CS 599: Formal Methods in Security and Privacy

Probabilistic Noninterference

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

From the previous classes

An example

Suppose msg is the type of n bit messages, and xor is bitwise exclusive or.

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

Probabilistic While (PWhile)

$$
\begin{aligned}
c:: & \text { abort } \\
& \mid \text { skip } \\
& \mid x:=e \\
\mid & x:=\$ d \\
& \mid \mathrm{c} ; \mathrm{C} \\
& \mid \text { if e then c else c } \\
& \mid \text { while e do c }
\end{aligned}
$$

d_{1}, d_{2}, \ldots expressions for sub-distributions

Semantics of Commands

This is defined on the structure of commands:

$$
\begin{aligned}
& \{\text { abort }\}_{m}=0 \\
& \{\text { skip }\}_{m}=\text { unit }(m) \\
& \{x:=e\}_{m}=\text { unit }\left(m\left[x \leftarrow\{e\}_{m}\right]\right) \\
& \{x:=\$ d\}_{m}=\text { let } a=\{d\}_{m} \text { in unit(m[x↔a]) } \\
& \left\{c ; c^{\prime}\right\}_{m}=\text { let } m^{\prime}=\{c\}_{m} \text { in }\left\{c^{\prime}\right\}_{m^{\prime}} \\
& \left\{\text { if } e \text { then } C_{t} \text { else } C_{f}\right\}_{m}=\left\{C_{t}\right\}_{m} \text { If }\{e\}_{m}=\text { true } \\
& \left\{\text { if } e \text { then } C_{t} \text { else } C_{f}\right\}_{m}=\left\{C_{f}\right\}_{m} \text { If }\{e\}_{m}=f a l s e \\
& \{\text { while e do c }\}_{m}=\text {... }
\end{aligned}
$$

Today: Probabilistic Noninterference

Revisiting the example

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically noninterferent if and only if, whenever we run it on two low equivalent memories m_{1} and m_{2}, we have that the probabilistic distributions we get as outputs are the same on public outputs.

Low equivalence on distributions

Two distributions over memories μ_{1} and μ_{2} are low equivalent if and only if they coincide after projecting out all the private variables.

In symbols: $\mu_{1} \sim \operatorname{low} \mu_{2}$

Example: Low equivalence on distributions

Consider memories with x private and y public. The distributions μ_{1} and μ_{2} defined as
$\mu_{1}([x=2, y=0])=2 / 3, \mu_{1}([x=3, y=1])=1 / 3$ and
$\mu_{2}([x=1, y=0])=1 / 3, \mu_{2}([x=5, y=0])=1 / 3$, $\mu_{2}([x=4, y=1])=1 / 3$
are low equivalent.

Noninterference as a Relational Property In symbols, c is noninterferent if and only if for every m_{1} ~low m_{2} :
$\{c\}_{\mathrm{m} 1}=\mu_{1}$ and $\{c\}_{\mathrm{m} 2}=\mu_{2}$ implies $\mu_{1} \sim_{\text {oow }} \mu_{2}$

Revisiting the example

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```

How can we prove that this is noninterferent?

Revisiting the example

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```


$\mathrm{m}_{1} \oplus \mathrm{k}$
m_{2}
 $m_{2} \oplus\left(m_{1} \oplus k \oplus m_{2}\right)$

We will show it is sound to pick, with some restrictions, a function of k as the key for m_{2}. What could we choose so that the cipher texts are equal?

Properties of bitwise xor

$$
\mathrm{C} \oplus(\mathrm{a} \oplus \mathrm{c})=\mathrm{a}
$$

Example:

$$
\begin{aligned}
& 100 \oplus(101 \oplus 100)= \\
& 100 \oplus 001=101
\end{aligned}
$$

Revisiting the example

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```

$m_{1} \oplus \mathrm{~m}$
m_{2}

$\mathrm{m}_{1} \oplus \mathrm{k}$
$\mathrm{m}_{1} \oplus \mathrm{k}$

Applying the property above

Noninterference as a Relational Property

c is noninterferent if and only if for every $\mathrm{m}_{1} \sim \sim_{\text {low }} \mathrm{m}_{2}:\{c\}_{\mathrm{m} 1}=\mu_{1}$ and $\{c\}_{\mathrm{m} 2}=\mu_{2}$ implies $\mu_{1} \sim$ low μ_{2}

