

"I wish we hadn't learned probability 'cause I don't think our odds are good."

LECTURE 2

Last time

- Course information
- Introduction to probability theory
- Sample Spaces and Events
- Examples

Today

- Probability function
- Symmetry
- Probability axioms

GET READY FOR VOTING!

- ▶ Students from A1 section:
 1. Enter this URL: <https://app.tophat.com/e/037447>
 2. Login as needed using your Top Hat account info.
 3. If asked about enrolling, click *Enroll*.
- ▶ Students from A2 section:
 1. Enter this URL: <https://app.tophat.com/e/606363>
 2. Login as needed using your Top Hat account info.
 3. If asked about enrolling, click *Enroll*.

GAMES OF CHANCE

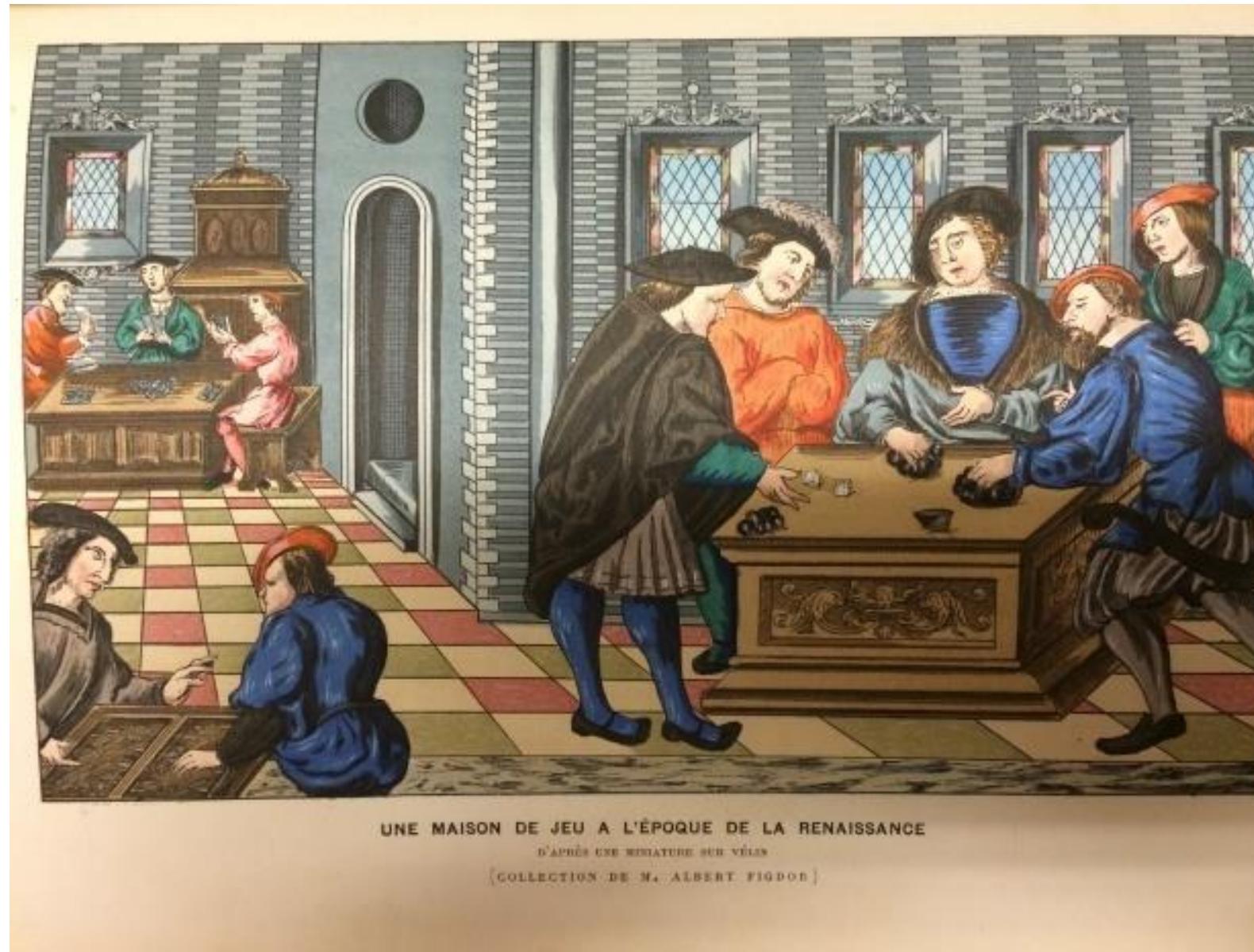
- ▶ Games of chance popular throughout recorded history

Dogs and Jackals

Egyptian board game (c. 3500 BC)

Astragalus
Egyptian 4-sided die

GAMES OF CHANCE



Gambling house in France (during renaissance)

GAMES OF CHANCE

- ▶ France (1650s): gambling very popular (and unregulated)
- ▶ Games grew more and more complex
- ▶ Need for mathematical methods to analyze chance of winning

Blaise Pascal
[1623-1662]

Pierre de Fermat
[1607-1665]

THE SCHOOL OF PROBABILITY

- ▶ Introduce three self-evident and indisputable properties of probability (the axioms)
- ▶ Develop the mathematical theory of probability from these axioms



“The theory of probability as a mathematical discipline can and should be developed from axioms in exactly the same way as geometry and algebra.”

