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The problem

Query a function 𝑓: 0, 1 𝑛 → {0, 1} at a few points and decide if 

the function is monotone or far from monotone. 

First introduced by: Goldreich, Goldwasser, Lehman, Ron ‘98

“few” = sublinear in the size of the domain

 property testing, sublinear algorithms



Some definitions & Background
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Monotonicity on hypercube

𝑓: 0, 1 𝑛 → {0, 1}

𝑥 → 𝑦 is an edge if:

 𝑥𝑖 = 0, 𝑦𝑖= 1

 𝑥𝑗= 𝑦𝑗 for all 𝑗 ∈ 𝑛 − 𝑖

2𝑛 vertices and 𝑛 ⋅ 2𝑛−1 edges in the hypercube

𝑓 is monotone if the value of 𝑓 along any edge is nondecreasing
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Distance to monotonicity

Let 𝜺 𝒇 denote the distance of 𝑓 to monotonicity 

𝜀 𝑓 = least fraction of values of 𝑓 that need to be changed 

to make 𝑓 monotone

dist 𝑓,MONO = 0 dist 𝑔,MONO = 3/8

0

11

0

1

1
0

0

1

11

0

0

0
1

1

5



Testing monotonicity

In this talk: tester 

always accepts if 𝑓
monotone 

(one-sided error)
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Results on monotonicity testing 

Variations of problem studied since the late ‘90s: 

• on different ranges, different domains

• estimating distance to monotonicity

For Boolean functions on hypercube:

• 𝑂
𝑛

𝜀
-query tester [Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsky ’99],                      

[Goldreich, Goldwasser, Lehman, Ron, Samorodnitsky ’00]

• 𝑂
𝑛7/8

𝜀3/2
-query tester [Chakrabarty, Seshadri ‘13]

• ෨𝑂
𝑛

𝜀2
-query tester [Khot, Minzer, Safra ‘15]

Lower bounds:

• Ω 𝑛 queries for 1-sided, nonadaptive [Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld, 
Samorodnitsky ‘02]: 

• ෩Ω 𝑛1/3 queries for adaptive [Chen, Waingarten, Xie ‘17] 
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Plan for this talk

▪ 𝑂
𝑛

𝜀
query tester + analysis

▪ Overview of isoperimetric inequalities related to monotonicity testing

▪ Proof outline for isoperimetric inequality in ෨𝑂
𝑛

𝜀2
-query tester 

▪ Relationship between isoperimetric inequality and ෨𝑂
𝑛

𝜀2
-query tester 
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Part 1: Edge tester

▪ Describe 𝑂
𝑛

𝜀
query tester (a.k.a edge tester)

▪ Analysis of tester 
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The edge tester [Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsy ’99]

Given 𝑛 and 𝜀:

Repeat 𝑂
𝑛

𝜀
times:

▪ Sample edge 𝑥 → 𝑦 from the hypercube

▪ Query 𝑓(𝑥) and 𝑓(𝑦)

▪ Reject if and only if 𝑓 𝑥 > 𝑓(𝑦)

Accept

 The tester is nonadaptive

 The tester always accepts when 𝑓 is monotone

Need to show that tester rejects w.h.p if 𝑓 is 𝜀-far from monotone 10



The edge tester: analysis overview

Want to show that tester rejects w.h.p

Call edge 𝑥 → 𝑦 is violated if:

𝑓 𝑥 = 1, 𝑓 𝑦 = 0, i.e. 𝑓 decreases along the edge 

We show there must be a lot of violated edges:

# 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑒𝑑𝑔𝑒𝑠

𝑛 ⋅ 2𝑛−1
≥
𝜀(𝑓)

𝑛

 If 𝑓 is 𝜀-far from monotone, tester finds a violated edge w.h.p

 Idea: Can repair 𝑓 by changing 2 values per violated edge
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Switch operator

𝑓 → 𝑆𝑖(𝑓)

For all edges along dimension 𝑖:

if the edge 𝑥 → 𝑦 is violated:

switch around the values of 𝑓(𝑥) and 𝑓(𝑦)

More precisely: 

𝑓 𝑥 = 𝑎

𝑓 𝑦 = 𝑏 𝑆𝑖𝑓 𝑦 = max(𝑎, 𝑏)

𝑆𝑖 𝑓 𝑥 = min(𝑎, 𝑏)𝑖 = 0

𝑖 = 1
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Switch operator: example

Switch the red edges

Edges in - - - - are violated 
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Switching vertical

dimension

0 0
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Property of switch operator 

Lemma. 

