive \(\vdash c : Pre \Rightarrow Post \) through the rules of the logic.