Andrey Kolmogorov
[1903 - 1987]

PROBABILITY: CAST OF CHARACTERS

- ▶ **Experiment:** a repeatable procedure
 - ▶ Toss a coin
 - ▶ Toss a coin 3 times
 - ▶ Roll two dice
 - ▶ Shuffle a deck of cards
 - ▶ Draw a sock from a drawer containing red and black socks; if the sock is red, draw another sock

PROBABILITY: CAST OF CHARACTERS

lower-case ω

- ▶ Outcome: result of the experiment ω
- ▶ Sample space Ω : set of all possible outcomes

▶ Toss a coin

$\Omega = \{ H, T \}$

$\xrightarrow{\text{tails}}$

↓

$\xrightarrow{\text{heads}}$

PROBABILITY: CAST OF CHARACTERS

- ▶ **Outcome:** result of the experiment
- ▶ **Sample space Ω :** set of all possible outcomes

- ▶ Roll a 4-sided die twice

$$\Omega = \{(i, j) \mid 1 \leq i, j \leq 4 \text{ and } i, j \in \mathbb{N}\}$$

1st roll 2nd roll

1st roll

	1	2	3	4
1	(1,1)	(2,1)	(3,1)	(4,1)
2	(1,2)	(2,2)	(3,2)	(4,2)
3	(1,3)	(2,3)	(3,3)	(4,3)
4	(1,4)	(2,4)	(3,4)	(4,4)

2nd roll

PROBABILITY: CAST OF CHARACTERS

- ▶ **Outcome:** result of the experiment
- ▶ **Sample space Ω :** set of all possible outcomes
 - ▶ Toss a coin until we get a heads

$$\Omega = \{ \underline{H}, \underline{T}\underline{H}, \underline{T}\underline{T}\underline{H}, \dots \}$$

The experiment stops when you get heads

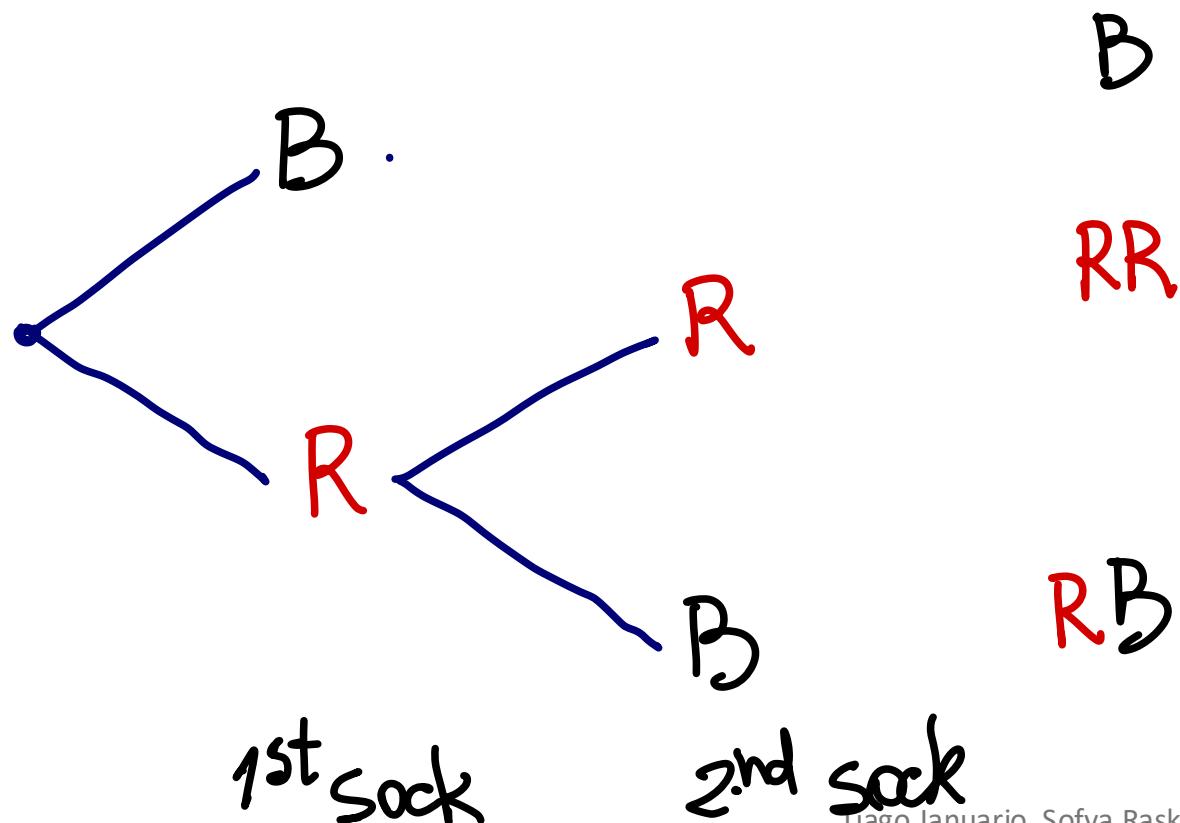
PROBABILITY: CAST OF CHARACTERS

- ▶ **Outcome:** result of the experiment
- ▶ **Sample space Ω :** set of all possible outcomes
 - ▶ Shuffle a deck of cards and display all cards

$$\underline{\Omega} = 52!$$

PROBABILITY: CAST OF CHARACTERS

- ▶ **Outcome:** result of the experiment
- ▶ **Sample space Ω :** set of all possible outcomes
 - ▶ Draw a sock from a drawer containing red and black socks; if the sock is red, draw another sock



