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Non-interference



Rules of Hoare Logic: 
⊢skip: P⇒P

⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

⊢abort: P⇒Q
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Rules of Hoare Logic: 
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⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

⊢abort: P⇒Q



Weakest precondition 
calculus



Predicate Transformer  
Semantics

Given a program c and an assertion P 
we can define an assertion wp(c,P) 
which is the weakest precondition of c 

and P, i.e. c: wp(c,P)⇒P is a valid 
triple, and for every triple  c:Q⇒P we 

have Q⇒wp(c,P)



Weakest precondition
This is defined on the structure of commands:

wp(abort,P) = false
wp(skip,P) = P

wp(c;c’,P) = wp(c,wp(c’,P))

wp(x:=e,P) = P[x←{e}m]

wp(if e then ct else cf,P)=(e ⇒ wp(ct,P))∧(¬e ⇒ wp(ct,P))
wp(while e do c,P)= ∃n∊Nat Pn where



Weakest precondition
This is defined on the structure of commands:

wp(abort,P) = false
wp(skip,P) = P

wp(c;c’,P) = wp(c,wp(c’,P))

wp(x:=e,P) = P[x←{e}m]

wp(if e then ct else cf,P)=(e ⇒ wp(ct,P))∧(¬e ⇒ wp(ct,P))
wp(while e do c,P)= ∃n∊Nat Pn

P0 = ¬e ∧ P
where

Pn+1 = e ∧ wp(c,Pn)



Security as information flow 
control



Some Examples of Security 
Properties

• Access Control 
• Encryption 
• Malicious Behavior Detection 
• Information Filtering 
• Information Flow Control



Some Examples of Security 
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• Access Control 
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• Information Filtering 
• Information Flow Control



Private vs Public
We want to distinguish confidential information 
that need to be kept secret from nonconfidential 
information that can be accessed by everyone.

We assume that every variable is tagged with 
one either public or private. 

x:public x:private



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.

public public

private private



Is this program secure?

x:private 
y:public 

x:=y
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Is this program secure?

x:private 
y:public 

y:=x

Insecure



Is this program secure?

x:private 
y:public 

y:=x; 
y:=5



Is this program secure?
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Secure



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Secure



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

Insecure



How can we formulate a 
policy that forbids flows 
from private to public?



Low equivalence
Two memories m1 and m2 are low 
equivalent if and only if they coincide in 
the value that they assign to public 
variables.

In symbols: m1 ~low m2



Noninterference
A program prog is noninterferent if and 
only if, whenever we run it on two 
memories m1 and m2 that are low 
equivalent, we obtain two memories m1’ 
and m2’ which are also low equivalent.



Noninterference
In symbols 
m1 ~low m2 and {c}m1=m1’ and m2’{c}m2=m2’ 
implies m1’ ~low m2’

public public

private private



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y
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x:private 
y:public 

y:=x

Does this program satisfy 
noninterference?



x:private 
y:public 
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x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=5] mout2=[x=n2,y=5]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0
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Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

mout1=[x=1,y=6] mout2=[x=1,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

mout1=[x=6,y=1] mout2=[x=5,y=0]



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program satisfy 
noninterference?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program satisfy 
noninterference?

No



How can we prove our 
programs noninterferent?



Noninterference

Is this condition easy to check?

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Can we use the tool we 
studied so far?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Validity talks only about one 
memory. How can we manage 

two memories?



Relational Property
In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V

U2

U1

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which  
memory we are referring to.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

Is this easy to check?



Rules of Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



Correctness of an axiom
We say that an  axiom is correct if we can prove 
the validity of each instance of  the conclusion.



Correctness of an axiom
We say that an  axiom is correct if we can prove 
the validity of each instance of  the conclusion.

Is this still good for RHL?



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

⊢skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’, 
m2’ such that {skip}m1=m1’ and {skip}m2=m2’ 
we need P(m1’,m2’).

⊢skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’, 
m2’ such that {skip}m1=m1’ and {skip}m2=m2’ 
we need P(m1’,m2’).

Follow easily by our semantics: 
{skip}m=m  

⊢skip~skip:P⇒P



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
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⊢abort~abort:true⇒false
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validity of the quadruple abort~abort:T⇒F.



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the 
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can 
show {abort}m1=⊥ iff {abort}m2=⊥.



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the 
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can 
show {abort}m1=⊥ iff {abort}m2=⊥.

Follow easily by our semantics: 
{abort}m=⊥  



Rules of Relational Hoare Logic 
Assignment

⊢x1:=e1~x2:=e2:  
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P



Rules of Relational Hoare Logic 
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S



Rules of Relational Hoare Logic 
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Rules of Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Is this correct?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗
Can we prove it with the 

rule above?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x=n}⇒{x=n+1}

An example

Is this a valid quadruple? ✗
✓Can we prove it with the 

rule above?



Rules of Relational Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>



Rules of Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>



How can we prove this?
x:private 
y:public 

x:=y 

: =low ⇒ =low



x:private 
y:public 

y:=x 

: =low ⇒ ¬(=low)

How can we prove this?



x:private 
y:public 

y:=x 

: =low ⇒ ¬(=low)

How can we prove this?

Can we prove it?



x:private 
y:public 

y:=x 
y:=5 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?

Can we prove it?



Rules of Relational Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>



Rules of Relational Hoare Logic 
If then else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2:e<1> ⋀ P ⇒ Q
⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If then else - left

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2:e<2>⋀ P ⇒ Q
⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?



x:public 
z:public 
y:private 

y:=0 
z:=0 
if x=0 then z:=1; 
if z=0 then y:=1 

: =low ⇒ =low

How can we prove this?



x:private 
z:public 
y:private 

y:=0 
z:=0 
if x=0 then z:=1; 
if z=0 then y:=1 

: =low ⇒ ¬(=low)

How can we prove this?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?