Switching 𝑓 in dimension 𝑖:

 makes 𝑓 monotone in dimension 𝑖

 does not increase number of violated edges in dimension 𝑗

Proof. It suffices to look at squares in dimensions 𝑖 and 𝑗
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Edge tester: analysis

 𝑆1𝑆2…𝑆𝑛 𝑓 is monotone

When switching 𝑓 in dimensions 1 through 𝑛 we change at most:

2 ⋅ (# violated edges) points

 Therefore:
2 ⋅ # violated edges

2𝑛
≥ dist(𝑓, 𝑆1𝑆2…𝑆𝑛 𝑓 ) ≥ 𝜀(𝑓)

 For a random edge 𝑥 → 𝑦:

Prob 𝑥 → 𝑦 is violated ≥
# violated edges

𝑛⋅2𝑛−1
≥

𝜀(𝑓)

𝑛

 After 
𝑛

𝜀 𝑓
rounds, w.h.p, we have drawn a violated edge → 𝑓 is rejected
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Part 2: Background on isoperimetric inequalities 

▪ Describe isoperimetric inequality of this talk

▪ Some background on isoperimetric inequalities 
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Isoperimetric inequality in this talk

Sum of square root of degrees of x

𝟐𝒏

Distance of 𝒇 to monotonicity

≥

𝑓 𝑥 = 1

𝑓 𝑦 = 0

Bipartite graph of violated edges

“average square root degree”
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An edge 𝑥 → 𝑦 is nonconstant if 𝑓 𝑥 ≠ 𝑓 𝑦

Define 

𝐼𝑓(𝑥) =

 Then: 

𝐄𝑥 𝐼𝑓 𝑥 ≥ Ω var 𝑓 [folklore]

𝐄𝑥 𝐼𝑓(𝑥) ≥ Ω var 𝑓 [Talagrand ’93]

0 if 𝑓 𝑥 = 0

# nonconstant edges
incident at 𝑥

if 𝑓 𝑥 = 1

𝑓 𝑥 = 1

𝑓 𝑦 = 0

𝐼𝑓 𝑦 = 0

𝐼𝑓 𝑥 = deg(𝑥)

Isoperimetric inequalities (undirected)

Bipartite graph of nonconstant edges

var 𝑓 = fraction of ones ⋅ fraction of zeroes 18



An edge 𝑥 → 𝑦 is violated if 𝑓 𝑥 > 𝑓 𝑦

Define 

𝐼𝑓
− (𝑥) =

 Then: 

𝐄𝑥 𝐼𝑓
− 𝑥 ≥ Ω 𝜀 𝑓 [Edge tester]

𝐄𝑥 𝐼𝑓
−(𝑥) ≥ ෩Ω 𝜀 𝑓 [Khot, Minzer, Safra ‘15]

0 if 𝑓 𝑥 = 0

# violated edges
incident at 𝑥

if 𝑓 𝑥 = 1

𝑓 𝑥 = 1

𝑓 𝑦 = 0

𝐼𝑓
− 𝑦 = 0

𝐼𝑓
− 𝑥 = deg(𝑥)

Isoperimetric inequalities (directed)

Bipartite graph of violated edges
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𝐄𝑥 𝐼𝑓 𝑥 ≥ Ω var 𝑓 𝐄𝑥 𝐼𝑓
− 𝑥 ≥ Ω 𝜀 𝑓

𝐄𝑥 𝐼𝑓(𝑥) ≥ Ω var 𝑓 𝐄𝑥 𝐼𝑓
−(𝑥) ≥ ෩Ω 𝜀 𝑓

𝐼𝑓
− 𝑦 = 0

𝐼𝑓
− 𝑥 = deg(𝑥)

𝐼𝑓 𝑦 = 0

𝐼𝑓 𝑥 = deg(𝑥)

Summary of isoperimetric inequalities
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Part 3: Outline of proof of our isoperimetric inequality

▪ Outline of proof for isoperimetric inequality

▪ Only main ideas, no actual proofs!