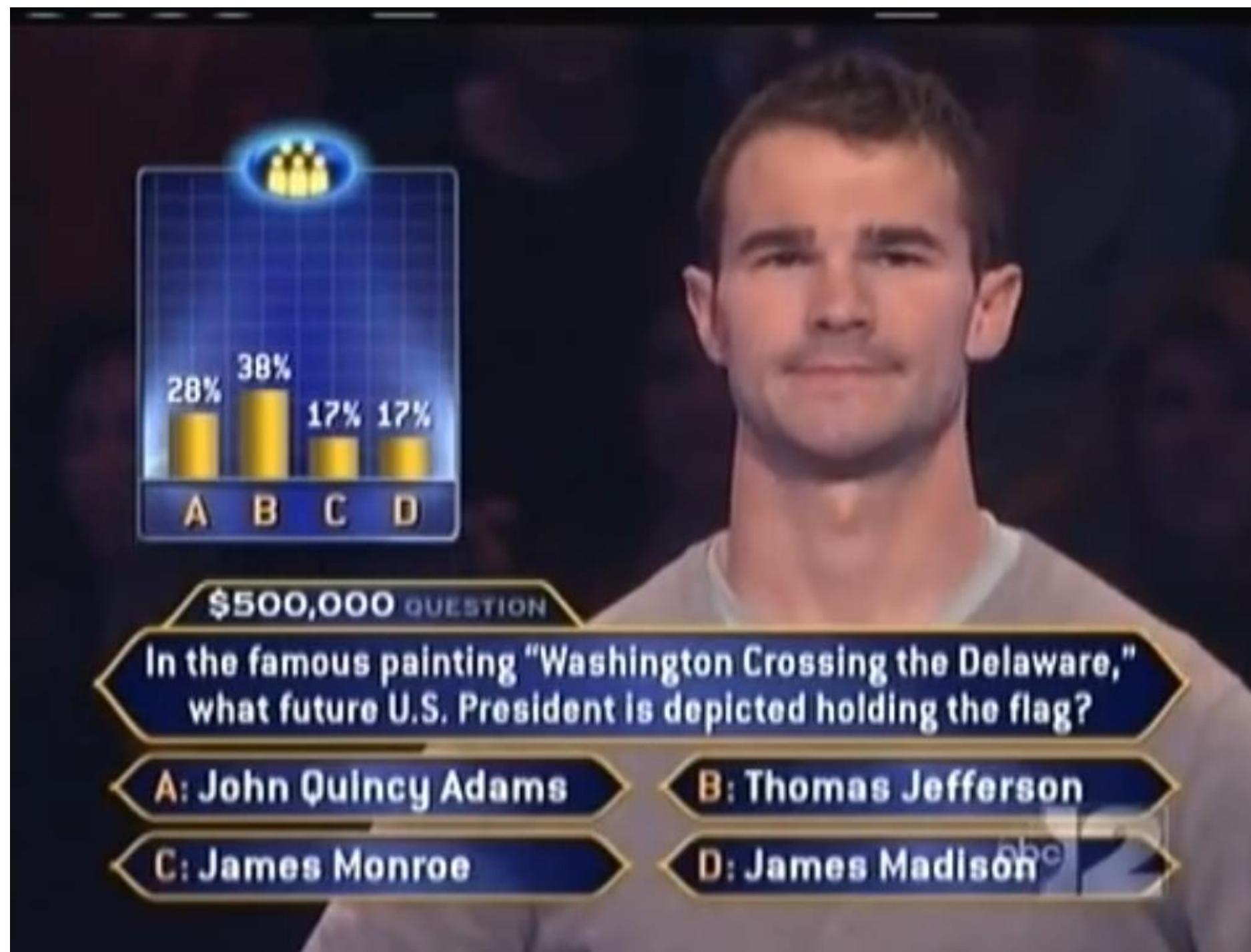
outcome

B

RR

$\Omega = \{B, RR, R, B\}$

TOP HAT QUESTION



TOP HAT QUESTION

- ▶ Experiment: toss a coin 3 times

Does the first event imply the second?

