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Probabilistic Noninterference



From the previous classes



An example

OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 

Suppose msg is the type of n bit messages, and xor 
is bitwise exclusive or.



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… expressions for sub-distributions



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m = …



Today:  
Probabilistic 

Noninterference



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 

How do we formalize this?



Probabilistic Noninterference

A program prog is probabilistically 
noninterferent if and only if, whenever 
we run it on two low equivalent 
memories m1 and m2, we have that the 
probabilistic distributions we get as 
outputs are the same on public outputs. 



Low equivalence on 
distributions

Two distributions over memories µ1 and 
µ2 are low equivalent if and only if they 
coincide after projecting out all the 
private variables.

In symbols: µ1 ~low µ2



Example: Low equivalence 
on distributions

Consider memories with x private and y 
public. The distributions µ1 and µ2 defined 
as 
µ1([x=2,y=0])=2/3, µ1([x=3,y=1])=1/3  
and  
µ2([x=1,y=0])=1/3,µ2([x=5,y=0])=1/3, 
µ2([x=4,y=1])=1/3 
are low equivalent.



Noninterference as a Relational Property
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

How can we prove that this is noninterferent?



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

We will show it is sound to pick, with some 
restrictions, a function of k as the key for m2. What 
could we choose so that the cipher texts are equal?

m1 m2

m1⊕k m2⊕( )km1⊕ ⊕m2



Properties of bitwise xor

Example:
c⊕(a⊕c)=a

100⊕(101⊕100)=
100⊕001=101



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

Applying the property above

m1 m2

m1⊕k m1⊕k



Noninterference as a Relational Property

c is noninterferent if and only if for every 
m1 ~low m2  : {c}m1=µ1 and {c}m2=µ2 implies 
µ1 ~low µ2

We will express and prove probabilistic 
noninterference using Probabilistic 
Relational Hoare Logic



Probabilistic Relational Hoare 
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition

Postcondition Probabilistic 
Program



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q(μ1,μ2).

Is this correct?!?



Relational Assertions

c1 ∼ c2 : P ⇒ Q
logical formula  

over pair of memories 
(i.e., relation over memories)

logical formula  
over ????

We need to lift Q to be a relation on 
distributions, and we do this using the notion of 
a coupling between distributions



Coupling Example 1

k1 = 10⊕k2⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

relation

k1 k2

k1

k2



Coupling Example 2

k1=k2 or k1=k2⊕11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.00
O1 0.50
1O 0.00
11 0.50

relation

k1 k2

k1

k2



Coupling formally
Given two sub-distributions µ1∈D(A), and 
µ2∈D(B), a coupling between them is a joint 
sub-distribution µ∈D(AxB) whose marginal 
sub-distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)

π1(μ) = μ1 π2(μ) = μ2



R-Coupling 
Given two sub-distributions µ1∈D(A), and 
µ2∈D(B), an R-coupling between them, for 
R⊆AxB, is a joint sub-distribution µ∈D(AxB) 
such that: 
1) the marginal sub-distributions of µ are 

µ1 and µ2, respectively,  
2) the support of µ is contained in R. That 

is, if μ(a,b)>0, then (a,b)∈R.



Relational lifting of a predicate
We say that two sub-distributions μ1∈D(A) 
and μ2∈D(B) are in the relational lifting of 
the relation R⊆AxB, denoted μ1 R* μ2, if 
and only if there exists a sub-distribution 
μ∈D(AxB) such that: 
1) if μ(a,b)>0, then (a,b)∈R. 
2)  and π1(μ) = μ1 π2(μ) = μ2

I.e., there is an R-coupling for μ1 and μ2



Consequences of Lifting
Suppose E and F are predicates on 
memories. If we know 
μ1 (E<1> <=> F<2>)* μ2,
then we can conclude that

Pr μ1[E] Pr μ2[F]=



Consequences of Lifting
Suppose E and F are predicates on 
memories. If we know 
μ1 (E<1> => F<2>)* μ2,
then we can conclude that

Pr μ1[E] Pr μ2[F]≤



Validity of Probabilistic Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q*(μ1,μ2).



Probabilistic Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



⊢x1:=e1~x2:=e2:  
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒ P

Probabilistic Relational Hoare Logic 
Assignment



⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.
We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Probabilistic Relational Hoare Logic 
Consequence



Probabilistic Relational Hoare Logic 
If-then-else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)



Probabilistic Relational Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)



Probabilistic Relational Hoare Logic 
If-then-else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Probabilistic Relational Hoare Logic 
If-then-else - right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Probabilistic Relational Hoare Logic 
Assignment - left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



How about the random 
assignment? 



⊢x1 :=$ d1 ~ x2 :=$ d2 : ?? ⇒ Q

Probabilistic Relational Hoare Logic 
Random Assignment



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
for all m1, m2, P(m1,m2) ⇒  
let a={d1}m1 in unit(m1[x1←a])  
Q*  
let a={d2}m2 in unit(m2[x2←a]) 

What is the problem with this rule?



Restricted Probabilistic Expressions
We consider a restricted set of expressions denoting probability 
distributions. 

Where f is a distribution declaration

d::= f(d1,…,dk)                

Some expression examples similar to the previous 

uniform({0,1}128) bernoulli(.5) laplace(0,1)

Notice that we don’t need a memory anymore to interpret them



Isomorphisms on Sub-distributions

Given two sub-distributions µ1∈D(A) and µ2∈D(B), we 
say that a mapping h:A→B is an isomorphism 
between µ1 and µ2 (h⊲(µ1,µ2)) if and only iff: 

1) h is a bijective map between elements in 
supp(µ1) and supp(µ2), 

2) for all a∈A, µ1(a) = µ2(h(a))



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

P=h⊲(d1,d2)  
  ∀v, 
  v∈supp(d1) 
  ⇒ 
  Q[v/x1<1>,h(v)/x2<2>]

∧

Probabilistic Relational Hoare Logic 
Random Assignment

we let h’s definition refer 
to program variables tagged 
with <1> or <2>



OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := m xor key; 
return cipher  

m<1>

m<1>⊕k

m<2>

m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example



h(k)=(m<1>⊕k⊕m<2>)

Back to our example
d1=Uniform({0,1}n) d2=Uniform({0,1}n)

Is this an isomorphism from d1 to d2?

1) Is it bijective between elements in the support of d1 and d2? 
2) Is it true that for all v∈{0,1}n, d1(v) = d2(h(v))?

Yes, it’s an isomorphism!



⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=m<1>⊕k⊕m<2>, d1 = d2 = Uniform({0,1}n) 
P = h⊲(d1,d2)  

   ∀v,v∈support(d1) ⇒ 
   m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]

∧

Back to our example



⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=m<1>⊕k⊕m<2>, d1 = d2 = Uniform({0,1}n) 
P = h⊲(d1,d2)  

   ∀v,v∈support(d1) ⇒ 
   m<1>⊕v=m<2>⊕(m<1>⊕v⊕m<2>)

∧

Back to our example



⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   P ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

P = h⊲(d1,d2)  ∀v,v∈support(d1) ⇒ 
m<1>⊕v=m<2>⊕(m<1>⊕v⊕m<2>)

∧

Back to our example

True ⇒ P

⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

By Consequence



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Completeness?