▪ But before: define a new operator similar to switch operator

▪ Relate isoperimetric inequality to analysis of 𝑛 - tester

21



𝑓 → ∇𝑖(𝑓)

Non-decreasing (monotone) in dimension 𝑖 +

Non-increasing in dimension 𝑖 −

All violated edges will be along dimension 𝑖 −

Split operator 

𝑓 𝑥 = 𝑎

𝑓 𝑦 = 𝑏

𝑖 = 0

𝑖 = 1

∇𝑖𝑓 = min(𝑎, 𝑏)

𝑖 +𝑖 −

00

01

11

10

∇𝑖𝑓 = 𝑏

∇𝑖𝑓 = 𝑎

∇𝑖𝑓 = max(𝑎, 𝑏)
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𝑗

0

1

𝑖 +𝑖 −𝑖

𝑗

1

0 1

1

1 1

0

0
0

0

Split on dimension 𝑖

Split operator: example 
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Note: 

# violated edges may increase,

But they will all be in the negative 

direction



Isoperimetric inequality

𝐄𝑥 𝐼𝑓
−(𝑥) ≥ ෩Ω 𝜀 𝑓

𝑓 𝑥 = 1

𝑓 𝑦 = 0

𝐼𝑓
− 𝑦 = 0

𝐼𝑓
− 𝑥 = deg(𝑥)

“average square root degree”
distance to monotonicity

Bipartite graph of violated edges
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𝜀 𝑓

𝐄𝑥 𝐼𝑔
−(𝑥)

𝜀 𝑔

𝐄𝑥 𝐼𝑓
−(𝑥)

Outline of proof: Attempt 1

Phase 1:

totally split 𝑓 to get 𝑔:  𝑔 = ∇1∇2…∇𝑛(𝑓)
Splitting only decreases the objective

Phase 2: 
Inequality holds for a totally split function 

Not true!! 

Objective:

≥

≥

≥
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𝐄[dist 𝑓, 𝑓 switched in 𝐚𝐥𝐥 the coordinates ]]
− 𝐄[dist 𝑓, 𝑓 switched in 𝐡𝐚𝐥𝐟 the coordinates ]

𝐄𝑥 𝐼𝑔
−(𝑥)

𝜀 𝑔

𝐄𝑥 𝐼𝑓
−(𝑥)

Phase 1:

totally split 𝑓 to get 𝑔:  𝑔 = ∇1∇2…∇𝑛(𝑓)
Splitting only decreases the objective

Phase 2: 
Inequality holds for a totally split function 

Objective:

≥

≥

≥

Phase 3: 

Splitting is like switching half the coordinates

Outline of proof: Attempt 2
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𝐄[dist 𝑓, 𝑓 switched in Τ𝟏 𝟐𝒊 of the coordinates ]

− 𝐄[dist 𝑓, 𝑓 switched in Τ𝟏 𝟐𝒊+𝟏 of the coordinates ]

𝐄𝑥 𝐼𝑔
−(𝑥)

𝜀 𝑔

𝐄𝑥 𝐼𝑓
−(𝑥)

≥

≥

≥

log 𝑛 such 

inequalities!

𝒈 = 

• 𝒇 split only in a subset of coordinates

• restricted to coordinates that are split

• fixed on rest of coordinates

Need to add expectation over order of splits 

AND 

expectation over values of fixed coordinates

𝒈 is totally split!

Outline of proof: Attempt 2, Generalized
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Phase 1 Idea

Phase 1: Splitting only decreases our objective

𝐄𝑥 𝐼𝑓
−(𝑥) ≥ 𝐄𝑥 𝐼∇𝑖𝑓

− (𝑥)

Let 𝑔 = ∇1∇2…∇𝑛(𝑓). Then:

𝐄𝑥 𝐼𝑓
−(𝑥) ≥ 𝐄𝑥 𝐼𝑔

−(𝑥)

Proof idea: 

• Like case analysis for switch operator

• Consider cube in dimensions 𝑖+, 𝑖−, 𝑗 instead of a square
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Phase 2 Idea

Phase 2: The inequality is true for a “totally split” function

𝐄𝑥 𝐼𝑔
−(𝑥) ≥ 𝜀 𝑔

where 𝑔 = ∇1∇2…∇𝑛(𝑓). 

