CS 599: Formal Methods in Security and Privacy Probabilistic Noninterference

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

An example

Suppose msg is the type of n bit messages, and xor is bitwise exclusive or.

```
OneTimePad(m : private msg) : public msg
key :=$ Uniform({0,1}<sup>n</sup>);
cipher := m xor key;
return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

Probabilistic While (PWhile)

c::= abort
 | skip
 | x:= e
 | x:=\$ d
 | c;c
 | if e then c else c
 | while e do c

 d_1 , d_2 , ... expressions for sub-distributions

Semantics of Commands

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{O}$ $\{skip\}_m = unit(m)$ $\{x := e\}_m = unit(m[x \leftarrow \{e\}_m])$ $\{x:= d\}_m = let a = \{d\}_m in unit(m[x \leftarrow a])$ $\{c; c'\}_{m} = \text{let } m' = \{c\}_{m} \text{ in } \{c'\}_{m'}$ {if e then c_t else $c_f\}_m = \{C_t\}_m$ If $\{e\}_m = true$ {if e then c_t else c_f }_m = { c_f }_m If {e}_m=false $\{\text{while e do c}\}_{m} = \dots$

Today: Probabilistic Noninterference

Revisiting the example

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}ⁿ);
cipher := m xor key;
return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically noninterferent if and only if, whenever we run it on two low equivalent memories m_1 and m_2 , we have that the probabilistic distributions we get as outputs are the same on public outputs.

Low equivalence on distributions

Two distributions over memories μ_1 and μ_2 are low equivalent if and only if they coincide after projecting out all the private variables.

In symbols: µ₁ ~_{low} µ₂

Example: Low equivalence on distributions

- Consider memories with x private and y public. The distributions μ_1 and μ_2 defined as
- μ_1 ([x=2,y=0])=2/3, μ_1 ([x=3,y=1])=1/3 and
- μ_2 ([x=1, y=0])=1/3, μ_2 ([x=5, y=0])=1/3, μ_2 ([x=4, y=1])=1/3 are low equivalent.

Noninterference as a Relational Property

In symbols, c is noninterferent if and only if for every $m_1 \sim_{low} m_2$: {C}m1=µ1 and {C}m2=µ2 implies µ1 $\sim_{low} µ2$

Revisiting the example

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}ⁿ);
cipher := m xor key;
return cipher

How can we prove that this is noninterferent?

Revisiting the example

We will show it is sound to pick, with some restrictions, a *function* of k as the key for m₂. What could we choose so that the cipher texts are equal?

Properties of bitwise xor

$C \oplus (a \oplus C) = a$

Example:

 $100 \oplus (101 \oplus 100) =$ $100 \oplus 001 = 101$

Revisiting the example

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}ⁿ);
cipher := m xor key;
return cipher

Noninterference as a Relational Property

c is noninterferent if and only if for every $m_1 \sim_{low} m_2$: {c}_{m1}=µ₁ and {c}_{m2}=µ₂ implies µ₁ $\sim_{low} µ_2$

We will express and prove probabilistic noninterference using Probabilistic Relational Hoare Logic

 $Program_1 \sim Program_2$

Postcondition

Probabilistic Probabilistic Program Program

 $c_1 \sim c_2 : P \Rightarrow Q$

Validity of Probabilistic Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: $\{c_1\}_{m1} = \mu_1$ and $\{c_2\}_{m2} = \mu_2$ implies $Q(\mu_1, \mu_2)$.

Is this correct?!?

Relational Assertions $c_1 \sim c_2 : P \Rightarrow$ logical formula

logical formula over pair of memories (i.e., relation over memories)

logical formula over ????

We need to lift Q to be a relation on distributions, and we do this using the notion of a *coupling* between distributions

Coupling Example 1

Coupling Example 2

k1		00	O1	10	11
	00				0.25
	01		0.25		
	10		0.25		
	11				0.25

Coupling formally

Given two sub-distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, a coupling between them is a joint sub-distribution $\mu \in D(A \times B)$ whose *marginal* sub-distributions are μ_1 and μ_2 , respectively.

