CS 599: Formal Methods in Security and Privacy Noninterference and Relational Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

Information Flow Control We want to guarantee that confidential information do not flow in what is considered nonconfidential.

NonInterference In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$: 1) {c}m_1= \perp iff {c}m_2= \perp 2) {c}m_1=m_1' and {c}m_2=m_2' implies $m_1' \sim_{low} m_2'$

Validity of Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: 1) $\{c_1\}_{m1} = \perp \text{ iff } \{c_2\}_{m2} = \perp$ 2) $\{c_1\}_{m1} = m_1 \text{ and } \{c_2\}_{m2} = m_2 \text{ implies}$ $Q(m_1', m_2').$ Some Rules of Relational Hoare Logic

⊢skip~skip:P⇒P

Habort~abort:true⇒false

 $\vdash x_1 := e_1 \sim x_2 := e_2 :$ $P[e_1 < 1 > / x_1 < 1 > , e_2 < 2 > / x_2 < 2 >] \Rightarrow P$ $\vdash c_1 \sim c_2 : P \Rightarrow R \quad \vdash c_1 ' \sim c_2 ' : R \Rightarrow S$ $\vdash c_1 ; c_1 ' \sim c_2 ; c_2 ' : P \Rightarrow S$ $\frac{P \Rightarrow S \quad \vdash c_1 \sim c_2 : S \Rightarrow R \quad R \Rightarrow Q }{\vdash c_1 \sim c_2 : P \Rightarrow Q}$

Some Rules of Relational Hoare Logic $\vdash c_1 \sim c_2: e_1 < 1 > \land P \Rightarrow Q \qquad P \Rightarrow e_1 < 1 > = e_2 < 2 >$ $\vdash c_1' \sim c_2' : \neg e_1 < 1 > \land P \Rightarrow Q$ $\vdash \stackrel{\text{if } e_1 \text{ then } c_1 \text{ else } c_1'}{\sim} : P \Rightarrow Q$ if e_2 then c_2 else c_2' $\vdash c_1 \sim c_2$: $e_1 < 1 > \land P \Rightarrow P P \Rightarrow e_1 < 1 > = e_2 < 2 >$ - while e₁ do c₁ ~ :P⇒P∧¬e₁<1> while e_2 do c_2

One-sided Rules

				C₁ ∼			• P ⇒ ∩		
-	if	е	then	C_2	else	C2	• • • 2		

Today: More Relational Hoare Logic

Assignment Example

 $\vdash x := x+1 \sim y := y-1:$ $x < 1 > +1 = -(y < 2 > -1) \Rightarrow x < 1 > = -y < 2 >$

Assignment Example

x < 1 > = -y < 2 >

Assignment Example

Consequence + Assignment Example

 $x < 1 > = -y < 2 > \Rightarrow x < 1 > +1 = -(y < 2 > -1)$

 $\vdash x := x+1 \sim y := y-1:$ $x < 1 > +1 = -(y < 2 > -1) \Rightarrow x < 1 > = -y < 2 >$

 $x < 1 > = -y < 2 > \Rightarrow x < 1 > = -y < 2 >$

 $\vdash x := x+1 \sim y := y-1:$ $x < 1 >= -y < 2 > \Rightarrow x < 1 >= -y < 2 >$

How can we prove this?

Rules of Relational Hoare Logic If then else - right

 $\vdash_{C_1 \sim C_2} : e < 2 > \land P \Rightarrow O$ $\vdash c_1 \sim c_2' : \neg e < 2 > \land P \Rightarrow O$

 $\begin{array}{ccc} & c_1 & & \\ & \sim & & : P \Rightarrow Q \\ & \text{if e then } c_2 & \text{else } c_2' \end{array} \end{array}$

How can we prove this?

x:public z:private								
y:private								
У:= Z:=	=0	+ h o p	1 .					
		then	z:=1; y:=1					
:	$=_{low}$	$_{J} \Rightarrow =$	low					

