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The problem

» Query a function f:{0,1}" - {0,1} at a few points and decide if
the function is monotone or far from monotone.

®» First infroduced by: Goldreich, Goldwasser, Lehman, Ron ‘98

» ‘few’ = sublinear in the size of the domain

» property testing, sublinear algorithms



Some definitions & Background



Monotonicity on hypercube

f(fll)  f(111)
= f:{0,1}" - {0,1}
»x — yisanedge if: f(010) £ “ f(110)
®» x;=0y=1 £(001)
» x;=y;forallj€[n] —i fon)
£(000) £(100)

» 2" verticesand n - 2" edges in the hypercube
® f is monotone if the value of f along any edge is nondecreasing



Distance to monotonicity

» | et £(f) denote the distance of f to monotonicity
» () = least fraction of values of f that need to be changed

to make f monotone
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Testing monotonicity

&-Tester

Input

In this talk: tester
always accepfs if f
f(x) monotone
(one-sided error)

Output

With constant Pr

Accept if fi1s monotone

Reject if fis e-far from
monotone



Results on monotonicity testing

» \ariations of problem studied since the late ‘90s:
« on different ranges, different domains
« estimafing distance to monotonicity

» [For Boolean functions on hypercube:

n
e 0 (E)—query tester [Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsky '99],
[Goldreich, Goldwasser, Lehman, Ron, Samorodnitsky '00]

£3/2

« 0 (ﬁzl)—query tester not, Minzer, safra *15]

&

n7/8
0 ( )—query tester [chakrabarty, Seshadri *13]

®» | ower bounds:

* Q(\/ﬁ) queries for 1-sided, nonodopﬂve [Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld,
Samorodnitsky ‘02]:

° ﬁ(’l’ll/s) queries for Gdc:p’rive [Chen, Waingarten, Xie ‘17]



Plan for this talk

=0 ( ) query tester + analysis

= Overview of isoperimetric inequalifies related to monotonicity testing

= Proof outline for isoperimetric inequality in 0 (‘/—) -query tester

= Relationship between isoperimetric inequality and 0 (\/_) -query tester



Part 1. Edge fester

= Describe 0 (g) query tester (a.k.a edge tester)

= Analysis of tester



Th e ed g e T@ST@I’ [Dodis, Goldreich, Lehman, Raskhodnikova, Ron, Samorodnitsy '99]

Gven n and e: \

Repeat 0 (n) fimes:

&

= Sample edge x —» y from the hypercube

= Query f(x) and f(y)
= Rejectif and only if f(x) > f(y)

Qccep’r /

» The tester is nonadaptive
» The tester always accepts when f is monotone
= Need fo show that tester rejects w.n.p if f is e-far from monofone 10




The edge tester. analysis overview

» \Want to show that tester rejects w.h.p

1

N

» Call edge x - vy is violated if: (/
»f(x) =1, f(y) =0, l.e. f decreases along the edge

—_

» We show there must be a lot of violated edges:

# violated edges - e(f)
n-2n-1 T on

» |f fis e-far from monotone, tester finds a violated edge w.h.p
» |dea: Canrepair f by changing 2 values per violated edge

11



Switch operator

=f = Si(f)

» For all edges along dimension i:

If the edge x — y is violated:

switch around the values of f(x) and f(y) 0

» More precisely:

i=1 1 fo)=b A Sif(y) = max(a, b)

i=0 f(x)=a S; f(x) = min(a, b)




Switch operator: example

» Switch the red edges

» Fdgesin - - - - are violated
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Property of switch operator

Lemma.

Switching f in dimension i:

®» makes f monotone in dimension i

®» does not increase number of violated edges in dimension j

Proof. |t suffices to look at squares in dimensions i and j

r

—.

-

0

S pmm————————)

2

Switch dimension i
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Edge tester: analysis ‘}/A

» S S, .S, (f)Is monotone

» \When switching f in dimensions 1 through n we change at most:
2 - (# violated edges) points

» Therefore:
2 - (# violated edges)
Zn
®» For arandom edge x — y:

> dist(f, $1 S, .S, (F)) = &(f)

Prob[x > yis Violated] > (# violated edges) > ()

n-2n-1 n

= Af’rer%ﬂ rounds, w.h.p, we have drawn a violated edge - f is rejected

—_

15



Part 2: Background on isoperimetric inequalities

= Describe isoperimetric inequality of this talk
= Some background on isoperimetric inequalities

16



Isoperimetric inequality in this talk

[Bipor’ri’re graph of violated edges]

fly)=0

“average square root degree”

T

Sum of square root of degrees of x

Zn

=

flx) =1 —

Distance of f to monotonicity

17



Isoperimetric inequalities (undirected)

[Bipor’ri’re graph of nonconstant edges ]

» An edge x — yis nonconstant if f(x) # f(y)

Ir(y) =0

» Define f()’) -0

(0 if f(x) =0
Ir(x) = — #nonconstant edges . _

| incident at x if flx) =1

fx) =1

» Then:

Ex[lf(x)] > Q(var(f)) ffolkiorel I¢(x) = deg(x)

EX[JIf(x)] > Q(Var(f)) [Talagrand '93]

~ var(f) = fraction of ones - fraction of zeroes 18



Isoperimetric inequalities (directed)

®» An edge x — yisviolated if f(x) > f(y)

» Define

N

0

Ir (x) = 5 #violated edges
| incident at x

» Then;

if f(x) =0
if f(x) =1

Ex[If_(X)] = Q(E(f)) [Edge tester]

> ﬁ(e(f))

[Khot, Minzer, Safra ‘15]

[Bipor’ri’re graph of violated edges]

