CS 599: Formal Methods in Security and Privacy RHL and probabilistic computations

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

Information Flow Control

We want to guarantee that confidential information do not flow in what is considered nonconfidential.

NonInterference
In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$:

- 1) $\{c\}_{m1} = \bot$ iff $\{c\}_{m2} = \bot$
- 2) $\{c\}_{m1}=m_1'$ and $\{c\}_{m2}=m_2'$ implies $m_1' \sim_{low} m_2'$

Relational Hoare Logic - RHL

More Relational Hoare Logic

How can we prove this?

```
s1:public
s2:private
r:private
i:public
proc Compare (s1:list[n] bool, s2:list[n] bool)
i := 0;
r := 0;
while i<n do
 if not(s1[i]=s2[i]) then
    r := 1
 i := i + 1
: n>0 /\ =low \Rightarrow =low
```

Rules of Relational Hoare-Logic One-sided Rules

What do we do if our two programs have different forms? There are three pairs of *one-sided* rules.

One pair for if.

Assignment — left

```
\vdash x := e \sim skip:
P[e < 1 > / x < 1 >] \rightarrow P
```

Assignment — right

$$⊢skip ~ x := e :$$

$$P[e<2>/x<2>] ⇒ P$$

Also pair of one-sided rules for while — we'll ignore for now

Rules of Relational Hoare Logic Program Equivalence Rule

```
\models P: c_1' \equiv c_1
\models P: c_2' \equiv c_2 \qquad \vdash c_1' \sim c_2' : P \Rightarrow Q
\vdash c_1 \sim c_2 : P \Rightarrow Q
```

```
\models P: c_1 \equiv c_2 \text{ means } \{c_1\}_m = \{c_2\}_m for all m such that P (m)
```

Rules of Relational Hoare Logic Program Equivalences

```
\models P : skip; c \equiv c
```

 $\models P : c; skip = c$

$$\models P: (c1; c2); c3 = c1; (c2; c3)$$

. . .

Rules of Relational Hoare Logic Combining Composition and Equivalence

We can combine the Composition and Program Equivalence Rules to split commands where we like:

```
\vdash c_1; c_2 \sim c_1': P \Rightarrow R
\vdash c_3 \sim c_2'; c_3': R \Rightarrow Q
```

```
\vdash c_1; c_2; c_3 \sim c_1'; c_2'; c_3': P \Rightarrow Q
```

Rules of Relational Hoare Logic Combining Composition and Equivalence

 $\vdash C_1; C_2 \sim C_1': P \Rightarrow O$

Rules of Relational Hoare Logic Combining Composition and Equivalence

```
\vdash c_1 \sim c_1': P \Rightarrow R
\vdash c_2 \sim \text{skip: } R \Rightarrow Q
```

$$\vdash c_1; c_2 \sim c_1'; skip: P \Rightarrow Q$$

$$\vdash c_1; c_2 \sim c_1' : P \Rightarrow Q$$

Relational Hoare Logic in EasyCrypt

- EasyCrypt's implementation of Relational Hoare Logic has much in common with its implementation of Hoare Logic.
- Look for the pRHL tactics in Section 3.4 of the EasyCrypt Reference Manual (the "p" stands for "probabilistic", but ignore that for now).

Soundness

If we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic, then the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid.

Validity of Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have:

```
1) \{c_1\}_{m1} = \bot iff \{c_2\}_{m2} = \bot
```

```
2) \{c_1\}_{m1}=m_1' and \{c_2\}_{m2}=m_2' implies Q(m_1', m_2').
```

How do we check this?

Relative Completeness

If a quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid, and we have an oracle to derive all the true statements of the form $P \Rightarrow S$ and of the form $R \Rightarrow Q$, then we can derive $\vdash c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic.

Soundness and completeness with respect to Hoare Logic

Under the assumption that we can partition the memory adequately, and that we have termination.

Possible projects

In Easycrypt

- Look at how to guarantee trace-based noninterference.
- Look at how to guarantee side-channel free noninterference.
- Look at the relations between self-composition and relational logic.

Not related to Easycrypt

- Look at type systems for non-interference.
- Look at other methods for relational reasoning
- Look at declassification

Probabilistic Language

An example

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

Probabilistic While (PWhile)

d₁, d₂, ... probabilistic expressions

Probabilistic Expressions

We extend the language with expression describing probability distributions.

$$d::= f(e_1, ..., e_n, d_1, ..., d_k)$$

Where f is a distribution declaration

Some expression examples

```
uniform (\{0,1\}^n) gaussian (k,\sigma) laplace (k,b)
```

Semantics of Probabilistic Expressions

We would like to define it on the structure:

```
\{f(e_1,...,e_n,d_1,...,d_k)\}_m = \{f\}(\{e_1\}_m,...,\{e_n\}_m,\{d_1\}_m,...,\{d_k\}_m)\}
```

but is the result just a value?

