
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Non-interference

Rules of Hoare Logic:
⊢skip: P⇒P

⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

⊢abort: P⇒Q

Rules of Hoare Logic:
⊢skip: P⇒P

⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

⊢abort: P⇒Q

Rules of Hoare Logic:
⊢skip: P⇒P

⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

⊢abort: P⇒Q

Weakest precondition
calculus

Predicate Transformer
Semantics

Given a program c and an assertion P
we can define an assertion wp(c,P)
which is the weakest precondition of c

and P, i.e. c: wp(c,P)⇒P is a valid
triple, and for every triple c:Q⇒P we

have Q⇒wp(c,P)

Weakest precondition
This is defined on the structure of commands:

wp(abort,P) = false
wp(skip,P) = P

wp(c;c’,P) = wp(c,wp(c’,P))

wp(x:=e,P) = P[x←{e}m]

wp(if e then ct else cf,P)=(e ⇒ wp(ct,P))∧(¬e ⇒ wp(ct,P))
wp(while e do c,P)= ∃n∊Nat Pn where

Weakest precondition
This is defined on the structure of commands:

wp(abort,P) = false
wp(skip,P) = P

wp(c;c’,P) = wp(c,wp(c’,P))

wp(x:=e,P) = P[x←{e}m]

wp(if e then ct else cf,P)=(e ⇒ wp(ct,P))∧(¬e ⇒ wp(ct,P))
wp(while e do c,P)= ∃n∊Nat Pn

P0 = ¬e ∧ P
where

Pn+1 = e ∧ wp(c,Pn)

Security as information flow
control

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Private vs Public
We want to distinguish confidential information
that need to be kept secret from nonconfidential
information that can be accessed by everyone.

We assume that every variable is tagged with
one either public or private.

x:public x:private

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

public public

private private

Is this program secure?

x:private
y:public

x:=y

Is this program secure?

x:private
y:public

x:=y

Secure

Is this program secure?

x:private
y:public

y:=x

Is this program secure?

x:private
y:public

y:=x

Insecure

Is this program secure?

x:private
y:public

y:=x;
y:=5

Is this program secure?

x:private
y:public

y:=x;
y:=5

Secure

Is this program secure?
x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Is this program secure?
x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Secure

Is this program secure?
x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

Is this program secure?
x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

Insecure

How can we formulate a
policy that forbids flows
from private to public?

Low equivalence
Two memories m1 and m2 are low
equivalent if and only if they coincide in
the value that they assign to public
variables.

In symbols: m1 ~low m2

Noninterference
A program prog is noninterferent if and
only if, whenever we run it on two
memories m1 and m2 that are low
equivalent, we obtain two memories m1’
and m2’ which are also low equivalent.

Noninterference
In symbols
m1 ~low m2 and {c}m1=m1’ and m2’{c}m2=m2’
implies m1’ ~low m2’

public public

private private

Does this program satisfy
noninterference?

x:private
y:public

x:=y

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k]

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=k,y=k] mout2=[x=k,y=k]

x:private
y:public

y:=x

Does this program satisfy
noninterference?

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k]

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=n1] mout2=[x=n2,y=n2]

x:private
y:public

y:=x
y:=5

Does this program satisfy
noninterference?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k]

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=5] mout2=[x=n2,y=5]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

mout1=[x=1,y=6] mout2=[x=1,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

mout1=[x=6,y=1] mout2=[x=5,y=0]

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Does this program satisfy
noninterference?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Does this program satisfy
noninterference?

No

How can we prove our
programs noninterferent?

Noninterference

Is this condition easy to check?

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Can we use the tool we
studied so far?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity talks only about one
memory. How can we manage

two memories?

Relational Property
In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V

U2

U1

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which
memory we are referring to.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Is this easy to check?

Rules of Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

Correctness of an axiom
We say that an axiom is correct if we can prove
the validity of each instance of the conclusion.

Correctness of an axiom
We say that an axiom is correct if we can prove
the validity of each instance of the conclusion.

Is this still good for RHL?

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

⊢skip~skip:P⇒P

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’,
m2’ such that {skip}m1=m1’ and {skip}m2=m2’
we need P(m1’,m2’).

⊢skip~skip:P⇒P

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’,
m2’ such that {skip}m1=m1’ and {skip}m2=m2’
we need P(m1’,m2’).

Follow easily by our semantics:
{skip}m=m

⊢skip~skip:P⇒P

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can
show {abort}m1=⊥ iff {abort}m2=⊥.

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can
show {abort}m1=⊥ iff {abort}m2=⊥.

Follow easily by our semantics:
{abort}m=⊥

Rules of Relational Hoare Logic
Assignment

⊢x1:=e1~x2:=e2:
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P

Rules of Relational Hoare Logic
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S

Rules of Relational Hoare Logic
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Rules of Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Is this correct?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗
Can we prove it with the

rule above?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗
✓Can we prove it with the

rule above?

Rules of Relational Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

Rules of Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>

How can we prove this?
x:private
y:public

x:=y

: =low ⇒ =low

x:private
y:public

y:=x

: =low ⇒ ¬(=low)

How can we prove this?

x:private
y:public

y:=x

: =low ⇒ ¬(=low)

How can we prove this?

Can we prove it?

x:private
y:public

y:=x
y:=5

: =low ⇒ =low

How can we prove this?

x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

: =low ⇒ =low

How can we prove this?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

Can we prove it?

Rules of Relational Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

Rules of Relational Hoare Logic
If then else - left

if e then c1 else c1’
 ~
 c2

⊢c1~c2:e<1> ⋀ P ⇒ Q
⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
If then else - left

 c1
 ~
if e then c2 else c2’

⊢c1~c2:e<2>⋀ P ⇒ Q
⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

x:public
z:public
y:private

y:=0
z:=0
if x=0 then z:=1;
if z=0 then y:=1

: =low ⇒ =low

How can we prove this?

x:private
z:public
y:private

y:=0
z:=0
if x=0 then z:=1;
if z=0 then y:=1

: =low ⇒ ¬(=low)

How can we prove this?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?

