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The order of growth is a notation so that we can argue about running times. 
• it’s useful to think of the running time as a mathematical function of n

example:  T(n) = n2+3n+1 is O(n2), T(n) = 1.5n-1+2n is O(1.5n)

“asymptotic” — we compare the exact running time of an algorithm (or 
magnitude of a function) to the most simple function with similar growth.

“growth” —  how the number of computational steps is increasing as the input 
size n grows.

ASYMPTOTIC ORDER OF GROWTH
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Good algorithm:  works in practice!  - what does that mean?

• algorithm is correct
• efficient: runs reasonable fast

How to define ‘reasonable fast’?

Desirable scaling property:  When the input size doubles, the running time should 
increase by at most some constant factor C.

When is an algorithm efficient?
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Desirable scaling property.  When the input size doubles, the running time should increase by 
at most some constant factor C.

(mock) TopHat question

Which of these functions scale nicely?

T(n) = n3 + n2. Then T(2n) =

T(n) = 3n+n2. Then T(2n) =

T(n) = n!. Then T(2n) = 
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When is an algorithm efficient?

An algorithm is polynomial if there exist constants c and d, such that for any input size n 
the running time of the algorithm is at most cnd.

Example of polynomial running times:

T(n) = n2 + 2n5 − 3n3

T(n) = 3n log n + n4 + 2

T(n) = 5 ⋅ 2n + n3

T(n) = n!

Example of exponential running times:

We consider polynomial algorithms to be “efficient” , exponential algorithms to be 
“infeasible”

• in practice we need polynomial algorithms with low exponents
• brute-force algorithms tend to be exponential

T(n) = log n
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Asymptotic running time of an algorithm

Asymptotic running time: An approximation of the number of computational steps 
performed by an algorithm by a “simple” function of similar order of growth.
・it is always expressed as a function of the input size

Goal for today is to define the
• asymptotic upper bound — big-Oh
• asymptotic lower bound — big-Omega 
• asymptotic (tight) bound — big-Theta 

O( )
Ω( )

Θ( )
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source: https://towardsdatascience.com/understanding-time-
complexity-with-python-examples-2bda6e8158a7

Graphical solution
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Graphical solution

image source: http://science.slc.edu/~jmarshall/courses/2006/fall/accelcs/pub/week15/BigO/
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Graphical solution

image source: http://science.slc.edu/~jmarshall/courses/2006/fall/accelcs/pub/week15/BigO/



12

Graphical solution
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Big-Oh notation

Combinatoric definition.  T(n) is O( f (n)) if there exist constants c > 0 and n0  ≥  0 
such that T(n)  ≤  c · f (n)  for all n  ≥  n0.

Analytical definition.  T(n) is O( f (n)) if

Intuition:             is an upper bound on T(n) on any input. (if n is sufficiently large)

                       is               but also 
                       is 
                        is   

lim sup
n��

T (n)

f(n)
< �.

c · f (n)

nn0

T(n)

c ⋅ f(n)

3n2 + 2n + 1 O(n2) O(n3)
3n1/2 + log n O(n1/2)
n (log n + n) O(n3/2)
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(mock) TopHat question

Which of these are False?

A.  

B. 

C.  

D.  

106n3 + 5n2 − n + 10 = O(n3)

n + logn = O( n)

n = O(n3)

n( n + logn) = O( n)
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Notation

• Domain.  The domain of f (n) is typically the natural numbers { 0, 1, 2, … }
• we consider exceptions to be implied as needed
• Ex. log2n is not defined when n=0

• Non-negative functions.  When using big-Oh notation, we consider asymptotic 
order based on their absolute value

• -10n2 = O(n2) and not O(n)
• (in case f(n) is representing the running time of an algorithm negative values don’t 

make sense of course)

• Equals sign.  O( f (n)) is a set of functions, but computer scientists often write  
T(n)  =  O( f (n)) instead of T(n)  ∈  O( f (n)).
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Big-Oh is not symmetric

f(n) = 5n3 and g(n) = 8n2 then
• f(n) = O(n3)
• g(n) = O(n3)
• but f(n) != O(g(n))



17

Big-Omega notation

Lower bounds.  T(n) is Ω( f (n)) if there exist constants c > 0 and n0  ≥  0 
such that T(n)  ≥  c · f (n)  for all n  ≥  n0.
 
Ex.   T(n) = 32n2 + 17n + 1.
・T(n) is both Ω(n2) and Ω(n).
・T(n) is neither Ω(n3) nor Ω(n3 log n).
 
 
Analytical definition:
 
 

T(n)

nn0

c · f (n)

limsupn!1
f(n)

T (n)
< 1

T (n) is ⇥(f(n))
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(mock) TopHat question

Which of these are False?

A.  

B. 

C.  

D.  

106n3 + 5n2 − n + 10 = Ω(n3)

n + logn = Ω( n)

n = Ω(n3)

n( n + logn) = Ω( n)
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Big-Theta notation

Tight bounds.  T(n) is Θ( f (n)) if there exist constants c1 > 0, c2 > 0, and n0  ≥  0 
such that c1 · f (n)  ≤  T(n)  ≤  c2 · f (n)  for all n  ≥  n0. 
 