𝑔 is “simple”: all the violated edges are in the negative coordinates,

monotone in half the coordinates

Use the “undirected” version of the isoperimetric inequality, i.e.:

𝐄𝑥 𝐼𝑔 (𝑥) ≥ Ω(var 𝑔 )
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Phase 3 Idea, part 1

Fix the following order of coordinates: 1, 2, … , 𝑛

 This is the order in which we split 𝑓 to obtain 𝑔

 Then it holds that for 𝑝 =
1

2
:

𝜀(𝑔) ≥ 𝐄 𝜀(𝑆1/2𝑓)

𝑓

For each 𝑖,
switch 𝑓 in dimension 𝑖, 
with probability 𝑝

𝑆𝑝𝑓

min(𝑎, 𝑏)

00

01

11

10

𝑏

𝑎

max(𝑎, 𝑏)
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Phase 3 Idea, part 2

Phase 3: Then it holds that:

𝜀 𝑔 ≥ 𝐄 𝜀(𝑆1/2𝑓)

≈ 𝐄[dist 𝑆1/2𝑓, 𝑆1𝑓 ]

≥ 𝐄[dist 𝑓, 𝑆1𝑓 ] − 𝐄[dist 𝑓, 𝑆1/2𝑓 ]

𝑓 𝑆1𝑓

distance ≥ 𝜀(𝑓)

𝑆1/2𝑓
No dimension 
is switched

All dimensions 
are switched
→ monotone

Actually need 
expectation over all 
possible orderings of 

coordinates 
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Final step of proof

For 𝑖 = 0, 1, … , 5 log 𝑛 :

𝐄𝑥 𝐼𝑓
−(𝑥) ≥ 𝐄[dist 𝑓, 𝑆𝟏/𝟐𝒊𝑓 ] − 𝐄[dist 𝑓, 𝑆𝟏/𝟐𝒊+𝟏𝑓 ]

 Telescoping sum: 

For 𝑖 = 0: 𝑓 is switched in every dimension, expected distance is 𝜀(𝑓)

For 𝑖 = 5 log𝑛 : w.h.p 𝑓 is not switched in any dimension, expected distance is ≈ 0

 Hence: 

log 𝑛 ⋅ 𝐄𝑥 𝐼𝑓
− 𝑥 ≥ 𝜀 𝑓
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The 𝑛 −tester

33

Given 𝑛 and 𝜀:

Repeat ෨𝑂
𝑛

𝜀2
times:

▪ Sample 𝑥 from 0, 1 𝑛

▪ Sample 𝑘 from {0, 1, 2, … , log 𝑛}

▪ Obtain 𝑧 by changing 2𝑘 coordinates of 𝑥 from 0 to 1

▪ Reject if 𝑓 𝑥 = 1 and 𝑓 𝑧 = 0

Accept

𝑧

𝑓 𝑥 = 1

𝑓 𝑧 = 0

𝑥

directed 

path in the 

hypercube



Analysis of the 𝑛 tester

𝑓 𝑥 = 1

𝑓 𝑦 = 0

Bipartite graph of violated edges Good bipartite subgraph

𝑓 𝑥 = 1

𝑓 𝑦 = 0

deg 𝑦 ≤ 2𝑑

deg 𝑥 = 𝑑

From isoperimetric 
inequality

|𝐴|

2𝑛
𝑑 ≥

𝜀 𝑓

log 𝑛

𝑨

Either 𝑨 or 𝒅 is big!
34



Analysis of the 𝑛 tester

Good bipartite subgraph

𝑓 𝑥 = 1

𝑓 𝑦 = 0

deg 𝑦 ≤ 2𝑑

deg 𝑥 = 𝑑

With high probability

|𝐴|

2𝑛
𝑑 ≥

𝜀 𝑓

log 𝑛

𝑥

𝑧

𝑦

𝑓 𝑥 = 1

𝑓 𝑦 = 0

𝑓 𝑧 = 0

Unique!
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Conclusion

 Showed an analysis of the edge tester

 Overview of isoperimetric inequalities

 Outlined proof of main inequality in the 𝑛 - tester

 Related isoperimetric inequality to analysis of 𝑛 - tester

 Open problems: 

Gap between lower bound and upper bound for Boolean functions on hypergrid

𝑓: 𝑛 𝑑 → {0,1}

Lower bound is Ω( 𝑑) and upper bound is ෨𝑂(𝑑
5

6) [Black, Chakrabarty, Seshadri ‘17]

Better adaptive algorithm or better adaptive lower bound 

Current lower bound: ෩Ω 𝑛
1

3 [Chen, Waingarten, Xie ‘17] 
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