
EasyCrypt’s While Language and Hoare Logic

These slides are an example-based introduction to the features of
EasyCrypt’s while loop language that correspond to the
language we’ve studied in class so far (and that are used in the
notes by Gilles Barthe), as well as the features of EasyCrypt’s
Hoare logic.

The EasyCrypt tactics for Hoare logic are motivated by the ones
we’ve studied in class, but are different in some key ways.

1 / 65



EasyCrypt’s Programming Language

In EasyCrypt’s while language, commands (or statements) are
enclosed in procedures, which are in turn enclosed in modules.
Furthermore, modules may have global variables, which their
procedures may read and write.

Procedures may call other procedures. But we don’t need to make
use of this feature at this point in the course. And so consequently
we’ll ignore for now the Hoare logic tactics for working with
procedure calls.

2 / 65



First Example Program

Here is a sample program, which we’ll use as our first running
example:

module M = {
var x, y : int

proc f() : unit = {
if (0 <= x) {
while (0 < x) {

x <- x - 1;
y <- y + 1;

}
}
else {
while (x < 0) {

x <- x + 1;
y <- y - 1;

}
}

}
}.

3 / 65



First Example Program

In the above program, the procedure f takes in no arguments, and
implicitly returns the single element (()) of type unit. Its
assignments are written using <-, instead of the := notation used
in class. They read and write the global variables x and y of the
module M.

We can think of the integers x and y as the inputs of the program,
and of y as the program’s output. It’s not hard to see that the
final value of y will be equal to the sum of the original values of x
and y.

4 / 65



Hoare Triple for Example Program

Because the variables x and y are modified during the running of
our example program, to state the correctness of the program as a
Hoare triple, we need a way of referring to the original values of x
and y.

5 / 65



Hoare Triples

Fortunately, we can do this in EasyCrypt using its ambient logic:

lemma correct (x_ y_ : int) :
hoare[M.f : M.x = x_ /\ M.y = y_ ==> M.y = x_ + y_].

proof.
...
qed.

The lemma is parameterized by mathematical variables x_ and y_,
which are intended to be the initial values of the program’s inputs.
Its conclusion is EasyCrypt’s expression of a Hoare triple. The
program is M.f. The precondition

M.x = x_ /\ M.y = y_

assumes that the values of M.x and M.y are x and y ,
respectively. And the postcondition

M.y = x_ + y_

requires that the final value of M.y be the sum of x_ and y_.
6 / 65



Proof of First Example

When we begin proving our lemma, we have the goal

Type variables: <none>

x_: int
y_: int
--------------------------------------------
pre = M.x = x_ /\ M.y = y_

M.f

post = M.y = x_ + y_

where the conclusion is just another way of writing the same Hoare
triple.

We begin by applying the tactic proc, which inlines the code of f,
transforming this goal into:

7 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre = M.x = x_ /\ M.y = y_

(1----) if (0 <= M.x) {
(1.1--) while (0 < M.x) {
(1.1.1) M.x <- M.x - 1
(1.1.2) M.y <- M.y + 1
(1.1--) }
(1----) } else {
(1?1--) while (M.x < 0) {
(1?1.1) M.x <- M.x + 1
(1?1.2) M.y <- M.y - 1
(1?1--) }
(1----) }

post = M.y = x_ + y_
8 / 65



Proof of First Example

Because the first statement is an if, we can use the tactic if to
split this goal into two subgoals, depending upon whether M.x is
non-negative or not:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

(1--) while (0 < M.x) {
(1.1) M.x <- M.x - 1
(1.2) M.y <- M.y + 1
(1--) }

post = M.y = x_ + y_

(for the “then” part) and
9 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre = (M.x = x_ /\ M.y = y_) /\ ! 0 <= M.x

(1--) while (M.x < 0) {
(1.1) M.x <- M.x + 1
(1.2) M.y <- M.y - 1
(1--) }

post = M.y = x_ + y_

(for the “else” part).

10 / 65



Proof of First Example

With both of these subgoals, the final (only in this case) statement
is a while loop, and thus we can apply the while tactic, for which
we need to supply an invariant. We’ll only consider the proof of
the first subgoal, the other being similar.

