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Abstract

Deployed supervised machine learning models make predictions that interact with
and influence the world. This phenomenon is called performative prediction by
Perdomo et al. (2020), who investigated it in a stateless setting. We generalize their
results to the case where the response of the population to the deployed classifier de-
pends both on the classifier and the previous distribution of the population. We also
demonstrate such a setting empirically, for the scenario of strategic manipulation.

1 Introduction

Supervised learning is widely used to train classifiers that aid institutions in decision-making: will a
loan applicant default? Will a user respond well to certain recommendations? Will a candidate perform
well in this job? Several studies and examples suggest that such predictions can influence the behavior
of the target population that they try to predict [2, 5, 7]. Loan applicants strategically manipulate
credit card usage to appear more creditworthy, job applicants tailor their resumes to resume-parsing
algorithms, and user preferences on a platform shift as they interact with recommended items. It is an
ongoing challenge to understand the influence of such predictions and design tools so as to control
that influence. Specifically, this influence can manifest as a distribution shift in the target population,
causing a loss in the prediction accuracy of the classifier with respect to the new distribution and
creating the need for a new classifier.

In their recent paper “Performative Prediction,” Perdomo, Zrnic, Mendler-Dünner, and Hardt [6] term
such predictions performative. They establish a theoretical framework for analyzing performativity in
supervised learning and propose repeated risk minimization as a strategy that institutions can apply in
hopes of converging to an equilibrium. They propose that the equilibrium should be a classifier that
is optimal for the distribution it induces. Perdomo et al. model the response of the target population
via a deterministic function of the published classifier θ. The distribution induced by a classifier θ is
unaffected by previously-deployed classifiers. However, in practice the environment may depend
heavily on the history of classifiers deployed by an institution.

Consider the following example: individuals applying for loans manipulate their features to receive
favorable results from a published classifier. The cost of this manipulation depends not only on the
classifier, but also on the previous feature state of the individual. As the bank updates their criteria
for creditworthiness, new features may become important. Without recording the previous state, we
cannot model the strategic behavior of individuals in the current state.

In addition, repeated classification can induce structural changes and affect individuals over genera-
tions. For example, learning to code is increasingly easy with courses that offer pay-when-employed
programs, and efforts are underway to make programming qualifications more accessible for minority
groups; such qualifications were harder to obtain ten years ago. These changes are not just the result
of current policies, but also of the long history of classification. Finally, when a new classifier is
published, different groups in the target population acquire information and adapt their behavior
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at different rates, so that repeated application of the same classification model may still result in a
distribution shift.

1.1 Our framework

We cast the phenomenon of performativity in repeated decision-making as an online learning game
[8]. This view differs slightly from that of Perdomo et al., and we find it captures well the dynamics
of performativity and eases our discussion. At round t, the learner/institution chooses a classifier θt
to publish. In response, the adversary/environment picks a distribution dt over labeled samples. The
institution then suffers loss EZ∼dt [`(Z; θt)] for some fixed loss function `. We ignore finite-sample
issues and assume that the institution observes the distribution directly.

Standard online learning assumes that the adversary may be malicious and pick whichever distribution
causes the greatest loss. To model state and performativity, we propose a weaker adversary that
responds according to a transition map Tr(; ), mapping classifier-distribution pairs to distributions.
The transition map is fixed but a priori unknown to the institution. If the institution plays θ and the
previous distribution played by the adversary was d, the adversary must respond with

d′ = Tr(d; θ).

We denote by θ1, θ2, . . . the classifiers played by the institution, and by d1, d2, . . . the distributions
played by the adversary.

Our framework generalizes the framework of Perdomo et al., in which the transition map is indepen-
dent of the distribution d and depends only on the current classifier θ. Our key conceptual contribution
is incorporating the current state/distribution of the target population into their performative response
via the two arguments of the transition map Tr(; ). We call our framework stateful, since it preserves
information about the state of the world and the history of classifiers played by the institution. This is
in contrast to the stateless framework of Perdomo et al.