We will express and prove probabilistic noninterference using Probabilistic Relational Hoare Logic

Probabilistic Relational Hoare

Quadruples

Precondition

Precondition $^{\text {Program }_{1} \sim \text { Program }_{2}}$

Postcondition

$c_{1} \sim c_{2}: P \Rightarrow Q$

Probabilistic Probabilistic
Postcondition Program Program

Validity of Probabilistic Hoare quadruple

We say that the quadruple $c_{1} \sim c_{2}: P \Rightarrow Q$ is valid if and only if for every pair of memories m_{1}, m_{2} such that $P\left(m_{1}, m_{2}\right)$ we have: $\left\{\mathrm{C}_{1}\right\}_{\mathrm{m} 1}=\mu_{1}$ and $\left\{\mathrm{C}_{2}\right\}_{\mathrm{m} 2}=\mu_{2}$ implies
$Q\left(\mu_{1}, \mu_{2}\right)$.

Relational Assertions

logical formula
over pair of memories
(i.e., relation over memories)
logical formula over ????

We need to lift Q to be a relation on distributions, and we do this using the notion of a coupling between distributions

Coupling Example 1

Coupling Example 2

000.25	relation						000.00				
010.25	$\mathrm{k}_{1}=\mathrm{k}_{2}$		Or $\mathrm{k}_{1}=\mathrm{k}_{2} \oplus 11$				010.50				
100.25			100.00								
110.25			110.50								
k_{1}							k_{2}				k_{2}
	k_{1}						00	01	10	11	
		00				0.25					
		01		0.25							
		10		0.25							
		11				0.25					

Coupling formally

Given two sub-distributions $\mu_{1} \in D(A)$, and $\mu_{2} \in D(B)$, a coupling between them is a joint sub-distribution $\mu \in D(A x B)$ whose marginal sub-distributions are μ_{1} and μ_{2}, respectively.
$\pi_{1}(\mu)(a)=\sum_{b} \mu(a, b)$

$$
\pi_{1}(\mu)=\mu_{1}
$$

$$
\pi_{2}(\mu)=\mu_{2}
$$

R-Coupling

Given two sub-distributions $\mu_{1} \in D(A)$, and $\mu_{2} \in D(B)$, an R-coupling between them, for $R \subseteq A x B$, is a joint sub-distribution $\mu \in D(A x B)$ such that:

1) the marginal sub-distributions of μ are μ_{1} and μ_{2}, respectively,
2) the support of μ is contained in R. That is, if $\mu(a, b)>0$, then $(a, b) \in R$.

Relational lifting of a predicate

We say that two sub-distributions $\mu_{1} \in D(A)$ and $\mu_{2} \in D(B)$ are in the relational lifting of the relation $R \subseteq A x B$, denoted $\mu_{1} R^{*} \mu_{2}$, if and only if there exists a sub-distribution $\mu \in D(A x B)$ such that:

1) if $\mu(a, b)>0$, then $(a, b) \in R$.
2) $\pi_{1}(\mu)=\mu_{1}$ and $\pi_{2}(\mu)=\mu_{2}$
I.e., there is an R-coupling for μ_{1} and μ_{2}

Consequences of Lifting

Suppose E and F are predicates on memories. If we know
$\mu_{1}(E<1><=>F<2>) * \mu_{2}$, then we can conclude that

$$
\operatorname{Pr}_{\mu 1}[E]=\operatorname{Pr}_{\mu 2}[F]
$$

Consequences of Lifting

Suppose E and F are predicates on memories. If we know
$\mu_{1}(E<1>=>F<2>) * \mu_{2}$, then we can conclude that

$$
\operatorname{Pr} \mu_{1}[E] \leq \operatorname{Pr}_{\mu 2}[F]
$$

Validity of Probabilistic Hoare quadruple

 We say that the quadruple $c_{1} \sim C_{2}: P \Rightarrow Q$ is valid if and only if for every pair of memories $\mathrm{m}_{1}, \mathrm{~m}_{2}$ such that $\mathrm{P}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ we have:$\left\{C_{1}\right\}_{\mathrm{m} 1}=\mu_{1}$ and $\left\{\mathrm{C}_{2}\right\}_{\mathrm{m} 2}=\mu_{2}$ implies
Q* $\left(\mu_{1}, \mu_{2}\right)$.