It’s perhaps obvious that the invariant should include that the sum
of M.x and M.y is equal to the sum of x_ and y_. But we’ll also
need that 0 <= M.x.

In the goal where 0 <= M.x, running

while (0 <= M.x /\ M.x + M.y = x_ + y_).

generates the two subgoals

11 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

(1) M.x <- M.x - 1
(2) M.y <- M.y + 1

post = 0 <= M.x /\ M.x + M.y = x_ + y_

(showing that the body of the loop preserves the invariant when
M.x is positive) and

12 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

post =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

(connecting the while loop to the pre- and postconditions of the
goal on which the while tactic was run). We’ll come back to this
second subgoal; but first, let’s consider how to prove the first one.

13 / 65



Proof of First Example

To prove

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

(1) M.x <- M.x - 1
(2) M.y <- M.y + 1

post = 0 <= M.x /\ M.x + M.y = x_ + y_

we can push the assignments at the end of the program (all of the
program in this case) into the postcondition, using the tactic wp,
which stands for “weakest precondition”.

14 / 65



Proof of First Example

The wp tactic optionally takes an argument which (somewhat
confusingly) is the number of statements at the beginning of the
program that we don’t want wp to try to push into the
postcondition. This version of the tactic may fail, if it’s not
possible to push enough statements into the postcondition. In this
example,

wp 0.

would have the same effect as wp.

15 / 65



Proof of First Example

In terms of the logic learned in class, it’s equivalent to repeated use
of the rule for assignment, combined with what the slides called
the Rule of Hoare Logic Composition. This results in the goal:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

post =
let x = M.x - 1 in
0 <= x /\ x + (M.y + 1) = x_ + y_

16 / 65



Proof of First Example

Because the program of

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\ 0 < M.x

post =
let x = M.x - 1 in
0 <= x /\ x + (M.y + 1) = x_ + y_

is empty, we can use the skip tactic to reduce it to the ambient
logic formula:

17 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
forall &hr,
(0 <= M.x{hr} /\ M.x{hr} + M.y{hr} = x_ + y_) /\
0 < M.x{hr} =>
let x = M.x{hr} - 1 in
0 <= x /\ x + (M.y{hr} + 1) = x_ + y_

Here &hr stands for an arbitrary memory, and M.x{hr} and M.y{hr}

stand for the values of M.x and M.y in that memory. As an
example, we will solve this goal without using the smt tactic.

18 / 65



Proof of First Example

First, we introduce &hr into the assumptions by running the tactic

move => &hr.

which takes us to the goal

Type variables: <none>

x_: int
y_: int
&hr: {}
--------------------------------------------
(0 <= M.x{hr} /\ M.x{hr} + M.y{hr} = x_ + y_) /\
0 < M.x{hr} =>
let x = M.x{hr} - 1 in
0 <= x /\ x + (M.y{hr} + 1) = x_ + y_

19 / 65



Proof of First Example

Next, we run the introduction pattern

move => /= [] [] ge0_M_x eq_plus gt0_M_x.

which takes us to the goal

Type variables: <none>

x_: int
y_: int
&hr: {}
ge0_M_x: 0 <= M.x{hr}
eq_plus: M.x{hr} + M.y{hr} = x_ + y_
gt0_M_x: 0 < M.x{hr}
--------------------------------------------
0 <= M.x{hr} - 1 /\
M.x{hr} - 1 + (M.y{hr} + 1) = x_ + y_

20 / 65



Proof of First Example

Next, we apply the split tactic, which reduces the goal to two
goals. The first of these is

Type variables: <none>

x_: int
y_: int
&hr: {}
ge0_M_x: 0 <= M.x{hr}
eq_plus: M.x{hr} + M.y{hr} = x_ + y_
gt0_M_x: 0 < M.x{hr}
--------------------------------------------
0 <= M.x{hr} - 1

from which we can run the tactic

rewrite ler_subr_addr /=.

producing the goal

21 / 65



Proof of First Example

Type variables: <none>

x_: int
y_: int
&hr: {}
ge0_M_x: 0 <= M.x{hr}
eq_plus: M.x{hr} + M.y{hr} = x_ + y_
gt0_M_x: 0 < M.x{hr}
--------------------------------------------
1 <= M.x{hr}

which we can solve by running the tactic

rewrite ltzE // in gt0_M_x.