A particular phenomenon captured by our framework is that of individuals acting strategically but
with outdated information. We formalize this behavior in the two examples below, which may be of
independent interest for the study of performativity and group fairness. We also demonstrate these
two examples empirically in Section 3.
Example 1 (Geometric decay response). Assume there is a deterministic “strategic response function”
D(θ) unknown to the learner. The adversary plays a mixture over past responses. For δ ∈ [0, 1],
define

Tr(dt−1; θt) = (1− δ)dt−1 + δ · D(θt).

The mixture coefficients in the current distribution decay geometrically across older responses. When
δ = 1 this is the setting of Perdomo et al.
Example 2 (k Groups respond slowly). Assume again an unknown D(θ). Suppose there are k
groups, where group j ∈ [k] responds to the classifier from j rounds ago. For distribution d, let d|j
be the distribution conditioned on being in group j. Then in response to θt, the individuals update:

d
|1
t = D(θt) and ∀j > 1, d

|j
t = d

|j+1
t−1 .

This corresponds to a transition function between mixtures of distributions. It provides a simple
model of distinct groups who receive information at different rates. When k = 1 this is the setting of
Perdomo et al.

1.2 Our Results

Our goal is to devise a strategy for the institution which converges towards an approximately-optimal
distribution-classifier pair. Perdomo et al. propose the strategy of repeated risk minimization (RRM)
where, at every round, the institution chooses the classifier that minimizes loss on the last distribution
played by the adversary:

θt+1 = argmin
θ

E
Z∼dt

`(Z; θ).

It is a natural strategy and akin to many retraining heuristics used in practice to deal with different
kinds of distribution shifts. Perdomo et al. analyze RRM in the stateless framework and show that,
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under convexity and Lipschitz assumptions, it will converge to a near-optimal classifier. It is unclear
if RRM converges when the history of previous classifiers can influence the distribution. For instance,
it might demonstrate “thrashing” behavior. We illustrate this in Example 3.

Nevertheless, we are able to provide conditions under which RRM will converge. We add assumptions
that control the extent of performative response allowed by the transition function. Similarly to
Perdomo et al., we impose a Lipschitz requirement on the transition map to ensure that small changes
in the distribution or the classifier only yield small changes in the updated distribution. When the
Lipschitz constant is strictly less than 1, the transition map is contractive under repeated application
of any classifier, and so the distribution converges to a fixed point. The concept of a fixed point
distribution for every classifier is a key aspect of our framework and results. Intuitively, this models
behavior where the environment will eventually settle on a response to the institution’s classifier.

Our first result shows sufficient conditions for convergence of repeated risk minimization. Conver-
gence is to an equilibrium point: a fixed point distribution and a classifier that achieves minimum
loss on this distribution.

Theorem 1 (Informal). If the loss function `(z; θ) is smooth and strongly convex and the transition
map Tr(d; θ) is Lipschitz in both arguments, then repeated risk minimization converges to an
equilibrium distribution-classifier pair.

Next, we formalize the notion of an optimal strategy for a institution faced with the phenomenon of
performativity. We show that repeated risk minimization also provides a means to approximate such
optimal strategies.

Theorem 2 (Informal). If the loss function `(z; θ) is Lipschitz and strongly convex and the transition
map Tr(d; θ) is Lipschitz in both arguments, all equilibrium points and optimal points lie within a
small distance of each other.

Theorem 1 and Theorem 2, which we state formally in Section 2, generalize results of Perdomo et al.
for the stateless framework to our stateful framework. We include proofs in Appendix A.

2 Framework and main results

In this section we formally state our main results and the relevant definitions. We parameterize
machine learning models by real-valued vectors θ ∈ Θ, where the classification space Θ is a closed,
convex subset of Rd. In round t, the institution chooses a classifier θt. The adversary responds with
a distribution dt over instances Z = (X,Y ) of feature-label pairs. Let ∆(Z) denote the space of
distributions. The adversary is restricted to pick its distribution according to a deterministic transition
map:

Tr : Θ×∆(Z)→ ∆(Z),

so that Tr(dt−1, θt) = dt. We assume that an initial distribution d0 is publicly known. From
this online game view, the work of Perdomo et al. assumes a myopic adversary that only sees the
institution’s most recent play. We remove that condition.

