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Noninterference and Relational Hoare Logic



From the previous classes



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).



Some Rules of Relational Hoare Logic
⊢skip~skip:P⇒P
⊢abort~abort:true⇒false
⊢x1:=e1~x2:=e2:  
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P
⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S
P⇒S R⇒Q

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Some Rules of Relational Hoare Logic

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>



One-sided Rules

if e then c1 else c1’            ~ 
          c2

⊢c1~c2:e<1> ⋀ P ⇒ Q ⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

          c1           ~ 
if e then c2 else c2’          

⊢c1~c2:e<2>⋀ P ⇒ Q ⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q



Today: More Relational 
Hoare Logic



Assignment Example

⊢x:=x+1 ~ y:=y-1:  
 x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>



Assignment Example

⊢x:=x+1 ~ y:=y-1:  
(x<1>=-y<2>) 
[(x+1)<1>/x<1>,(y-1)<2>/y<2>] 
⇒  
x<1> = -y<2>



Assignment Example

⊢x:=x+1 ~ y:=y-1: 
(x<1> = -y<2>) 
[(x<1>+1)/x<1>,(y<2>-1)/y<2>] 
 ⇒ 
x<1> = -y<2>



Consequence + Assignment 
Example

⊢x:=x+1 ~ y:=y-1:  
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:  
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?



Rules of Relational Hoare Logic 
If then else - right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2:e<2>⋀ P ⇒ Q
⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q



x:public 
z:private 
y:private 

y:=0 
z:=0 
if x=0 then z:=1; 
if z=0 then y:=1 

: =low ⇒ =low

How can we prove this?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ =low

How can we prove this?



Rules of Relational Hoare-Logic 
One-sided Rules

if e then c1 else c1’  
          ~ 
          c2

⊢ :P⇒Q

What do we do if our two programs 
have different forms? There are 
three pairs of one-sided rules.



Rules of Relational Hoare Logic 
If-then-else — left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If-then-else — right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
Assignment — left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Assignment — left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Assignment — right

⊢skip ~ x:=e:  
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll 
ignore for now



Rules of Relational Hoare Logic 
Program Equivalence Rule

⊨P:c1≡c2 means {c1}m = {c2}m 
for all m such that P(m)

⊨P:c1’≡c1

⊢c1~c2: P ⇒ Q
⊢c1’~c2’: P ⇒ Q⊨P:c2’≡c2



Rules of Relational Hoare Logic 
Program Equivalences

⊨P : skip;c ≡ c 

⊨P : c;skip ≡ c 

⊨P:(c1;c2);c3 ≡ c1;(c2;c3) 

…



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2;c3 ~ c1’;c2’;c3’: P ⇒ Q

⊢c1;c2 ~ c1’: P ⇒ R
⊢c3 ~ c2’;c3’: R ⇒ Q

We can combine the Composition and 
Program Equivalence Rules to split 
commands where we like:



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ skip: P ⇒ R
⊢c2 ~ c1’: R ⇒ Q

⊢c1;c2 ~ skip;c1’: P ⇒ Q



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ c1’: P ⇒ R
⊢c2 ~ skip: R ⇒ Q

⊢c1;c2 ~ c1’;skip: P ⇒ Q



Relational Hoare Logic in 
EasyCrypt

• EasyCrypt’s implementation of 
Relational Hoare Logic has much in 
common with its implementation of 
Hoare Logic. 

• Look for the pRHL tactics in Section 
3.4 of the EasyCrypt Reference 
Manual (the “p” stands for 
“probabilistic”, but ignore that for now). 



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

How do we check this?



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Possible projects
• Look at how to guarantee trace-based 

noninterference. 
• Look at how to guarantee side-channel free 

noninterference. 
• Look at the relations between self-composition and 

relational logic.

In Easycrypt

Not related to Easycrypt
• Look at type systems for non-interference. 
• Look at other methods for relational reasoning 
• Look at declassification