Probabilistic Relational Hoare Logic

 Skip$$
\vdash s k i p \sim s k i p: P \Rightarrow P
$$

Probabilistic Relational Hoare Logic Assignment

$$
\begin{aligned}
& \vdash x_{1}:=e_{1} \sim x_{2}:=e_{2}: \\
& \quad P\left[e_{1}<1>/ x_{1}<1>, e_{2}<2>/ x_{2}<2>\right] \Rightarrow P
\end{aligned}
$$

Probabilistic Relational Hoare Logic Composition

$$
\vdash \mathrm{c}_{1} \sim \mathrm{c}_{2}: \mathrm{P} \Rightarrow \mathrm{R} \quad \vdash \mathrm{c}_{1}^{\prime} \sim \mathrm{c}_{2}^{\prime}: \mathrm{R} \Rightarrow \mathrm{~S}
$$

$$
\vdash \mathrm{C}_{1} ; \mathrm{C}_{1}^{\prime} \sim \mathrm{C}_{2} ; \mathrm{c}_{2}^{\prime}: \mathrm{P} \Rightarrow \mathrm{~S}
$$

$$
P \Rightarrow S \quad \vdash C_{1} \sim C_{2}: S \Rightarrow R \quad R \Rightarrow Q
$$

$$
\vdash \mathrm{C}_{1} \sim \mathrm{C}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

We can weaken P, i.e. replace it by something that is implied by P. In this case S .

We can strengthen Q, i.e. replace it by something that implies Q. In this case R.

Probabilistic Relational Hoare Logic

 If-then-else$P \Rightarrow\left(e_{1}<1>\Leftrightarrow e_{2}<2>\right)$
$\vdash \mathrm{c}_{1} \sim \mathrm{c}_{2}: \mathrm{e}_{1}<1>\wedge \mathrm{P} \Rightarrow \mathrm{Q}$ $\vdash \mathrm{c}_{1}^{\prime} \sim_{\mathrm{c}_{2}}^{\prime}: ~ \neg \mathrm{e}_{1}<1>\wedge \mathrm{P} \Rightarrow \mathrm{Q}$
if e_{1} then c_{1} else $c_{1}{ }^{\prime}$
\vdash
~

$$
: P \Rightarrow Q
$$

if e_{2} then C_{2} else $\mathrm{C}_{2}{ }^{\prime}$

Probabilistic Relational Hoare Logic

 While$$
\begin{gathered}
P \Rightarrow\left(e_{1}<1>\Leftrightarrow e_{2}<2>\right) \\
\vdash C_{1} \sim C_{2}: e_{1}<1>\wedge P \Rightarrow P
\end{gathered}
$$

while e_{1} do C_{1}
$: P \Rightarrow P \wedge \neg e_{1}<1>$
while e_{2} do C_{2}

Probabilistic Relational Hoare Logic

 If-then-else - left$$
\vdash C_{1} \sim C_{2}: e<1>\wedge P \Rightarrow Q
$$

$$
\vdash \mathrm{C}_{1}^{\prime} \sim \mathrm{C}_{2}: \neg \mathrm{e}<1>\wedge \mathrm{P} \Rightarrow \mathrm{Q}
$$

if e then C_{1} else $C_{1}{ }^{\prime}$ \vdash ~
: $P \Rightarrow Q$
C_{2}

Probabilistic Relational Hoare Logic

$$
\begin{gathered}
\text { If-then-else - right } \\
\vdash \mathrm{c}_{1} \sim \mathrm{C}_{2}: \mathrm{e}<2>\wedge \mathrm{P} \Rightarrow \mathrm{Q} \\
\vdash \mathrm{C}_{1} \sim \mathrm{c}_{2}^{\prime} \prime: \neg \mathrm{e}<2>\wedge \mathrm{P} \Rightarrow \mathrm{Q}
\end{gathered}
$$

CI
\vdash

$$
: P \Rightarrow Q
$$

$$
\text { if e then } c_{2} \text { else } c_{2}^{\prime}
$$

Probabilistic Relational Hoare Logic Assignment - left

$$
\begin{aligned}
& \vdash x:=e \sim \text { skip: } \\
& P[e<1>/ x<1>] \Rightarrow P
\end{aligned}
$$

How about the random assignment?