Algorithm 1 Performative prediction with state

1: initial distribution d0 ∈ ∆(Z) . Publicly known
2: for t = 1,2,. . . do
3: Institution plays θt ∈ Θ.
4: Adversary computes dt = Tr(dt−1; θt). . Tr(; ) function unknown to institution
5: Institution observes dt, suffers loss EZ∼dt [`(Z; θt)].

2.1 Repeated risk minimization and stable points

Perdomo et al. propose the following strategy for the institution: at each round, play the classifier
that minimizes loss on the previous distribution. We investigate the same strategy in our stateful
framework.
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Definition 1 (Repeated risk minimization (RRM)). Denote by G(d) the updated classifier2:

G(d) := argmin
θ′

E
Z∼d

`(Z; θ′).

Following the notation of Algorithm 1, at round t, the institution updates its classifier to θt = G(dt−1).

We consider two sufficient conditions for the convergence of RRM in objective value: approaching a
fixed point distribution and approaching a classifier that is optimal for this distribution.
Definition 2 (Fixed point distribution). A distribution dθ is a fixed point for θ if Tr(dθ, θ) = dθ.
Definition 3 (Stable points). A distribution-classifier pair (dPS, θPS) is a performatively stable point
if the following hold:

1. Tr(dPS, θPS) = dPS, i.e. dPS is a fixed point distribution for θPS.

2. θPS = G(dPS), i.e. θPS minimizes the loss on dPS.

Once the game approaches the distribution dPS, the institution can repeatedly play θPS with no need
for retraining, while incurring the lowest possible loss on the distribution dPS. It is not obvious
however that such stable points exist for every setting. Nevertheless, we shows sufficient conditions
on the loss and transition function for RRM to converge to a stable point.
Definition 4 (ε-joint sensitivity). The transition map Tr(; ) is ε-jointly sensitive if, for all θ, θ′ ∈ Θ
and d, d′ ∈ ∆(Z),

W1(Tr(d; θ), Tr(d′; θ′)) ≤ ε‖θ − θ′‖2 + εW1(d, d′),

whereW1 denotes the Wasserstein-1 distance between distributions.
Definition 5 (Strong convexity). A loss function `(z; θ) is γ-strongly convex if, for all θ, θ′ ∈ Θ and
z ∈ Z ,

`(z; θ) ≥ `(z; θ′) +∇θ`(z; θ′)>(θ − θ′) +
γ

2
‖θ − θ′‖22.

Definition 6 (Smoothness). A loss function `(z; θ) is β-jointly smooth if the gradient with respect to
θ is β-Lipschitz in θ and z:

‖∇θ`(z; θ)−∇θ`(z; θ′)‖2 ≤ β‖θ − θ′‖2, ‖∇θ`(z; θ)−∇θ`(z′; θ)‖2 ≤ β‖z − z′‖2,
for all θ, θ′ ∈ Θ and z, z′ ∈ Z .

Finally, our theorems are clearer with additional notation wrapping the institution’s and adversary’s
actions into one step.
Definition 7 (RRM map). Define the RRM map f : ∆(Z)×Θ→ ∆(Z)×Θ as:

f(d, θ) = (Tr(d, θ), G(Tr(d, θ))).

In our game, f(dt−1, θt) = (dt, G(dt)) = (dt, θt+1).

We endow the space ∆(Z)×Θ with the product metric dist, so that:

dist((d, θ), (d′, θ′)) =W1(d, d′) + ‖θ − θ′‖2.

The next example shows that, without the right interplay of the above parameters, there are settings
for which RRM may not converge.
Example 3 (RRM may not converge). Suppose that the loss function is the squared loss `(z; θ) =
(y−θ)2 for θ ∈ [1,∞). The loss function is β-jointly smooth and γ-strongly convex, with β = γ = 2.
Consider the transition map Tr(d; θ) = 1 + εd + εθ, which operates on point mass distributions
d ∈ [1,∞) of the outcome Y . Clearly, the transition function Tr is ε-jointly sensitive. Finally, let
some d0 ∈ [1,∞) be the starting distribution of the game.