h)

$$\pi_1(\mu)(a) = \sum_b \mu(a, b) \qquad \pi_2(\mu)(b) = \sum_a \mu(a, b)$$
$$\pi_1(\mu) = \mu_1 \qquad \pi_2(\mu) = \mu_2$$

R-Coupling

- Given two sub-distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, an *R*-coupling between them, for $R \subseteq AxB$, is a joint sub-distribution $\mu \in D(AxB)$ such that:
 - 1) the marginal sub-distributions of μ are μ_1 and $\mu_2,$ respectively,
 - 2) the support of µ is contained in R. That is, if µ(a,b)>0, then (a,b) ∈R.

Relational lifting of a predicate

We say that two sub-distributions $\mu_1 \in D(A)$ and $\mu_2 \in D(B)$ are in the relational lifting of the relation $R \subseteq AxB$, denoted $\mu_1 R * \mu_2$, if and only if there exists a sub-distribution $\mu \in D(AxB)$ such that:

1) if $\mu(a,b) > 0$, then $(a,b) \in \mathbb{R}$.

2)
$$\pi_1(\mu) = \mu_1$$
 and $\pi_2(\mu) = \mu_2$

I.e., there is an R-coupling for μ_1 and μ_2

Consequences of Lifting

Suppose E and F are predicates on memories. If we know

 μ_1 (E<1> <=> F<2>)* μ_2 ,

then we can conclude that

 $Pr_{\mu 1}[E] = Pr_{\mu 2}[F]$

Consequences of Lifting

Suppose E and F are predicates on memories. If we know

 μ_1 (E<1> => F<2>)* μ_2 ,

then we can conclude that

 $\Pr_{\mu_1}[E] \leq \Pr_{\mu_2}[F]$

Validity of Probabilistic Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: $\{c_1\}_{m1} = \mu_1$ and $\{c_2\}_{m2} = \mu_2$ implies $Q^*(\mu_1, \mu_2)$.

Probabilistic Relational Hoare Logic Skip

⊢skip~skip:P⇒P

Probabilistic Relational Hoare Logic Assignment

 $\vdash x_1 := e_1 \sim x_2 := e_2 :$ P[e_1<1>/x_1<1>, e_2<2>/x_2<2>] \Rightarrow P

Probabilistic Relational Hoare Logic Composition

$$\vdash c_1 \sim c_2 : P \Rightarrow R \qquad \vdash c_1' \sim c_2' : R \Rightarrow S$$

 $\vdash c_1; c_1' \sim c_2; c_2' : P \Rightarrow S$

Probabilistic Relational Hoare Logic Consequence K⇒O

 $\vdash C_1 \sim C_2 : S \Rightarrow R$ P⇒S

$$\vdash c_1 \sim c_2 : P \Rightarrow Q$$

- We can weaken P, i.e. replace it by something that is implied by P. In this case S.
- We can strengthen Q, i.e. replace it by something that implies Q. In this case R.

Probabilistic Relational Hoare Logic If-then-else

P ⇒ ($e_1 < 1 > \Leftrightarrow e_2 < 2 >$) $\vdash c_1 \sim c_2$: $e_1 < 1 > \land P \Rightarrow Q$ $\vdash c_1' \sim c_2'$: $\neg e_1 < 1 > \land P \Rightarrow Q$ if e_1 then c_1 else c_1' $\vdash \qquad \sim \qquad : P \Rightarrow Q$ if e_2 then c_2 else c_2' **Probabilistic Relational Hoare Logic** While $P \Rightarrow (e_1 < 1 > \Leftrightarrow e_2 < 2 >)$ $\vdash c_1 \sim c_2$: $e_1 < 1 > \land P \Rightarrow P$ while e_1 do c_1 : $P \Rightarrow P \land \neg e_1 < 1 >$ while e_2 do c_2

Probabilistic Relational Hoare Logic If-then-else - left

 $\vdash c_1 \sim c_2$: $e < 1 > \land P \Rightarrow Q$

 $\vdash c_1' \sim c_2$: $\neg e < 1 > \land P \Rightarrow Q$

if e then c₁ else c₁' ⊢ ~ :P⇒Q C2

if e then c_2 else c_2'

Probabilistic Relational Hoare Logic Assignment - left

⊢x:=e ~ skip: P[e<1>/x<1>] ⇒ P How about the random assignment?

Probabilistic Relational Hoare Logic Random Assignment

$$\vdash x_1 := \ d_1 \sim x_2 := \ d_2 : ?? \Rightarrow Q$$

We would like to have:

for all m_1 , m_2 , $P(m_1, m_2) \Rightarrow$ let $a=\{d_1\}_{m1}$ in unit $(m_1[x_1 \leftarrow a])$ Q* let $a=\{d_2\}_{m2}$ in unit $(m_2[x_2 \leftarrow a])$

 $\vdash x_1 := \ d_1 \sim x_2 := \ d_2 : P \Rightarrow Q$

What is the problem with this rule?

