
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 599: Formal Methods in
Security and Privacy 

Probabilistic Noninterference

From the previous classes

An example

OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Suppose msg is the type of n bit messages, and xor
is bitwise exclusive or.

Probabilistic While (PWhile)
c::= abort
 | skip
 | x:= e
 | x:=$ d
 | c;c
 | if e then c else c
 | while e do c

d1,d2,… expressions for sub-distributions

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m = …

Today:
Probabilistic

Noninterference

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically
noninterferent if and only if, whenever
we run it on two low equivalent
memories m1 and m2, we have that the
probabilistic distributions we get as
outputs are the same on public outputs.

Low equivalence on
distributions

Two distributions over memories µ1 and
µ2 are low equivalent if and only if they
coincide after projecting out all the
private variables.

In symbols: µ1 ~low µ2

Example: Low equivalence
on distributions

Consider memories with x private and y
public. The distributions µ1 and µ2 defined
as
µ1([x=2,y=0])=2/3, µ1([x=3,y=1])=1/3
and
µ2([x=1,y=0])=1/3,µ2([x=5,y=0])=1/3,
µ2([x=4,y=1])=1/3
are low equivalent.

Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

How can we prove that this is noninterferent?

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

We will show it is sound to pick, with some
restrictions, a function of k as the key for m2. What
could we choose so that the cipher texts are equal?

m1 m2

m1⊕k m2⊕()km1⊕ ⊕m2

Properties of bitwise xor

Example:
c⊕(a⊕c)=a

100⊕(101⊕100)=
100⊕001=101

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

Applying the property above

m1 m2

m1⊕k m1⊕k

Noninterference as a Relational Property

c is noninterferent if and only if for every
m1 ~low m2 : {c}m1=µ1 and {c}m2=µ2 implies
µ1 ~low µ2

We will express and prove probabilistic
noninterference using Probabilistic
Relational Hoare Logic

Probabilistic Relational Hoare
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition

Postcondition Probabilistic
Program

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q(μ1,μ2).

Is this correct?!?

Relational Assertions

c1 ∼ c2 : P ⇒ Q
logical formula

over pair of memories
(i.e., relation over memories)

logical formula
over ????

We need to lift Q to be a relation on
distributions, and we do this using the notion of
a coupling between distributions

Coupling Example 1

k1 = 10⊕k2⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

relation

k1 k2

k1

k2

Coupling Example 2

k1=k2 or k1=k2⊕11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.00
O1 0.50
1O 0.00
11 0.50

relation

k1 k2

k1

k2

Coupling formally
Given two sub-distributions µ1∈D(A), and
µ2∈D(B), a coupling between them is a joint
sub-distribution µ∈D(AxB) whose marginal
sub-distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)

π1(μ) = μ1 π2(μ) = μ2

R-Coupling
Given two sub-distributions µ1∈D(A), and
µ2∈D(B), an R-coupling between them, for
R⊆AxB, is a joint sub-distribution µ∈D(AxB)
such that:
1) the marginal sub-distributions of µ are

µ1 and µ2, respectively,
2) the support of µ is contained in R. That

is, if μ(a,b)>0, then (a,b)∈R.

Relational lifting of a predicate
We say that two sub-distributions μ1∈D(A)
and μ2∈D(B) are in the relational lifting of
the relation R⊆AxB, denoted μ1 R* μ2, if
and only if there exists a sub-distribution
μ∈D(AxB) such that:
1) if μ(a,b)>0, then (a,b)∈R.
2) and π1(μ) = μ1 π2(μ) = μ2

I.e., there is an R-coupling for μ1 and μ2

Consequences of Lifting
Suppose E and F are predicates on
memories. If we know
μ1 (E<1> <=> F<2>)* μ2,
then we can conclude that

Pr μ1[E] Pr μ2[F]=

Consequences of Lifting
Suppose E and F are predicates on
memories. If we know
μ1 (E<1> => F<2>)* μ2,
then we can conclude that

Pr μ1[E] Pr μ2[F]≤

Validity of Probabilistic Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q*(μ1,μ2).

Probabilistic Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

⊢x1:=e1~x2:=e2:
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒ P

Probabilistic Relational Hoare Logic
Assignment

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic
Composition

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.
We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Probabilistic Relational Hoare Logic
Consequence

Probabilistic Relational Hoare Logic
If-then-else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)

Probabilistic Relational Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)

Probabilistic Relational Hoare Logic
If-then-else - left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Probabilistic Relational Hoare Logic
If-then-else - right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Probabilistic Relational Hoare Logic
Assignment - left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

How about the random
assignment?

⊢x1 :=$ d1 ~ x2 :=$ d2 : ?? ⇒ Q

Probabilistic Relational Hoare Logic
Random Assignment

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
for all m1, m2, P(m1,m2) ⇒
let a={d1}m1 in unit(m1[x1←a])
Q*
let a={d2}m2 in unit(m2[x2←a])

What is the problem with this rule?

Restricted Probabilistic Expressions
We consider a restricted set of expressions denoting probability
distributions.

Where f is a distribution declaration

d::= f(d1,…,dk)

Some expression examples similar to the previous

uniform({0,1}128) bernoulli(.5) laplace(0,1)

Notice that we don’t need a memory anymore to interpret them

Isomorphisms on Sub-distributions

Given two sub-distributions µ1∈D(A) and µ2∈D(B), we
say that a mapping h:A→B is an isomorphism
between µ1 and µ2 (h⊲(µ1,µ2)) if and only iff:

1) h is a bijective map between elements in
supp(µ1) and supp(µ2),

2) for all a∈A, µ1(a) = µ2(h(a))

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

P=h⊲(d1,d2)
 ∀v,
 v∈supp(d1)
 ⇒
 Q[v/x1<1>,h(v)/x2<2>]

∧

Probabilistic Relational Hoare Logic
Random Assignment

we let h’s definition refer
to program variables tagged
with <1> or <2>

OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := m xor key;
return cipher

m<1>

m<1>⊕k

m<2>

m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example

h(k)=(m<1>⊕k⊕m<2>)

Back to our example
d1=Uniform({0,1}n) d2=Uniform({0,1}n)

Is this an isomorphism from d1 to d2?

1) Is it bijective between elements in the support of d1 and d2?
2) Is it true that for all v∈{0,1}n, d1(v) = d2(h(v))?

Yes, it’s an isomorphism!

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=m<1>⊕k⊕m<2>, d1 = d2 = Uniform({0,1}n)
P = h⊲(d1,d2)

 ∀v,v∈support(d1) ⇒
 m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]

∧

Back to our example

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=m<1>⊕k⊕m<2>, d1 = d2 = Uniform({0,1}n)
P = h⊲(d1,d2)

 ∀v,v∈support(d1) ⇒
 m<1>⊕v=m<2>⊕(m<1>⊕v⊕m<2>)

∧

Back to our example

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

P = h⊲(d1,d2) ∀v,v∈support(d1) ⇒
m<1>⊕v=m<2>⊕(m<1>⊕v⊕m<2>)

∧

Back to our example

True ⇒ P

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n):
 True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

By Consequence

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Completeness?