When the institution uses RRM starting from d0, we get that:

θt+1 = G(dt) = argmin
θ

E
Z∼dt

`(Z; θ) = dt,

dt+1 = Tr(dt; θt+1) = 1 + εdt + εθt+1.

2For the scenarios we consider, the set argminθ′ will be non-empty. When the set has more than one element,
we choose a value for G(d) from the set arbitrarily.
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Consequently, θt+2 = dt+1 = 1 + εdt + εθt+1 = 1 + 2εθt+1.

The distance between two successive θs is |θt+2−θt+1| = |(1+2εθt+1)−(1+2εθt|) = 2ε|θt+1−θt|.
If we only require ε < γ

β = 1, then whenever ε > 1
2 , the sequence of θs produced by RRM fails to

converge. For ε
1−ε <

β
γ , i.e. ε < 1

2 , the sequence converges.

Our main result is sufficient conditions for the convergence of RRM in the stateful framework.

Theorem 3. Suppose the transition map Tr(; ) is ε-jointly sensitive with ε < 1, the loss function
`(z; θ) is β-jointly smooth and γ-strongly convex. Then for the RRM map f it holds that:

(a) dist(f(d, θ), f(d′, θ′)) ≤ ε
1−ε

β
γ ‖θ − θ

′‖2 + ε
1−ε

β
γW1(d, d′).

(b) In particular, if ε
1−ε <

γ
β , then f has a unique fixed point which is a stable point with

respect to Tr(; ). RRM will converge to this stable point at a linear rate.

Our conditions for convergence of RRM are similar to, but stricter, than those of the setting of
Perdomo et al. In particular, their results only require that ε < γ

β . Ex. 3 shows that our stricter
requirement is necessary.

2.2 Performative optimality

Theorem 3 guarantees that RRM converges to an equilibrium, but this stable point might not be optimal
in a more global sense. In fact, it is not obvious how to define optimal strategies within our framework.
Since the sequence of distributions played by the adversary depends on the initial distribution d0,
the best possible strategy for the learner might depend on d0. This is further complicated by the fact
that repeatedly playing the same fixed classifier might result in a distribution shift. Therefore, we
restrict our attention to scenarios where the transition map Tr(; ) is ε-jointly sensitive with ε < 1.
In that case, repeated application of the same classifier θ is guaranteed to converge to a fixed point
distribution (Definition 2).

Claim 1. If the transition map Tr(; ) is ε-jointly sensitive with ε < 1, then for each θ ∈ Θ, there
exists a unique fixed point distribution dθ. For any starting distribution d0, iterated application of the
same classifier θ, will result in a sequence of distributions that converges to dθ at a linear rate.

Claim 1 follows immediately from Banach’s fixed point theorem.

Our definition of the optimal strategy considers the “long-run” loss of a fixed classifier. Assume the
institution plays the same fixed classifier θ for all rounds of the game. We measure the long-run
loss of θ as the loss on its corresponding fixed point distribution dθ. The optimal θ is the one which
minimizes its long-run loss.

Definition 8 (Performative optimality). The long-run loss of a classifier θ is the loss E
Z∼dθ

`(Z; θ),

where dθ denotes the unique fixed point distribution for the classifier θ. A classifier θPO is performa-
tively optimal if achieves the minimum long-run loss amongst all classifiers in Θ.

If an institution had prior knowledge of the transition map, a reasonable strategy would be to play the
fixed classifier θPO for all rounds of classification. We note that θPO is undefined when no classifier
has a fixed point distribution. However, it is guaranteed to exist when Tr(; ) is ε-jointly sensitive with
ε < 1.

Our definitions of stable and optimal points generalize those of Perdomo et al. for the stateless
framework. As pointed out in Perdomo et al., for a given setting, the optimal classifier does not
necessarily coincide with a stable point. Our next result shows that RRM approximately approaches
optimal points.