Probabilistic Subdistributions

A discrete subdistribution over a set A is a function

$$\mu: A \rightarrow [0, 1]$$

such that the mass of μ ,
 $|\mu| = \sum_{a \in A} \mu(a)$
verifies $|\mu| \le 1$.

The support of a discrete subdistribution μ , supp(μ) = {a \in A | μ (a) > 0} is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A), and say that μ is of type D(A) denoted μ :D(A) if $\mu \in D(A)$.

Probabilistic Subdistributions

We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event E⊆A with respect to the subdistribution µ:D(A) as

$$\mathbb{P}_{\mu}[E] = \sum_{a \in E} \mu(a)$$

Probabilistic Subdistributions

Let's consider $\mu \in D(A)$, and $E \subseteq A$, we have the following properties

$$\mathbb{P}_{\mu}[\emptyset] = 0$$

$$\mathbb{P}_{\mu}[A] \le 1$$

$$0 \le \mathbb{P}_{\mu}[E] \le 1$$

$$\mathsf{E} \subseteq \mathsf{F} \subseteq \mathsf{A} \text{ implies } \mathbb{P}_{\mu}[E] \leq \mathbb{P}_{\mu}[F]$$

$$E \subseteq A$$
 and $F \subseteq A$ implies $\mathbb{P}_{\mu}[E \cup F] \leq \mathbb{P}_{\mu}[E] + \mathbb{P}_{\mu}[F] - \mathbb{P}_{\mu}[E \cap F]$

We will denote by \mathbf{O} the subdistribution μ defined as constant 0.

Operations over Probabilistic Subdistributions

Let's consider an arbitrary a∈A, we will often use the distribution unit(a) defined as:

$$\mathbb{P}_{\mathsf{unit}(a)}[\{b\}] = \begin{cases} 1 \text{ if a=b} \\ 0 \text{ otherwise} \end{cases}$$

We can think about unit as a function of type unit: $A \rightarrow D(A)$

Operations over Probabilistic Subdistributions

Let's consider a distribution $\mu \in D(A)$, and a function M:A $\to D(B)$ then we can define their composition by means of an expression let $a = \mu$ in M a defined as:

$$\mathbb{P} \text{let a} = \mu \text{ in M a}^{[E]} = \sum_{a \in \text{supp}(\mu)} \mathbb{P}_{\mu}[\{a\}] \cdot \mathbb{P}_{(Ma)}[E]$$

Semantics of Probabilistic Expressions - revisited

We would like to define it on the structure:

```
\{f(e_1, ..., e_n, d_1, ..., d_k)\}_m = \{f\}(\{e_1\}_m, ..., \{e_n\}_m, \{d_1\}_m, ..., \{d_k\}_m)
```

With input a memory m and output a subdistribution $\mu \in D(A)$ over the corresponding type A. E.g.

```
{uniform(\{0,1\}^n)}<sub>m</sub>\inD(\{0,1\}^n)} {gaussian(k,\sigma)}<sub>m</sub>\inD(Real)
```

Semantics of PWhile Commands

What is the meaning of the following command?

```
k := \$ uniform(\{0,1\}^n); z := x mod k;
```

We can give the semantics as a function between command, memories and subdistributions over memories.

Cmd * Mem
$$\rightarrow$$
 D (Mem)

We will denote this relation as:

$$\{c\}_{m}=\mu$$

Semantics of Commands

This is defined on the structure of commands:

```
\{abort\}_m = \mathbf{O}
     \{skip\}_m = unit(m)
     \{x := e\}_m = unit(m[x \leftarrow \{e\}_m])
     \{x:=\$ d\}_m = let a = \{d\}_m in unit(m[x \leftarrow a])
   \{c;c'\}_{m} = let m' = \{c\}_{m} in \{c'\}_{m'}
{if e then c_t else c_f}<sub>m</sub> = {c_t}<sub>m</sub> If {e}<sub>m</sub>=true
{if e then c_t else c_f}<sub>m</sub> = {c_f}<sub>m</sub> | if {e}<sub>m</sub>=false
```

Revisiting the example

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically noninterferent if and only if, whenever we run it on two low equivalent memories m₁ and m₂ we have that the probabilistic distributions we get as outputs are the same on public outputs.

Noninterference as a Relational Property

In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$:

 $\{c\}_{m1}=\mu_1 \text{ and } \{c\}_{m2}=\mu_2 \text{ implies } \mu_1 \sim_{low} \mu_2$

Revisiting the example

```
OneTimePad(m : private msg) : public msg
  key :=$ Uniform({0,1}n);
  cipher := msg xor key;
  return cipher
```

How can we prove that this is noninterferent?