How can we prove this?

```
s1:public
s2:private
r:private
i:public
proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
    r:=1
 i:=i+1
: n > 0 / = low \Rightarrow = low
```

Rules of Relational Hoare-Logic One-sided Rules

What do we do if our two programs have different forms? There are three pairs of *one-sided* rules.

if e then c_1 else c_1' $\vdash \qquad \sim \qquad : P \Rightarrow Q$ C_2

Rules of Relational Hoare Logic If-then-else — left

if e then c₁ else c₁' - ~ :P⇒Q C2

Rules of Relational Hoare Logic If-then-else — right

Rules of Relational Hoare Logic Assignment — left

⊢x:=e ~ skip: P[e<1>/x<1>] ⇒ P

Assignment — left

⊢x:=e ~ skip: P[e<1>/x<1>] ⇒ P

Assignment — right

⊢skip ~ x:=e: P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we'll ignore for now

Rules of Relational Hoare Logic Program Equivalence Rule

$$\models P:c_1' \equiv c_1 \models P:c_2' \equiv c_2 \qquad \vdash c_1' \sim c_2': P \Rightarrow Q \vdash c_1 \sim c_2: P \Rightarrow Q$$

 $\models P: c_1 \equiv c_2 \text{ means } \{c_1\}_m = \{c_2\}_m$ for all m such that P (m)

Rules of Relational Hoare Logic Program Equivalences

- \models P : skip; $C \equiv C$
- \models P : c; skip \equiv c

 \models P:(c1;c2);c3 = c1;(c2;c3)

Rules of Relational Hoare Logic Combining Composition and Equivalence

We can combine the Composition and Program Equivalence Rules to split commands where we like:

 $\vdash c_1; c_2 \sim c_1': P \Rightarrow R$ $\vdash c_3 \sim c_2'; c_3': R \Rightarrow Q$

 $\vdash C_1; C_2; C_3 \sim C_1'; C_2'; C_3': P \Rightarrow Q$

Rules of Relational Hoare Logic Combining Composition and Equivalence

Rules of Relational Hoare Logic Combining Composition and Equivalence

$$\vdash c_1 \sim c_1' : P \Rightarrow R$$

$$-c_2 \sim \text{skip: } R \Rightarrow Q$$

 $\vdash c_1; c_2 \sim c_1'; skip: P \Rightarrow Q$

$$\vdash c_1; c_2 \sim c_1': P \Rightarrow Q$$

Relational Hoare Logic in EasyCrypt

- EasyCrypt's implementation of Relational Hoare Logic has much in common with its implementation of Hoare Logic.
- Look for the pRHL tactics in Section 3.4 of the EasyCrypt Reference Manual (the "p" stands for "probabilistic", but ignore that for now).

Soundness

If we can derive $\vdash_{C_1} \sim_{C_2} : P \Rightarrow Q$ through the rules of the logic, then the quadruple $C_1 \sim C_2 : P \Rightarrow Q$ is valid.

Validity of Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: 1) $\{c_1\}_{m1} = \perp \text{ iff } \{c_2\}_{m2} = \perp$ 2) $\{c_1\}_{m1} = m_1 \text{ and } \{c_2\}_{m2} = m_2 \text{ implies}$ $Q(m_1', m_2').$

How do we check this?

Relative Completeness

If a quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid, and we have an oracle to derive all the true statements of the form $P \Rightarrow S$ and of the form $R \Rightarrow Q$, then we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic.

Soundness and completeness with respect to Hoare Logic

Under the assumption that we can partition the memory adequately, and that we have termination.

Possible projects

In Easycrypt

- Look at how to guarantee trace-based noninterference.
- Look at how to guarantee side-channel free noninterference.
- Look at the relations between self-composition and relational logic.

Not related to Easycrypt

- Look at type systems for non-interference.
- Look at other methods for relational reasoning
- Look at declassification