I (y) =0

I7 (x) = deg(x)

fy)=0

flx) =1

19



Summary of isoperimetric inequalities

E, [If (x)] > Q(Var(f))

E.|IF )] = Q(e())

E,|/Ir ()] = Q(var(f)) -

Ir(y)=0

Ir(x) = deg(x)

20



Part 3: Outline of proof of our isoperimetric inequality

= Qutline of proof for isoperimetric inequality
= Only main ideas, no actual proofs!
= But before: define a new operator similar to switch operator

» Relate isoperimetric inequality fo analysis of \/n - tester

21



Split operator

i — i+
=f = V() N
Vif =b
i=1 4 fly)=0>b 11
Vif = min(a,b) & 01 10 » V;f = max(a,b)
i=0 | fx)=a o
Vif =a

» Non-decreasing (monotone) in dimension i +
= Non-increasing in dimension i —

» All violated edges will be along dimension i —
22



Split operator: example

Split on dimension i 0
>

Note:
# violated edges may increase,
But they will all be in the negative
direction

23



Isoperimetric inequality

> 0(e(f)

— \

“average square root degree”

[Bipor’ri’re graph of violated edges]

distance to monotonicity

24



Outline of proof: Atftempt |

Objective:

|7

=

o[

=

e(g)

\Y

e(f)

Phase 1:
totally split f to get g: g = V.V, ..V, (f)
Splitting only decreases the objective

Phase 2:
Inequality holds for a totally split function

Not truell

25



Outline of proof: Attempt 2

Objective:

|7

=

o[

=

e(g)

Phase 1:
totally split f to get g: g = V.V, ..V, (f)
Splitting only decreases the objective

Phase 2:
Inequality holds for a totally split function

Phase 3:

— — " Splitting is like switching half the coordinates

=

E[dist(f, f switched in all the coordinates)]]
— E[dist(f, f switched in half the coordinates)]

26




Outline of proof: Attempt 2, Generalized

|7

=

<[

=

e(g)

=

logn such
inequalities!

g —

« f split only in a subset of coordinates
« restricted to coordinates that are split
« fixed onrest of coordinates

- g S totally split!

Need to add expectation over order of splits
AND

expectation over values of fixed coordinates

E[dist( f, f switched in 1/2% of the Coordinates)]
— E[dist(f, f switched in 1/2%** of the coordinates)]

27




Phase 1 |[ded

» Phase 1: Splitting only decreases our objective

»lectg=V,V,..V,(f). Then:

« Like case analysis for switch operator

> E,

> E,

= Proof idea:

« Consider cube in dimensions i+,i—,j instead of a square

28



Phase 2 |[ded

» Phase 2: The inequality is true for a “totally split” function

> ¢(g)

where g = V,V, ..V, (f).

» g is “simple’: all the violated edges are in the negative coordinates,
monotone in half the coordinates
» Use the “"undirected” version of the isoperimetric inequality, i.e.:

Ex[\/ Iy (x)] > ((var(g))

29



Phase 3 Ideaq, part 1

®» [ix the following order of coordinates: 1,2, ...,n
= This is the order in which we split f to obtain g
For each i,

switch f in dimension i,
with probability p

1
-

e(g) = E[3(51/2f)]

» Then it holds that for p =

min(a, b)

01

11

00

10

max(a, b)

30



Phase 3 Ideaq, part 2

. . All dimensions
No dimension are switched
is switched — monotone

\ distance > £(f) )

f

= Phase 3: Then it holds that: Actually need

expectation over all

possible orderings of

g(g) = E:€(51/2f)] coordinates
E:diSt(51/2f: Slf)] /

E :diSt(f' Slf)] _ E[diSt(f, Sl/Zf)]

Q

A\

31



Final step of proof

®»Fori=0,1,..,5logn:

[l

» Telescoping sum:

Eldist (f,S, i )] — Eldist (£, 5, pie1f)]

Fori = 0: f is switched in every dimension, expected distance is e(f)

Fori =5logn: w.h.p fis not switched in any dimension, expected distance is = 0

» Hence:

> e(f)

logn - E, [ /If_(x)

32



The \/n —tester

ez f(z2)=0

Givenn and &: ‘\\ !

/
Repeat 0 (i—?) times: //
= Sample x from {0, 1}" / oo

recre

= Sample k from {0, 1, 2, ...,logv/n} // — bathin the
= Obtain z by changing 2* coordinates of x from 0 to 1 / hypercube
= Rejectif f(x) =1and f(z) =0

@cep’r /

flx) =1

33



Analysis of the /n tester

[Bipor’ri’re graph of violated edges]

fy)=0 °
From isoperimetric
inequality

f(x)=1 o ®

Either A or V/d is big! -

[ Good bipartite subgraph ]

deg(y) < 2d
fly)=0
A fx)=1
deg(x) =d
| 4] Jd > e(f)
2M ~ logn

34



Analysis of the /n tester

[ Good bipartite subgraph ] z f(z2) =
deg(y) < 2d
f&) =0 Yy fo)=0
With high probability Unique!
flx)=1
X f(x)=1
deg(x) =d
1A e(f)
o vd 2 logn

35



Conclusion

» Showed an analysis of the edge tester

= Overview of isoperimetric inequalities

» QOutlined proof of main inequality in the n - tester

» Related isoperimetric inequality to analysis of v/n - tester

=» Open problems:
» Gap between lower bound and upper bound for Boolean functions on hypergrid

= f:[n]* > {0,1}

_ 5
= | ower bound is Q(Vd) and upper bound is 0(ds) [Black, Chakrabarty, Seshadri ‘17]
» Better adaptive algorithm or better adaptive lower bound

~( 1
» Current lower bound: Q(n3) [Chen, Waingarten, Xie ‘17]
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