Probabilistic Relational Hoare Logic Random Assignment

$$
\vdash \mathrm{x}_{1}:=\$ \mathrm{~d}_{1} \sim \mathrm{x}_{2}:=\$ \mathrm{~d}_{2}: \text { ?? } \Rightarrow \mathrm{Q}
$$

We would like to have:

$$
\begin{aligned}
& \text { for all } m_{1}, m_{2}, P\left(m_{1}, m_{2}\right) \Rightarrow \\
& \text { let } a=\left\{d_{1}\right\}_{m 1} \text { in unit }\left(m_{1}\left[x_{1} \leftarrow a\right]\right) \\
& Q^{*} \\
& \text { let } a=\left\{d_{2}\right\}_{m 2} \text { in unit }\left(m_{2}\left[x_{2 \leftarrow a}\right]\right) \\
& \vdash x_{1}:=\$ d_{1} \sim x_{2}:=\$ d_{2}: P \Rightarrow Q
\end{aligned}
$$

What is the problem with this rule?

Restricted Probabilistic Expressions

 We consider a restricted set of expressions denoting probability distributions.$$
\mathrm{d}::=\mathrm{f}\left(\mathrm{~d}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}\right)
$$

Where f is a distribution declaration
Some expression examples similar to the previous

$$
\text { uniform(\{0,1\}128) bernoulli(.5) laplace }(0,1)
$$

Notice that we don't need a memory anymore to interpret them

Isomorphisms on Sub-distributions

Given two sub-distributions $\mu_{1} \in D(A)$ and $\mu_{2} \in D(B)$, we say that a mapping $\mathrm{h}: \mathrm{A} \rightarrow \mathrm{B}$ is an isomorphism between μ_{1} and $\mu_{2}\left(h \triangleleft\left(\mu_{1}, \mu_{2}\right)\right)$ if and only iff:

1) h is a bijective map between elements in $\operatorname{supp}\left(\mu_{1}\right)$ and $\operatorname{supp}\left(\mu_{2}\right)$,
2) for all $a \in A, \mu_{1}(a)=\mu_{2}(h(a))$

Probabilistic Relational Hoare Logic Random Assignment

$$
\begin{aligned}
\mathrm{P}= & \mathrm{h} \triangleleft\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}\right) \wedge \\
& \forall \mathrm{V}, \\
& \mathrm{v} \in \operatorname{supp}\left(\mathrm{~d}_{1}\right) \\
& \Rightarrow
\end{aligned}
$$

$$
\mathrm{Q}\left[\mathrm{v} / \mathrm{x}_{1}<1>, \mathrm{h}(\mathrm{v}) / \mathrm{x}_{2}<2>\right]
$$

$$
\vdash \mathrm{x}_{1}:=\$ \mathrm{~d}_{1} \sim \mathrm{x}_{2}:=\$ \mathrm{~d}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}
$$

Back to our example

```
OneTimePad(m : private msg) : public msg
    key :=$ Uniform({0,1}n);
    cipher := m xor key;
    return cipher
```


$m<2>$

Back to our example

$$
\mathrm{d}_{1}=\operatorname{Uniform}\left(\{0,1\}^{n}\right)
$$

$$
d_{2}=\operatorname{Uniform}\left(\{0,1\}^{n}\right)
$$

$$
h(k)=(m<1>\oplus k \oplus m<2>)
$$

Is this an isomorphism from d_{1} to d_{2} ?

1) Is it bijective between elements in the support of d_{1} and d_{2} ?
2) Is it true that for all $v \in\{0,1\}^{n}, d_{1}(v)=d_{2}(h(v))$?

Yes, it's an isomorphism!