22 / 65



Proof of First Example

And the second goal produced by split is

Type variables: <none>

x_: int
y_: int
&hr: {}
ge0_M_x: 0 <= M.x{hr}
eq_plus: M.x{hr} + M.y{hr} = x_ + y_
gt0_M_x: 0 < M.x{hr}
--------------------------------------------
M.x{hr} - 1 + (M.y{hr} + 1) = x_ + y_

which we can solve by running the tactic

by rewrite (addrC _ 1) addrA /= eq_plus.

23 / 65



Proof of First Example

Now let’s go back to the second subgoal generated by running the
while tactic:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {}

pre = (M.x = x_ /\ M.y = y_) /\ 0 <= M.x

post =
(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

Here there is no program, because nothing came before the while
loop.

24 / 65



Proof of First Example

The post condition

(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),
! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

has two conjuncts.

The first is the invariant specified to the while tactic, as it must
be true that when the while loop is entered, the invariant holds.

25 / 65



Proof of First Example

Postcondition:

(0 <= M.x /\ M.x + M.y = x_ + y_) /\
forall (x y : int),
! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

The second part quantifies over the values x and y, representing
the values of the variables modified by the while loop at the point
where the loop is exited. It has implications assuming that the
boolean expression of the while loop is false, and the loop’s
invariant holds, and requiring us to prove that the original
postcondition (M.y = x_ + y_) holds—all expressed in terms of x
and y instead of M.x and M.y.

The combination of ! 0 < x and 0 <= x tells us that x is zero,
which is why y = x_ + y_ holds, and also why 0 <= x needed to be
part of the invariant.

26 / 65



Proof of First Example

Because the goal’s program part is empty, running skip reduces
the goal to:

Type variables: <none>

x_: int
y_: int
--------------------------------------------
forall &hr,
(M.x{hr} = x_ /\ M.y{hr} = y_) /\ 0 <= M.x{hr} =>
(0 <= M.x{hr} /\ M.x{hr} + M.y{hr} = x_ + y_) /\
forall (x y : int),

! 0 < x =>
0 <= x /\ x + y = x_ + y_ => y = x_ + y_

And running smt() will solve this goal.

27 / 65



Proof of First Example

Note that only the variables modified by the while loop are
universally quantified in the postcondition. Thus if the
postcondition Φ of the goal on which the while tactic is run refers
to variables used by the part of the program that comes before the
while loop, or by the precondition of the goal on which the while
tactic is run, whatever is known about those variables upon entry
to the while loop can be used when proving Φ.

28 / 65



Second Example

Because procedures can take arguments and return results, here’s
an alternative version of our example:

module M’ = {
proc f(x : int, y : int) : int = {

var x’, y’ : int;
x’ <- x; y’ <- y;
if (0 <= x’) {
while (0 < x’) {

x’ <- x’ - 1; y’ <- y’ + 1;
}

}
else {
while (x’ < 0) {

x’ <- x’ + 1; y’ <- y’ - 1;
}

}
return y’;

}
}.

29 / 65



Second Example

Here:

• x and y are arguments of f,

• the variables manipulated by the while loops are local
variables x’ and y’, and

• y’ is explicitly returned as the result of f.

This time the lemma to be proved is:

lemma correct’ (x_ y_ : int) :
hoare[M’.f : x = x_ /\ y = y_ ==> res = x_ + y_].

Note how the precondition refers to the values of f’s arguments,
and how res in the postcondition is used to stand for the result
returned by f.