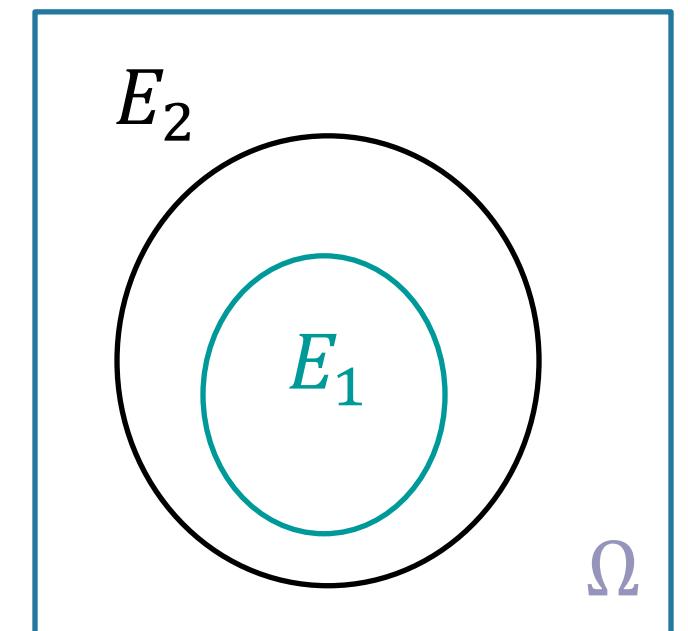
E_1 = “at least 2 heads”

E_2 = “exactly 2 heads”

A. YES

B. NO

$$E_1 \Rightarrow E_2$$



PROBABILITY FUNCTION

- ▶ Each outcome in the sample space Ω is assigned a probability, which is a number greater or equal to 0.
- ▶ All probabilities of outcomes in Ω must add up to 1.

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

$$\frac{1}{4}$$

- ▶ Probability of event E , denoted $\text{Pr}(E)$, is the sum of probabilities of all outcomes in E .

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$				

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$				

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

Symmetry:

Each outcome is equally likely

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$		$\frac{1}{2}$	$\frac{1}{2}$	

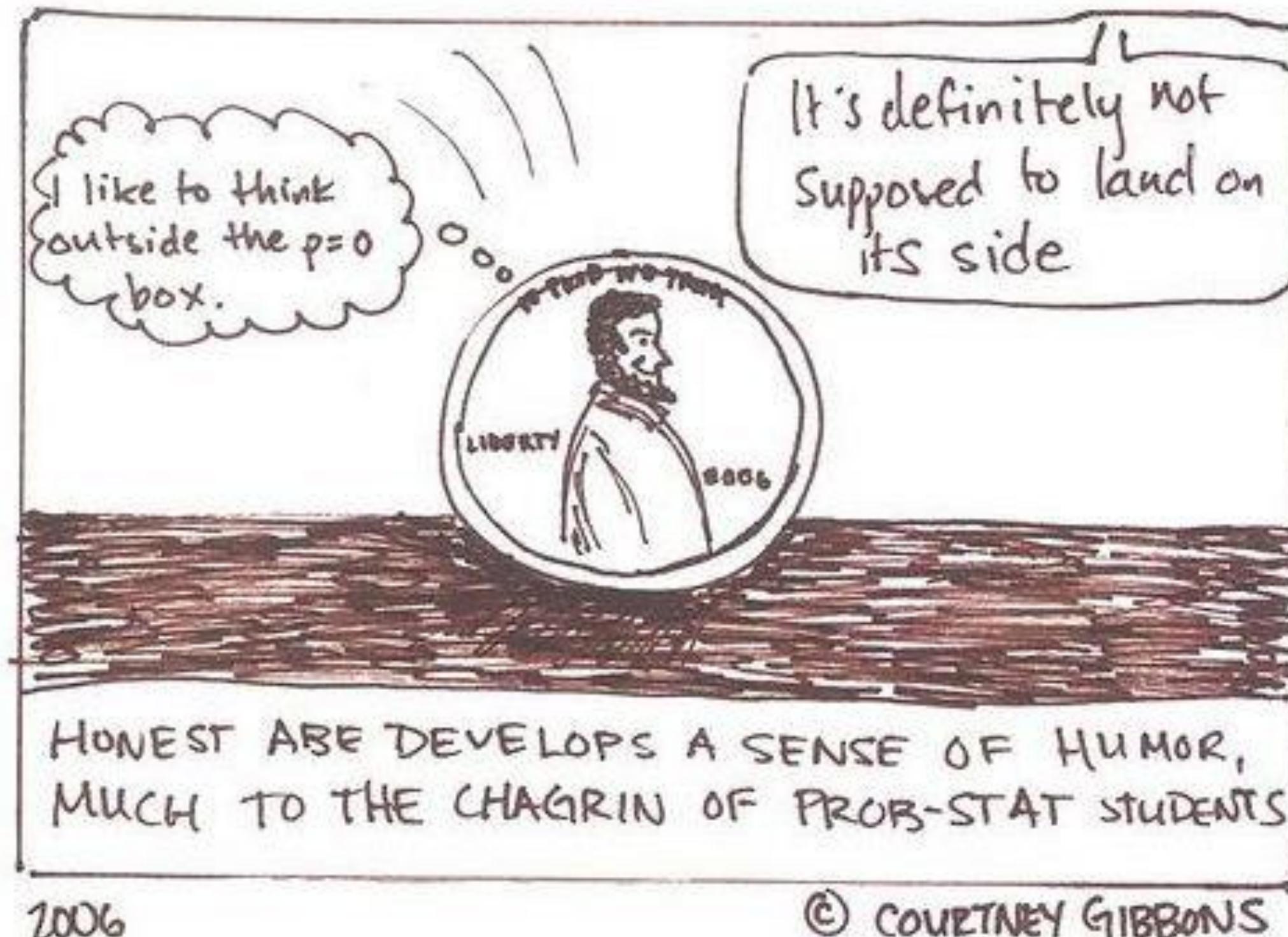
PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$		$\frac{1}{2}$	$\frac{1}{2}$	