Back to our example

$$
\begin{aligned}
& \mathrm{h}(\mathrm{k})=\mathrm{m}<1>\oplus \mathrm{k} \oplus \mathrm{~m}<2>, \mathrm{d}_{1}=\mathrm{d}_{2}=\operatorname{Uniform}(\{0,1\} \mathrm{n}) \\
& \mathrm{P}=\mathrm{h} \triangleleft\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}\right) \wedge \\
& \quad \forall \mathrm{v}, \mathrm{v} \in \operatorname{support}^{2}\left(\mathrm{~d}_{1}\right) \Rightarrow \\
& \mathrm{m}<1>\oplus \mathrm{k}_{1}<1>=\mathrm{m}<2>\oplus \mathrm{k}_{2}<2>\left[\mathrm{v} / \mathrm{k}_{1}<1>, \mathrm{h}(\mathrm{v}) / \mathrm{k}_{2}<2>\right]
\end{aligned}
$$

$\vdash \mathrm{k}_{1}:=\$ \operatorname{Uniform}(\{0,1\} \mathrm{n}) \sim \mathrm{k}_{2}:=\$ \operatorname{Uniform}(\{0,1\} \mathrm{n}):$

$$
\mathrm{P} \Rightarrow \mathrm{~m}<1>\oplus \mathrm{k}_{1}<1>=\mathrm{m}<2>\oplus \mathrm{k}_{2}<2>
$$

Back to our example

$$
\begin{aligned}
& \mathrm{h}(\mathrm{k})=\mathrm{m}<1>\oplus \mathrm{k} \oplus \mathrm{~m}<2>, \mathrm{d}_{1}=\mathrm{d}_{2}=\operatorname{Uniform}(\{0,1\} \mathrm{n}) \\
& \mathrm{P}=\mathrm{h} \triangleleft\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}\right) \wedge \\
& \quad \forall \mathrm{v}, \mathrm{v} \in \text { support }\left(\mathrm{d}_{1}\right) \Rightarrow \\
& \mathrm{m}<1>\oplus \mathrm{V}=\mathrm{m}<2>\oplus(\mathrm{m}<1>\oplus \mathrm{v} \oplus \mathrm{~m}<2>)
\end{aligned}
$$

$\vdash \mathrm{k}_{1}:=$ SUniform $(\{0,1\} n) \sim \mathrm{k}_{2}:=$ SUniform $(\{0,1\} n):$

$$
\mathrm{P} \Rightarrow \mathrm{~m}<1>\oplus \mathrm{k}_{1}<1>=\mathrm{m}<2>\oplus \mathrm{k}_{2}<2>
$$

Back to our example

$$
\begin{aligned}
& \mathrm{P}=\mathrm{h} \triangleleft\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}\right) \wedge \forall \mathrm{v}, \mathrm{v} \epsilon_{\text {support }}\left(\mathrm{d}_{1}\right) \Rightarrow \\
& \mathrm{m}<1>\oplus \mathrm{V}=\mathrm{m}<2>\oplus(\mathrm{m}<1>\oplus \mathrm{V} \oplus \mathrm{~m}<2>) \\
& \text { True } \Rightarrow \text { P } \\
& \vdash \mathrm{k}_{1}:=\text { \$Uniform }(\{0,1\} \mathrm{n}) \sim \mathrm{k}_{2}:=\text { \$Uniform }(\{0,1\} \mathrm{n}): \\
& \mathrm{P} \Rightarrow \mathrm{~m}<1>\oplus \mathrm{k}_{1}<1>=\mathrm{m}<2>\oplus \mathrm{k}_{2}<2> \\
& \vdash \mathrm{k}_{1}:=\text { SUniform }(\{0,1\} \mathrm{n}) \sim \mathrm{k}_{2}:=\text { \$Uniform }(\{0,1\} \mathrm{n}): \\
& \text { True } \Rightarrow \mathrm{m}<1>\oplus \mathrm{k}_{1}<1>=\mathrm{m}<2>\oplus \mathrm{k}_{2}<2>
\end{aligned}
$$

By Consequence

Soundness

If we can derive $\vdash \mathrm{C}_{1} \sim \mathrm{C}_{2}: \mathrm{P} \Rightarrow \mathrm{Q}$ through the rules of the logic, then the quadruple $C_{1} \sim C_{2}: P \Rightarrow Q \quad$ is valid.

Completeness?