Theorem 4. Suppose that the loss `(z; θ) is Lz-Lipschitz, γ-strongly convex, and that the transition
map is ε-jointly sensitive with ε < 1. Then for every stable point θPS and optimal point θPO:

‖θPO − θPS‖2 ≤
2Lzε

γ(1− ε)
.
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3 Simulation

Strategic classification studies the behavior of individuals who wish to achieve a more preferable
outcome from a classifier by manipulating their attributes without changing their true label [3]. It is
one instantiation of performative prediction. We adapt a simulation of loan applications in Perdomo et
al. and enrich it with state. We demonstrate the convergence of RRM for the scenarios of Geometric
decay response (Ex. 1) and k Groups respond slowly (Ex. 2) in a credit score setting3.

The baseline distribution of the population is determined by Kaggle’s GiveMeSomeCredit dataset [4].
An individual’s strategic response is based on cost and utility functions which take into account the
published classifier and the feature state of the individual. The parameter ε controls the strength of
the strategic response; larger values allow greater manipulation. Refer to Appendix B for a detailed
description of the mechanics.

Figure 1 shows the game dynamics when an institution uses RRM in both scenarios. The two games
converge to equilibrium much faster for lower values of ε. Interestingly, a periodic behavior surfaces
for large values of ε, which is not the case in the stateless simulation of Perdomo et al. This behavior
shows that RRM is not well-suited to settings where state plays an important role and the population
reacts in non-smooth ways. For such settings, other types of learning strategies might be more
adequate.

(a) Geometric decay response with δ = 0.7. (b) Three groups respond slowly.

Figure 1: Convergence of repeated risk minimization for varying values of ε. The horizontal axis
shows the number of iterations and the vertical axis shows the distance between successive θs.

4 Discussion

This work points out the important role that the long history of institutions making predictions on
individuals plays in shaping the behavior of individuals. The addition of state to performativity opens
up a new venue for discussing the social impact of machine learning based predictions. Examples
include the structural changes that enable individuals to succeed under such modes of classification
and the disparate impact of predictions on groups over time.

It remains open whether other algorithms studied in online learning can yield successful outcomes for
the phenomenon of performativity. This work focused on the goal of convergence, but if convergence
is not a priority for the institution, then it is interesting to study which measures of the learner’s
success best apply to the setting of performativity. Regret is widely studied in online learning, but
lacks a clear interpretation in settings where the adversary can adapt to the player. Empirically,
studying other applications where performativity arises could provide important theoretical insight
into this phenomenon.

3Simulation code: https://github.com/shlomihod/performative-prediction-stateful-world
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Broader impact

Our work assumes a simple and abstract model of repeated decision-making. While the study of
performativity in prediction may have wide social effects in general, we do not believe this paper will
have direct ethical or social consequences.
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A Proofs of main theorems

We first state two key lemmas used in the proofs of Theorem 3 and Theorem 4. Proofs are omitted.
The proof of the first lemma uses the Kantorovich-Rubinstein duality ofW1.
Lemma 1. Let f : Rn → Rn be β-Lipschitz, and let X,X ′ be random variables. Then

‖E[f(X)]− E[f(X ′)]‖2 ≤ β · W1(X,X ′).

Lemma 2 ([1]). If g is convex and Ω is a closed convex set on which g is differentiable, and

x∗ ∈ argmin
x∈Ω

g(x),

then:
(y − x∗)>∇g(x∗) ≥ 0, ∀y ∈ Ω.

A.1 Proof of Theorem 3

Proof of Theorem 3. Note that if part (a) holds, then part (b) follows from the fact that the map f
is contractive with contraction coefficient ε

1−ε
β
γ < 1. By the Banach fixed point theorem, f has a

unique fixed point. Suppose (d∗, θ∗) is the fixed point of f , so that f(d∗, θ∗) = (d∗, θ∗). This point
is also a stable point for it satisfies: d∗ = Tr(d∗, θ∗) and θ∗ = G(Tr(d∗, θ∗)) = G(d∗).