IN THIS COURSE, COINS LAND EITHER ON HEADS OR TAILS



PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$	0	$\frac{1}{2}$	$\frac{1}{2}$	

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$	0	$\frac{1}{2}$	$\frac{1}{2}$	

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$	0	$\frac{1}{2}$	$\frac{1}{2}$	1

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin

$$\Omega = \{H, T\}$$

E	\emptyset	$\{H\}$	$\{T\}$	$\{H, T\}$
$\Pr(E)$	0	$\frac{1}{2}$	$\frac{1}{2}$	1

Compact description: $\Pr(E) = \frac{|E|}{|\Omega|}$ for all events $E \subseteq \Omega$

RECAP: PROBABILITY CAST OF CHARACTERS

- ▶ **Experiment:** a repeatable procedure
- ▶ **Outcome:** result of the experiment
- ▶ **Sample space Ω :** set of all possible outcomes
- ▶ **Event:** a subset of the sample space
- ▶ **Probability function \Pr :** assigns a probability $\Pr(E)$ to each event E

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: roll a die

$$\Omega = \{1,2,3,4,5,6\}$$

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: roll a die

$$\Omega = \{1,2,3,4,5,6\}$$

$$\Pr(\{1\}) = \Pr(\{2\}) = \cdots = \Pr(\{6\}) = \frac{1}{6}$$

Symmetry:

Each outcome is equally likely

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: roll a die

$$\Omega = \{1,2,3,4,5,6\}$$

$$\Pr(\{1\}) = \Pr(\{2\}) = \cdots = \Pr(\{6\}) = \frac{1}{6}$$

For larger events E , $\Pr(E)$ is the sum of the probabilities of the outcomes in E

$$\Pr(\text{"even"}) = \Pr(\{2,4,6\}) = \Pr(\{2\}) + \Pr(\{4\}) + \Pr(\{6\}) = \frac{3}{6}$$

Symmetry:

Each outcome is equally likely

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: roll a die

$$\Omega = \{1,2,3,4,5,6\}$$

$$\Pr(\{1\}) = \Pr(\{2\}) = \cdots = \Pr(\{6\}) = \frac{1}{6}$$

For larger events E , $\Pr(E)$ is the sum of the probabilities of the outcomes in E

$$\Pr(E) = \frac{|E|}{|\Omega|} \text{ for all events } E \subseteq \Omega$$

Symmetry:

Each outcome is equally likely

PROBABILITY FUNCTION

Symmetry:

Each outcome is equally likely

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin 3 times

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

$$\Pr(\{HHH\}) = \Pr(\{HHT\}) = \dots = \Pr(\{TTT\}) = \frac{1}{8}$$

PROBABILITY FUNCTION

Symmetry:

Each outcome is equally likely

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin 3 times

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

$$\Pr(\{HHH\}) = \Pr(\{HHT\}) = \dots = \Pr(\{TTT\}) = \frac{1}{8}$$

For larger events E , $\Pr(E)$ is the sum of the probabilities of the outcomes in E

$$\Pr(E) = \frac{|E|}{|\Omega|} \text{ for all events } E \subseteq \Omega$$

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin 3 times

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

- ▶ The coin tosses are **independent** (the outcome of a toss does not change the probability that a different toss is H or T)

$$\Pr(\{HHT\}) = \Pr("1^{st} \text{ toss is } H" \cap "2^{nd} \text{ toss is } H" \cap "3^{rd} \text{ toss is } T")$$

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin 3 times

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

- ▶ The coin tosses are **independent** (the outcome of a toss does not change the probability that a different toss is H or T)

$$\Pr(\{HHT\}) = \Pr("1^{\text{st}} \text{ toss is } H" \cap "2^{\text{nd}} \text{ toss is } H" \cap "3^{\text{rd}} \text{ toss is } T")$$

$$= \Pr("1^{\text{st}} \text{ toss is } H") \cdot \Pr("2^{\text{nd}} \text{ toss is } H") \cdot \Pr("3^{\text{rd}} \text{ toss is } T")$$

product rule for independent events (will justify it later)

PROBABILITY FUNCTION

- ▶ Assigns a probability $\Pr(E)$ to each event E
- ▶ Experiment: toss a coin 3 times

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$$

- ▶ The coin tosses are **independent** (the outcome of a toss does not change the probability that a different toss is H or T)

$$\Pr(\{HHT\}) = \Pr(\text{"1}^{\text{st}} \text{ toss is H"} \cap \text{"2}^{\text{nd}} \text{ toss is H"} \cap \text{"3}^{\text{rd}} \text{ toss is T"})$$

$$= \Pr(\text{"1}^{\text{st}} \text{ toss is H"}) \cdot \Pr(\text{"2}^{\text{nd}} \text{ toss is H"}) \cdot \Pr(\text{"3}^{\text{rd}} \text{ toss is T"})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

