
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 599: Formal Methods in
Security and Privacy 

Noninterference and Relational Hoare Logic

From the previous classes

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

public public

private private

NonInterference

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Some Rules of Relational Hoare Logic
⊢skip~skip:P⇒P
⊢abort~abort:true⇒false
⊢x1:=e1~x2:=e2:
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P
⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S
P⇒S R⇒Q

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Some Rules of Relational Hoare Logic

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>

One-sided Rules

if e then c1 else c1’ ~
 c2

⊢c1~c2:e<1> ⋀ P ⇒ Q ⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

 c1 ~
if e then c2 else c2’

⊢c1~c2:e<2>⋀ P ⇒ Q ⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q

Today: More Relational
Hoare Logic

Assignment Example

⊢x:=x+1 ~ y:=y-1:
 x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

Assignment Example

⊢x:=x+1 ~ y:=y-1:
(x<1>=-y<2>)
[(x+1)<1>/x<1>,(y-1)<2>/y<2>]
⇒
x<1> = -y<2>

Assignment Example

⊢x:=x+1 ~ y:=y-1:
(x<1> = -y<2>)
[(x<1>+1)/x<1>,(y<2>-1)/y<2>]
 ⇒
x<1> = -y<2>

Consequence + Assignment
Example

⊢x:=x+1 ~ y:=y-1:
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

Rules of Relational Hoare Logic
If then else - right

 c1
 ~
if e then c2 else c2’

⊢c1~c2:e<2>⋀ P ⇒ Q
⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q

x:public
z:private
y:private

y:=0
z:=0
if x=0 then z:=1;
if z=0 then y:=1

: =low ⇒ =low

How can we prove this?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ =low

How can we prove this?

Rules of Relational Hoare-Logic
One-sided Rules

if e then c1 else c1’
 ~
 c2

⊢ :P⇒Q

What do we do if our two programs
have different forms? There are
three pairs of one-sided rules.

Rules of Relational Hoare Logic
If-then-else — left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
If-then-else — right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
Assignment — left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

Assignment — left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

Assignment — right

⊢skip ~ x:=e:
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll
ignore for now

Rules of Relational Hoare Logic
Program Equivalence Rule

⊨P:c1≡c2 means {c1}m = {c2}m
for all m such that P(m)

⊨P:c1’≡c1

⊢c1~c2: P ⇒ Q
⊢c1’~c2’: P ⇒ Q⊨P:c2’≡c2

Rules of Relational Hoare Logic
Program Equivalences

⊨P : skip;c ≡ c

⊨P : c;skip ≡ c

⊨P:(c1;c2);c3 ≡ c1;(c2;c3)

…

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2;c3 ~ c1’;c2’;c3’: P ⇒ Q

⊢c1;c2 ~ c1’: P ⇒ R
⊢c3 ~ c2’;c3’: R ⇒ Q

We can combine the Composition and
Program Equivalence Rules to split
commands where we like:

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ skip: P ⇒ R
⊢c2 ~ c1’: R ⇒ Q

⊢c1;c2 ~ skip;c1’: P ⇒ Q

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ c1’: P ⇒ R
⊢c2 ~ skip: R ⇒ Q

⊢c1;c2 ~ c1’;skip: P ⇒ Q

Relational Hoare Logic in
EasyCrypt

• EasyCrypt’s implementation of
Relational Hoare Logic has much in
common with its implementation of
Hoare Logic.

• Look for the pRHL tactics in Section
3.4 of the EasyCrypt Reference
Manual (the “p” stands for
“probabilistic”, but ignore that for now).

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

How do we check this?

Relative Completeness

If a quadruple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Possible projects
• Look at how to guarantee trace-based

noninterference.
• Look at how to guarantee side-channel free

noninterference.
• Look at the relations between self-composition and

relational logic.

In Easycrypt

Not related to Easycrypt
• Look at type systems for non-interference.
• Look at other methods for relational reasoning
• Look at declassification