30 / 65



Proof of Second Example

The proof of the second example is only slightly different from that
of the first one. We start with the goal

Type variables: <none>

x_: int
y_: int
--------------------------------------------
pre = x = x_ /\ y = y_

M’.f

post = res = x_ + y_

Running proc then gives us the goal

31 / 65



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {x, y, x’, y’ : int}

pre = (x, y).‘1 = x_ /\ (x, y).‘2 = y_

(1----) x’ <- x
(2----) y’ <- y
(3----) if (0 <= x’) {
(3.1--) while (0 < x’) {
(3.1.1) x’ <- x’ - 1
(3.1.2) y’ <- y’ + 1
(3.1--) }
(3----) } else {
(3?1--) while (x’ < 0) {
(3?1.1) x’ <- x’ + 1
(3?1.2) y’ <- y’ - 1
(3?1--) }
(3----) }

post = y’ = x_ + y_
32 / 65



Proof of Second Example

Note that the postcondition now involves y’ not res, since y’ is
what is returned by f.

The precondition involves the notation for selecting the first or
second component of a pair. If we run the tactic simplify, we get
the goal:

33 / 65



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {x, y, x’, y’ : int}

pre = x = x_ /\ y = y_

(1----) x’ <- x
(2----) y’ <- y
(3----) if (0 <= x’) {
(3.1--) while (0 < x’) {
(3.1.1) x’ <- x’ - 1
(3.1.2) y’ <- y’ + 1
(3.1--) }
(3----) } else {
(3?1--) while (x’ < 0) {
(3?1.1) x’ <- x’ + 1
(3?1.2) y’ <- y’ - 1
(3?1--) }
(3----) }

post = y’ = x_ + y_
34 / 65



Proof of Second Example

Because the if statement is not the first statement of the program,
we can’t directly run the if tactic. Instead we must use
EasyCrypt’s sequencing tactic (based on the Rule of Hoare
Logic Composition) to split this goal into one involving the first
two assignments, and one involving the if statement.

We run the tactic

seq 2 : (x’ = x_ /\ y’ = y_).

Here the 2 is the number of statements to use for the first subgoal,
and the condition will be used as the postcondition of the first
subgoal, and the precondition of the second subgoal. Here are the
goals we get after running this tactic:

35 / 65



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {x, y, x’, y’ : int}

pre = x = x_ /\ y = y_

(1) x’ <- x
(2) y’ <- y

post = x’ = x_ /\ y’ = y_

(which we know how to solve using wp; skip; trivial) and

36 / 65



Proof of Second Example

Type variables: <none>

x_: int
y_: int
--------------------------------------------
Context : {x, y, x’, y’ : int}

pre = x’ = x_ /\ y’ = y_

(1----) if (0 <= x’) {
(1.1--) while (0 < x’) {
(1.1.1) x’ <- x’ - 1
(1.1.2) y’ <- y’ + 1
(1.1--) }
(1----) } else {
(1?1--) while (x’ < 0) {
(1?1.1) x’ <- x’ + 1
(1?1.2) y’ <- y’ - 1
(1?1--) }
(1----) }

post = y’ = x_ + y_

(which is proved just like the analogous goal of the first example).
37 / 65



Proof of Second Example

Here is the complete proof of the second example:

lemma correct’ (x_ y_ : int) :
hoare[M’.f : x = x_ /\ y = y_ ==> res = x_ + y_].

proof.
proc; simplify.
seq 2 : (x’ = x_ /\ y’ = y_).
wp; skip; trivial.
if.
while (0 <= x’ /\ x’ + y’ = x_ + y_).
wp; skip; smt().
skip; smt().
while (x’ <= 0 /\ x’ + y’ = x_ + y_).
wp; skip; smt().
skip; smt().
qed.

38 / 65



More on wp Tactic

The wp tactic can actually push (possibly nested) conditionals and
assignment statements at the end of the program into the
postcondition. E.g., if the program is

module L = {
var w : int

proc f(x y : int) : unit = {
if (x < y) {
w <- y - x;

}
else {
w <- x - y;

}
}

}.

then running

wp.