PROBABILITY FUNCTION

Not symmetric:

Outcomes are **not** equally likely

- ▶ Assigns a probability $\Pr(S)$ to each event E
- ▶ Experiment: toss a coin until heads for the first time

$$\Omega = \{\underbrace{TT \dots T}_{i \text{ times}} H : i \in \mathbb{N}\}$$

i times

The coin tosses are **independent** (the outcome of a toss does not change the probability that a different toss is H or T)

$$\Pr(\{\underbrace{TTT \dots T}_{i \text{ tails}} H\}) = \left(\frac{1}{2}\right)^i \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^{i+1}$$

i tails

PROBABILITY FUNCTION

Not symmetric:

Outcomes are **not** equally likely

- ▶ Assigns a probability $\Pr(S)$ to each event E
- ▶ Experiment: toss a coin until heads for the first time

$$\Pr(\{\underbrace{TTT \dots T}_{i \text{ tails}} H\}) = \left(\frac{1}{2}\right)^i \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^{i+1}$$

- ▶ For larger events E , $\Pr(E)$ is the sum of the probabilities of the outcomes in E

$$\Pr(E) = \sum_{\omega \in S} \Pr(\{\omega\}) \text{ for all } E \subseteq \Omega$$

PROBABILITY FUNCTION

What principles did we use to come up with those probability functions?

- ▶ **Symmetry:** each outcome of the coin toss (or die roll) is equally likely
- ▶ The probability of each outcome is a number between 0 and 1
- ▶ **Additivity:** for events with more than one outcome, the probability of the event is the sum of the probabilities of its outcomes

Note: some experiments are not symmetric (toss a coin until H)

PROBABILITY FUNCTION: AXIOMS

- ▶ Probability function assigns a probability to each event
- ▶ For a function to be a probability function, it must satisfy the following properties, called **axioms of probability**
- ▶ **Non-negativity:** $Pr(E) \geq 0$ for all events $E \subseteq \Omega$
- ▶ **Additivity:** if A and B are **disjoint** events then

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

- ▶ **Normalization:** $Pr(\Omega) = 1$

PROBABILITY FUNCTION: AXIOMS

- ▶ **Additivity (generalized):** If $P(A \cup B) = P(A) + P(B)$ whenever A, B are disjoint sets, then for $A_1 \dots A_n$ disjoint sets

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1 \cup B)$$

- ▶ where $B = A_2 \cup \dots \cup A_n$ is disjoint from A .
- ▶ From the previous slide

$$P(A_1 \cup B) = P(A_1) + P(B)$$

- ▶ If A_1, A_2, \dots are **disjoint** events then

$$Pr(A_1 \cup A_2 \cup \dots \cup A_n) = Pr(A_1) + Pr(A_2) + \dots + Pr(A_n)$$

TOP HAT QUESTION

- 50 students showed up to class today.
- 20 are Red Sox fans (R), 25 are Patriots fans (P).
- Prof. Tiago chooses a student at random.
- What is the range of possible values for $p = \Pr(R \cup P)$?