We now show part (a). First we will simplify notation and let G(d, θ) := G(Tr(d, θ)). By definition
of f :

dist(f(d, θ), f(d′, θ′)) = dist((Tr(d, θ), G(d, θ)), (Tr(d′, θ′), G(d′, θ′)))

=W1(Tr(d, θ), Tr(d′, θ′)) + ‖G(d, θ)−G(d′, θ′)‖2.

The ε-joint sensitivity of the transition map yields:

W1(Tr(d, θ), Tr(d′, θ′)) ≤ εW1(d, d′) + ε‖θ − θ′‖2. (1)

We will show that:

‖G(d, θ)−G(d′, θ′)‖2 ≤ ε
β

γ
W1(d, d′) + ε

β

γ
‖θ − θ′‖2. (2)

Combining equations (1) and (2) will conclude the proof.

We obtain (2) from a slight modification of the proof of Theorem 3.5 of Perdomo et al. By Lemma 2
we obtain:

(G(d′, θ′)−G(d, θ))> E
Z∼Tr(d,θ)

∇θ`(Z;G(d, θ)) ≥ 0,

(G(d, θ)−G(d′, θ′))> E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d′, θ′)) ≥ 0.

Combine these two inequalities:

(G(d, θ)−G(d′, θ′))>
(

E
Z∼Tr(d,θ)

∇θ`(Z;G(d, θ))− E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d′, θ′))
)
≤ 0.

Then add and subtract a term to obtain:

(G(d, θ)−G(d′, θ′))>
(

E
Z∼Tr(d,θ)

∇θ`(Z;G(d, θ))− E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d, θ))
)

+(G(d, θ)−G(d′, θ′))>
(

E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d, θ))− E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d′, θ′))
)
≤ 0.

(3)

For the first term of the sum, note that the function (G(d, θ) − G(d′, θ′))>∇θ`(z;G(d, θ)) is
(‖G(d, θ)−G(d′, θ′)‖2β)-Lipschitz in z. This follows from the Cauchy-Schwarz inequality and the
fact that the loss is β-smooth. We can thus bound the first term of (3) as:

(G(d, θ)−G(d′, θ′))>
(

E
Z∼Tr(d,θ)

∇θ`(Z;G(d, θ))− E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d, θ))
)

≥− β‖G(d, θ)−G(d′, θ′)‖2(ε · W1(d, d′) + ε‖θ − θ′‖2),
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where we use the property that Tr(·; ·) is ε-jointly sensitive together with Lemma 1.

For the second term of the sum in (3) we invoke the γ-convexity of the loss:

(G(d, θ)−G(d′, θ′))>
(

E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d, θ))− E
Z∼Tr(d′,θ′)

∇θ`(Z;G(d′, θ′))
)

≥ γ‖G(d, θ)−G(d′, θ′)‖22.
Replace the last two inequalities into (3):

0 ≥ −β‖G(d, θ)−G(d′, θ′)‖2(ε · W1(d, d′) + ε‖θ − θ′‖2) + γ‖G(d, θ)−G(d′, θ′)‖22.
After canceling out ‖G(d, θ)−G(d′, θ′)‖2 and rearranging we conclude:

‖G(d, θ)−G(d′, θ′)‖2 ≤ ε
β

γ
‖θ − θ′‖2 + ε

β

γ
W1(d, d′).

A.2 Proof of Theorem 4

The following lemma is used in the proof of Theorem 4.
Lemma 3. Suppose the map Tr(; ) is ε-jointly sensitive with ε < 1. Then for any θ1, θ2 and their
corresponding fixed point distributions d1, d2 it holds that:

W1(d1, d2) ≤ ε

1− ε
‖θ1 − θ2‖2.

Proof. Note thatW1(d1, d2) =W1(Tr(d1, θ1), Tr(d2, θ2)), from the definition of fixed point distri-
butions. By the ε-joint sensitivity of the transition map:

W1(d1, d2) ≤ εW1(d1, d2) + ε‖θ1 − θ2‖2.
The statement follows from the equation above.