Restricted Probabilistic Expressions

We consider a restricted set of expressions denoting probability distributions.

$$d::= f(d_1, ..., d_k)$$

Where f is a distribution declaration

Some expression examples similar to the previous

uniform({0,1}¹²⁸) bernoulli(.5) laplace(0,1)

Notice that we don't need a memory anymore to interpret them

Isomorphisms on Sub-distributions

- Given two sub-distributions $\mu_1 \in D(A)$ and $\mu_2 \in D(B)$, we say that a mapping h:A \rightarrow B is an *isomorphism* between μ_1 and μ_2 (h \triangleleft (μ_1 , μ_2)) if and only iff:
 - h is a bijective map between elements in supp(µ1) and supp(µ2),
 - 2) for all $a \in A$, $\mu_1(a) = \mu_2(h(a))$

Probabilistic Relational Hoare Logic Random Assignment

P=h⊲
$$(d_1, d_2) \land$$

∀v,
v€supp (d_1)
⇒

we let h's definition refer to program variables tagged with <1> or <2>

$$Q[v/x_1 < 1 >, h(v)/x_2 < 2 >]$$

$$\vdash x_1 :=$$
 $d_1 \sim x_2 :=$ $d_2 : P \Rightarrow Q$

OneTimePad(m : private msg) : public msg
key :=\$ Uniform({0,1}ⁿ);
cipher := m xor key;
return cipher

 $d_1 = \text{Uniform}(\{0, 1\}^n)$ $d_2 = \text{Uniform}(\{0, 1\}^n)$

h(k) = (m<1> \oplus k \oplus m<2>)

Is this an isomorphism from d_1 to d_2 ?

1) Is it bijective between elements in the support of d_1 and d_2 ? 2) Is it true that for all $v \in \{0,1\}^n$, $d_1(v) = d_2(h(v))$?

Yes, it's an isomorphism!

 $h(k) = m < 1 > \bigoplus k \bigoplus m < 2 >, d_1 = d_2 = Uniform({0,1}^n)$ $P = h < (d_1, d_2) \land$

 $\forall v, v \in \text{support}(d_1) \Rightarrow$ m<1>⊕k₁<1>=m<2>⊕k₂<2>[v/k₁<1>, h(v)/k₂<2>]

⊢k1:=\$Uniform({0,1}ⁿ)~k2:=\$Uniform({0,1}ⁿ): P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

 $h(k) = m < 1 > \bigoplus k \bigoplus m < 2 >, d_1 = d_2 = Uniform({0,1}^n)$ $P = h < (d_1, d_2) \land$

 $\forall v, v \in \text{support}(d_1) \Rightarrow$ m<1> $\oplus v = m < 2 > \oplus (m < 1 > \oplus v \oplus m < 2 >)$

 $⊢k_1 := \$Uniform (\{ 0, 1 \}^n) ~k_2 := \$Uniform (\{ 0, 1 \}^n) :$ $P \Rightarrow m < 1 > ⊕k_1 < 1 > = m < 2 > ⊕k_2 < 2 >$

 $P = h \triangleleft (d_1, d_2) \land \forall v, v \in \text{support}(d_1) \Rightarrow m < 1 > \bigoplus v = m < 2 > \bigoplus (m < 1 > \bigoplus v \bigoplus m < 2 >)$

True → P

 $\vdash k_1 := \$ \text{Uniform} (\{0, 1\}^n) \sim k_2 := \$ \text{Uniform} (\{0, 1\}^n) :$ P $\Rightarrow m < 1 > \bigoplus k_1 < 1 > = m < 2 > \bigoplus k_2 < 2 >$

 $\vdash k_1 := \$ \text{Uniform} (\{0, 1\}^n) \sim k_2 := \$ \text{Uniform} (\{0, 1\}^n) :$ True $\Rightarrow m < 1 > \bigoplus k_1 < 1 > = m < 2 > \bigoplus k_2 < 2 >$

By Consequence

Soundness

If we can derive $\vdash_{C_1} \sim_{C_2} : P \Rightarrow Q$ through the rules of the logic, then the quadruple $C_1 \sim C_2 : P \Rightarrow Q$ is valid. **Completeness?**