A. $p \geq 0.5$

maximize $\Pr(R \cup P)$

$$\Pr(R \cup P) = \Pr(R) \cup \Pr(P)$$

$$= \frac{20}{50} + \frac{25}{50}$$

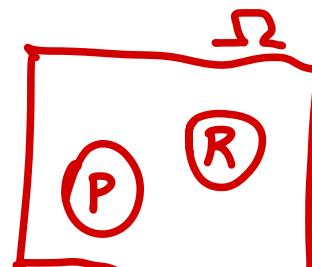
$$= 0.9$$

B. $p \leq 0.4$

C. $0.4 \leq p \leq 0.9$

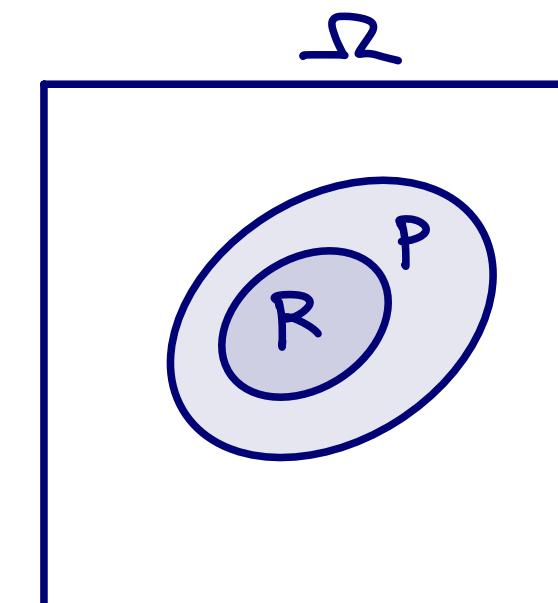
D. $0.5 \leq p \leq 0.9$

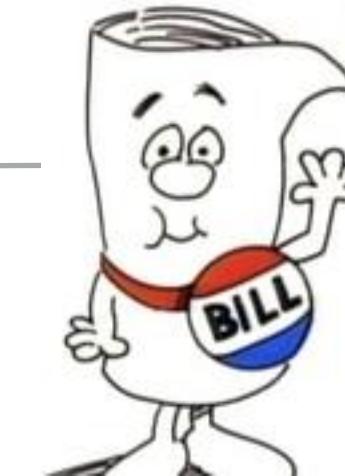
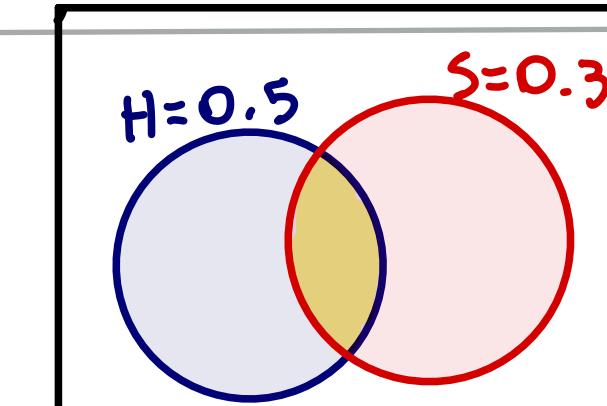
E. $0.4 \leq p \leq 0.5$



minimize $\Pr(R \cup P)$

$$\Pr(R \cup P) = \Pr(P) = \frac{25}{50} = 0.5$$





I'M JUST A BILL

- ▶ For a bill to come before the US president, it must be passed by both the House and the Senate
- ▶ Suppose that 40% of bills pass the House, 30% the Senate, and 50% pass at least one of the two

- ▶ What is the \Pr the next bill will come before the president?

$$\Pr(H \cup S) = \Pr(H) + \Pr(S) - \Pr(H \cap S)$$

$$\Pr(H \cap S) = \Pr(H) + \Pr(S) - \Pr(H \cup S) = 0.3 + 0.4 - 0.5 = 0.2$$

(A) 0.2 (B) 0.4 (C) 0.5 (D) 0.7

(E) None of the above

TOP HAT QUESTION

``Linda is 31, single, outspoken, and very bright. She majored in philosophy in college. As a student, she was deeply concerned with racial discrimination and other social issues, and participated in anti-nuclear demonstrations.”

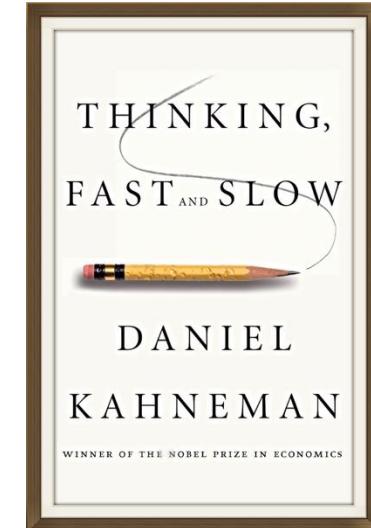
Rank the likelihood of the following alternatives:

- (a) Linda is active in the feminist movement
- (b) Linda is a bank teller
- (c) Linda is a bank teller and active in the feminist movement

CONJUNCTION FALLACY

Amos Tversky
[1937-1996]

Daniel Kahneman
[1934-2024]