39 / 65



More on wp Tactic

transforms the goal

Type variables: <none>

--------------------------------------------
Context : {x, y : int}

pre = true

(1--) if (x < y) {
(1.1) L.w <- y - x
(1--) } else {
(1?1) L.w <- x - y
(1--) }

post = 0 <= L.w

into

40 / 65



More on wp Tactic

Type variables: <none>

--------------------------------------------
Context : {x, y : int}

pre = true

post = if x < y then 0 <= y - x else 0 <= x - y

41 / 65



The sp Tactic

Dual to the wp tactic, there is the sp (“strongest postcondition”)
tactic, which can push (possibly nested) conditionals and
assignment statements at the beginnning of the program into the
precondition. E.g., if the program is

module L = {
var w : int

proc f(x y : int) : unit = {
if (x < y) {
w <- y - x;

}
else {
w <- x - y;

}
}

}.

then running

sp.

42 / 65



The sp Tactic

transforms the goal

Type variables: <none>

--------------------------------------------
Context : {x, y : int}

pre = true

(1--) if (x < y) {
(1.1) L.w <- y - x
(1--) } else {
(1?1) L.w <- x - y
(1--) }

post = 0 <= L.w

into

43 / 65



The sp Tactic

Type variables: <none>

--------------------------------------------
Context : {x, y : int}

pre =
L.w = y - x /\ x < y \/ L.w = x - y /\ ! x < y

post = 0 <= L.w

44 / 65



The sp Tactic

sp optionally takes as an argument the number of statements at
the beginning of the program that EasyCrypt should try to push
into the precondition. This version of the tactic will fail if that
action is impossible.

45 / 65



The auto Tactic

Finally, the auto tactic will run wp, and then continue with skip,
if the program becomes empty.
E.g., if the program is

module L = {
var w : int

proc f(x y : int) : unit = {
while (true) { }
if (x < y) {
w <- y - x;

}
else {
w <- x - y;

}
}

}.

then running

auto.

46 / 65



The auto Tactic

transforms the goal

Type variables: <none>

--------------------------------------------
Context : {x, y : int}

pre = true

(1--) if (x < y) {
(1.1) L.w <- y - x
(1--) } else {
(1?1) L.w <- x - y
(1--) }

post = 0 <= L.w

into

47 / 65



The auto Tactic

Type variables: <none>

--------------------------------------------
forall &hr,
true =>
if x{hr} < y{hr} then 0 <= y{hr} - x{hr}
else 0 <= x{hr} - y{hr}

auto actually does more than just this. It’s always safe to use, but
may not make any progress.

48 / 65



The case, rcondt and rcondf Tactics

Let’s go back to a goal that we solved using the if tactic, and
show how we can instead solve it using the case, rcondt and
rcondf tactics.

49 / 65



The case, rcondt and rcondf Tactics

Type variables: <none>

x_: int
y_: int
--------------------------------------------------------------------
Context : {x, y, x’, y’ : int}

pre = x’ = x /\ y’ = y /\ x = x_ /\ y = y_

(1----) if (0 <= x’) {
(1.1--) while (0 < x’) {
(1.1.1) x’ <- x’ - 1
(1.1.2) y’ <- y’ + 1
(1.1--) }
(1----) } else {
(1?1--) while (x’ < 0) {
(1?1.1) x’ <- x’ + 1
(1?1.2) y’ <- y’ - 1
(1?1--) }
(1----) }

post = y’ = x_ + y_
50 / 65



The case, rcondt and rcondf Tactics

The case tactic also works with Hoare logic goals, and running

case (0 <= x’).

gives us the goals

51 / 65



The case, rcondt and rcondf Tactics

Type variables: <none>

x_: int
y_: int
------------------------------------------------------------------------
Context : {x, y, x’, y’ : int}

pre = (x’ = x /\ y’ = y /\ x = x_ /\ y = y_) /\ 0 <= x’

(1----) if (0 <= x’) {
(1.1--) while (0 < x’) {
(1.1.1) x’ <- x’ - 1
(1.1.2) y’ <- y’ + 1
(1.1--) }
(1----) } else {
(1?1--) while (x’ < 0) {
(1?1.1) x’ <- x’ + 1
(1?1.2) y’ <- y’ - 1
(1?1--) }
(1----) }

post = y’ = x_ + y_

and
52 / 65



The case, rcondt and rcondf Tactics

Type variables: <none>

x_: int
y_: int
--------------------------------------------------------------------
Context : {x, y, x’, y’ : int}

pre = (x’ = x /\ y’ = y /\ x = x_ /\ y = y_) /\ ! 0 <= x’