Proof of Theorem 4. Let θPO be an optimal classifier and let dPO be its corresponding fixed point
distribution. Let θPS be a stable point, with corresponding fixed point distribution dPS. By the
definitions of optimality and stability:

E
Z∼dPO

`(Z; θPO) ≤ E
Z∼dPS

`(Z; θPS) ≤ E
Z∼dPS

`(Z; θPO) .

We first show that:

E
Z∼dPS

`(Z; θPO)− E
Z∼dPS

`(Z; θPS) ≥ γ

2
‖θPO − θPS‖22 . (4)

By the strong convexity of the loss function we know that for all z:

`(z; θPO) ≥ `(z; θPS) +∇θ`(z; θPS)>(θPO − θPS) +
γ

2
‖θPO − θPS‖22 .

As a result:

E
Z∼dPS

[
`(Z; θPO)− `(Z; θPS)

]
≥ E
Z∼dPS

[
∇θ`(z; θPS)>(θPO − θPS)

]
+
γ

2
‖θPO − θPS‖22 .

Since θPS minimizes the value of ` over the distribution dPS, Lemma 2 implies:

E
Z∼dPS

[
∇θ`(Z; θPS)>(θPO − θPS)

]
≥ 0.

Therefore, (4) holds. On the other hand, since the loss is Lz-Lipschitz in z, and by Lemma 3:

E
Z∼dPS

`(Z; θPO)− E
Z∼dPO

`(Z; θPO) ≤ LzW1(dPS, dPO) ≤ Lzε

1− ε
‖θPO − θPS‖2 .

If ε
1−ε <

γ‖θPO−θPS‖2
2Lz

then Lzε
1−ε‖θPO − θPS‖2 ≤ γ

2 ‖θPO − θPS‖22. This is a contradiction since we
argued that:

E
Z∼dPS

`(Z; θPO)− E
Z∼dPO

`(Z; θPO) ≥ E
Z∼dPS

`(Z; θPO)− E
Z∼dPS

`(Z; θPS).
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B Simulation details

We simulate a credit score system using the dataset GiveMeSomeCredit [4] from Kaggle. Before
giving a loan to an applicant, a bank tries to predict whether the individual will experience financial
distress in the next two years. Hence, from an individual point of view, a positive prediction is less
preferable. The prediction is based on 11 biographic and financial history features included in the
dataset. There are 18,357 data points. In the simulation, we assume that the world population is finite,
consisting of exactly the individuals in the dataset. The distribution is uniform over these individuals,
who may change their features strategically, resulting in a new distribution. The original dataset
serves as both the initial distribution and the “baseline” distribution dBL, from which modifications
are made.

The best response of an individual (x, y) ∈ dBL is

xBR(θ)
arg←−− max

x′
u(x′, θ)− c(x′, x),

where u is the utility function and c is the cost function. The family of classifiers Θ is logistic
regression. We use

u(x) = −〈θ, x〉,
because a negative value for the utility translates into the more favorable negative prediction. We
consider a quadratic cost for feature updates:

c(x′, x) =
1

2ε
‖x′ − x‖22.

In our experiments, the main parameter we adjust is the sensitivity ε, which controls the strength
of strategic response. Additionally, we assume that the individual can change only a subset S of
her features, which we call the strategic features. Let xS be the restriction of x to S. Solving the
maximization problem of the individual leads to the to the response

xSBR(θ) = xS − εθS .

The rest of the features remain unchanged. With that, we can define the strategic response function
D(θ) as

D(θ) = Uniform ({(xBR(θ), y)|(x, y) ∈ dBL}) .

10


	1 Introduction
	1.1 Our framework
	1.2 Our Results

	2 Framework and main results
	2.1 Repeated risk minimization and stable points
	2.2 Performative optimality

	3 Simulation
	4 Discussion
	A Proofs of main theorems
	A.1 Proof of [thm:iterativeriskmin]Theorem3
	A.2 Proof of [thm:rrmoptimality]Theorem4

	B Simulation details