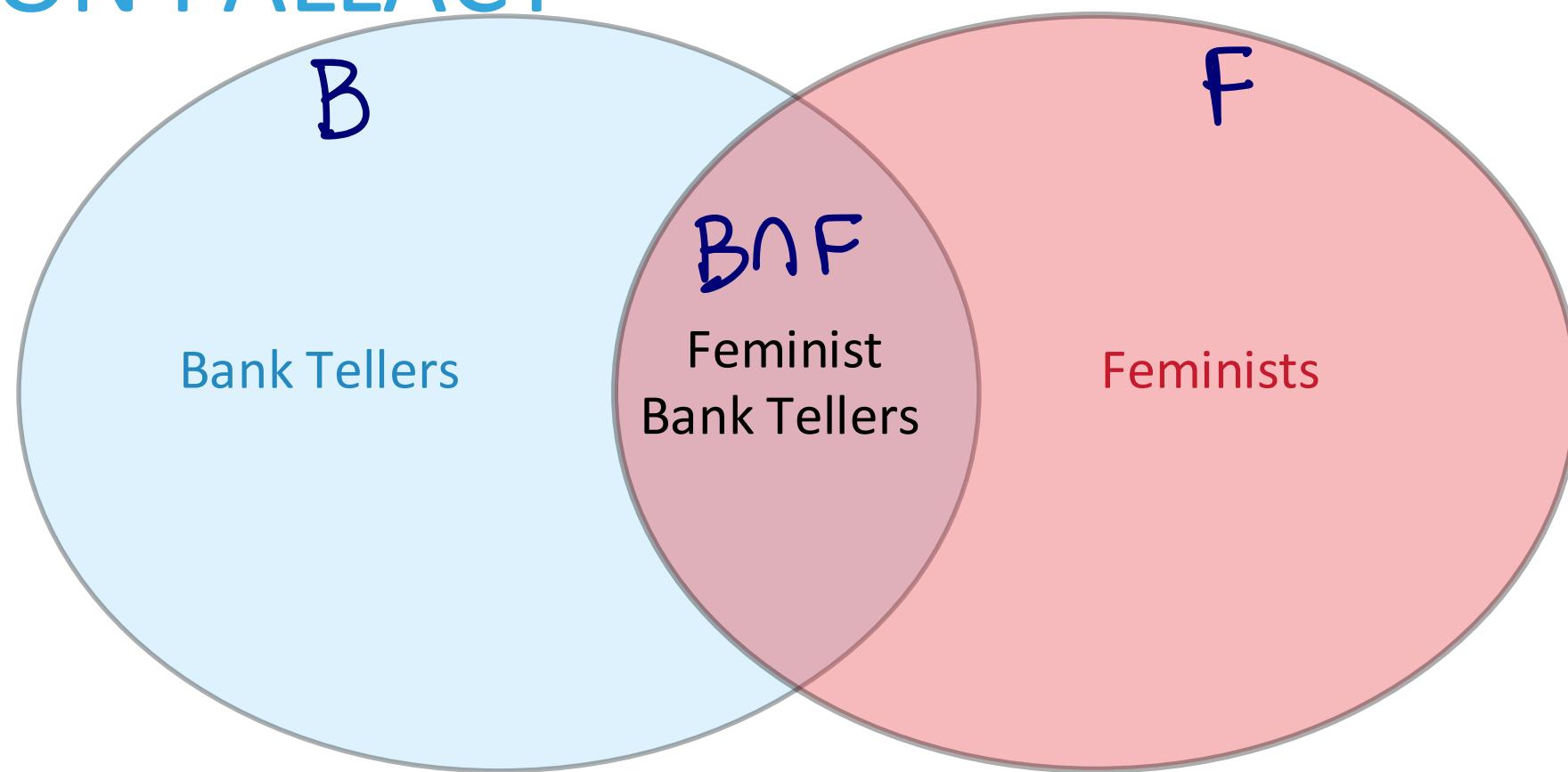


Between 80 and 95 percent of the subjects said (a) > (c)
> (b)

Rank the likelihood of the following alternatives:

- (a) Linda is active in the feminist movement
- (b) Linda is a bank teller
- (c) Linda is a bank teller and active in the feminist movement

CONJUNCTION FALLACY



Rank the likelihood of the following alternatives:

- (a) Linda is active in the feminist movement
- (b) Linda is a bank teller
- (c) Linda is a bank teller and active in the feminist movement

BETTING ON DICE

- ▶ We have a standard die and we roll it 4 times
- ▶ Should we bet on “at least one 6 turns up”?

Chevalier de Mere
[1607-1684]

$A = \text{“at least one 6 turns up in 4 rolls of a die”}$

A. YES

B. NO

BETTING ON DICE

- ▶ We have a standard die and we roll it 4 times
- ▶ Should we bet on “at least one 6 turns up”?

Chevalier de Mere
[1607-1684]

A = “at least one 6 turns up in 4 rolls of a die”

$$Pr(A) = 1 - Pr(\bar{A}) = 1 - \left(\frac{5}{6}\right)^4 \approx 0.5177$$

BETTING ON DICE

- ▶ We have 2 dice and we roll them 24 times
- ▶ Should we bet on “at least one pair of 6s turns up”?

Chevalier de Mere

B = “at least one pair of 6s turns up in 24 rolls of 2 dice”

$$Pr(B) = 1 - Pr(\bar{B}) = 1 - \left(\frac{35}{36}\right)^{24} \approx 0.4914$$

BETTING ON DICE

- ▶ We have 2 dice and we roll them 24 times
- ▶ Should we bet on “at least one pair of 6s turns up”?

Chevalier de Mere

C = “at least one pair of 6s turns up in 25 rolls of 2 dice”

$$Pr(B) = 1 - Pr(\bar{B}) = 1 - \left(\frac{35}{36}\right)^{25} \approx 0.5055$$

UN GRAND SCANDALE

- ▶ We have 2 dice and we roll them n times
- ▶ Should we bet on “at least one pair of 6s turns up”?
- ▶ A gambling rule of thumb at the time predicted:
 - ▶ 4 repetitions are favorable for an event with $\text{Pr} = 1/6$
 - ▶ This event is 6 times less likely ($\text{Pr} = 1/36$)
 - ▶ So one should use 6 times more repetitions: $6 \cdot 4 = 24$

Chevalier de Mere

UN GRAND SCANDALE

- ▶ We have 2 dice and we roll them n times
- ▶ Should we bet on “at least one pair of 6s turns up”?
- ▶ A gambling rule of thumb at the time predicted:
 - ▶ $n = 24$ rolls lead to favorable changes of winning bet
 - ▶ de Mere’s gambling experience
 - ▶ $n = 25$ rolls are needed for favorable chances

Chevalier de Mere

SEE YOU NEXT LECTURE!