(1----) if (0 <= x’) {
(1.1--) while (0 < x’) {
(1.1.1) x’ <- x’ - 1
(1.1.2) y’ <- y’ + 1
(1.1--) }
(1----) } else {
(1?1--) while (x’ < 0) {
(1?1.1) x’ <- x’ + 1
(1?1.2) y’ <- y’ - 1
(1?1--) }
(1----) }

post = y’ = x_ + y_
53 / 65



The case, rcondt and rcondf Tactics

On the first of these goals, we can run the rcondt (“reduce
conditional when true”) tactic

rcondt 1.

which takes the line number (here 1) of the conditional to which
the tactic should be applied. This gives us the goals

54 / 65



The case, rcondt and rcondf Tactics

Type variables: <none>

x_: int
y_: int
--------------------------------------------------------------------
Context : {x, y, x’, y’ : int}

pre = (x’ = x /\ y’ = y /\ x = x_ /\ y = y_) /\ 0 <= x’

post = 0 <= x’

(which makes us prove that the boolean expression of the
conditional is indeed true, after the statements before it (none in
this case) are run) and

55 / 65



The case, rcondt and rcondf Tactics

Type variables: <none>

x_: int
y_: int
--------------------------------------------------------------------
Context : {x, y, x’, y’ : int}

pre = (x’ = x /\ y’ = y /\ x = x_ /\ y = y_) /\ 0 <= x’

(1--) while (0 < x’) {
(1.1) x’ <- x’ - 1
(1.2) y’ <- y’ + 1
(1--) }

post = y’ = x_ + y_

(where the conditional has been replaced by its “then” part).

56 / 65



The case, rcondt and rcondf Tactics

The other goal generated by the application of case can be solved
using the rcondf (“reduce conditional when false”) tactic, which
makes us prove that the boolean expression of the conditional is
false, not true, and handle the reduction to the “else” part of the
conditional.

57 / 65



The exfalso Tactic

There are two approaches to solving this goal:

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = true

(1--) i <- 10
(2--) while (i < 5) {
(2.1) i <- i + 1
(2--) }

post = i = 10

58 / 65



The exfalso Tactic

If we apply the tactic

while (i = 10).

this gives us the goals

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = i = 10 /\ i < 5

(1) i <- i + 1

post = i = 10

(showing that the body preserves the invariant when the while
loop’s boolean expression is true) and

59 / 65



The exfalso Tactic

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = true

(1) i <- 10

post = i = 10

(which EasyCrypt dramatically simplified, making us only prove
that the invariant is established—which the auto tactic can solve).

60 / 65



The exfalso Tactic

In the goal

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = i = 10 /\ i < 5

(1) i <- i + 1

post = i = 10

the prcondition is inconsistent, and thus we can solve it using the

exfalso.

tactic, which makes us prove the goal

61 / 65



The exfalso Tactic

Type variables: <none>

--------------------------------------------------------------------
forall &hr, i{hr} = 10 /\ i{hr} < 5 => false

(which smt can solve).

62 / 65



The exfalso Tactic

Alternatively, we can solve the goal

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = true

(1--) i <- 10
(2--) while (i < 5) {
(2.1) i <- i + 1
(2--) }

post = i = 10

using the tactic

rcondf 2.

(which applies to while loops as well as conditionals). It makes us
prove the goals:

63 / 65



The exfalso Tactic

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = true

(1) i <- 10

post = ! i < 5

(that the code before the while loop makes the while loop’s
boolean expression false) and

64 / 65



The exfalso Tactic

Type variables: <none>

--------------------------------------------------------------------
Context : {i : int}

pre = true

(1) i <- 10

post = i = 10

(the original goal where the while loop was reduced to nothing).
When rcondt is used with while loops, the user must prove that
the while loop’s boolean expression is true, after the code before
the while loop is executed, and then prove the original goal where
the while loop is replaced by its body followed by the while loop
(i.e., the result of unfolding the while loop one time).

65 / 65