Ex.   T(n) = 32n2 + 17n + 1.
・T(n) is Θ(n2).
・T(n) is neither Θ(n) nor Θ(n3).
 
Analyticial definition.  
 
 

Typical usage.  Mergesort makes Θ(n log n) compares to sort n elements.

choose c1 = 32, c2 = 50, n0 = 1

T(n)

nn0

c1 · f (n)

c2 · f (n)

T (n) is ⇥(f(n))

limsupn!1
f(n)

T (n)
= const > 0
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(mock) TopHat question

Which of these are False?

A.  

B. 

C.  

D.  

106n3 + 5n2 − n + 10 = Θ(n3)

n + logn = Θ( n)

n = Θ(n3)

n( n + logn) = Θ( n)
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Asymptotic bounds for some common functions - for your review

Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Pf. 
 
 

lim
n��

a0 + a1n + . . . + adnd

nd
= ad > 0
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Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Logarithms.  Θ(loga n) is Θ(logb n) for any constants a, b  > 0.
 
Pf.

We won’t bother with the base of the logarithm when analyzing running times, we 
will simply use log(n) in the formulas.
・we often assume it’s base-2 logarithm because we like binary

change of base of the logarithm formula

Asymptotic bounds for some common functions - for your review

loga n = logb n
logb a

= Θ(logb n)
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Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Logarithms.  Θ(loga n) is Θ(logb n) for any constants a, b  > 0.
 
Logarithms and polynomials.  For every d  > 0, log n is O(n d).
・the logarithm grows slower than any polynomial. (e.g. n1.001,      )
 
 
 

Asymptotic bounds for some common functions - for your review

n
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Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Logarithms.  Θ(loga n) is Θ(logb n) for any constants a, b  > 0.
 
Logarithms and polynomials.  For every d  > 0, log n is O(n d).
 
Exponentials and polynomials.  For every r  > 1 and every d  > 0,  nd  is O(r n).
 
Pf. lim

n��

nd

rn
= 0

Asymptotic bounds for some common functions - for your review
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Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Logarithms.  Θ(loga n) is Θ(logb n) for any constants a, b  > 0.
 
Logarithms and polynomials.  For every d  > 0, log n is O(n d).
 
Exponentials and polynomials.  For every r  > 1 and every d  > 0,  nd  is O(r n).

Factorial. n! grows faster than any polynomial function:
- follows from Stirling’s formula
- note that 

n! = 2⇥(n logn)

Asymptotic bounds for some common functions - for your review

2n < 2Θ(n log n)



26

Max vs. Sum

O(max{f(n), g(n)}) = O( f(n) + g(n))

Compute lim sup f(n) + g(n)
f(n)
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Big-Oh notation with multiple variables

Upper bounds.  T(m, n) is O( f (m, n)) if there exist constants c > 0, m0  ≥  0, 
and n0 ≥  0 such that T(m, n)  ≤  c · f (m, n)  for all n  ≥  n0 and m  ≥  m0.
 
Ex.   T(m, n) = 32mn2 + 17mn + 32n3.
・T(m, n) is O(mn2 + n3). — we don’t know which of the two is larger, hence we 

keep both
・T(m, n) is neither O(n3) nor O(mn2). 

Typical usage.  Breadth-first search takes                    time to find the shortest path 
from s to t in a graph. (Here m is the number of edges, n the number of nodes in a 
graph.)

Θ(n + m)
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review

n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 = number of permutations of n numbers

n factorial
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review

n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1 = number of permutations of n numbers

n factorial

combinations - “n choose k”

(n
k) = n!

(n − k)!k! = n ⋅ (n − 1)… ⋅ (n − k + 1)
k ⋅ (k − 1)… ⋅ 2 ⋅ 1

number of ways to choose k items out of a set of n without repetition when the order 
doesn’t matter.
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Polynomials.  Let T(n)  = a0 + a1 n + … + ad nd  with ad  >  0. Then, T(n) is Θ(nd).
 
Logarithms.  Θ(loga n) is Θ(logb n) for any constants a, b  > 0.
 
Logarithms and polynomials.  For every d  > 0, log n is O(n d).
 
Exponentials and polynomials.  For every r  > 1 and every d  > 0,  nd  is O(r n).

Factorial. n! grows faster than any polynomial function:
- follows from Stirling’s formula
- note that 
- in the homework you may use    Θ(n!)

n! = 2⇥(n logn)

Asymptotic bounds for some common functions - for your review

2n < 2Θ(n log n)
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Examples - compare by Θ

2log5 nn

n106 1.000001 n nn
2

1.

2.
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Max vs. Sum

O(max{f(n), g(n)}) = O( f(n) + g(n))

Compute lim sup f(n) + g(n)
f(n)
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Big-Oh notation with multiple variables

Upper bounds.  T(m, n) is O( f (m, n)) if there exist constants c > 0, m0  ≥  0, 
and n0 ≥  0 such that T(m, n)  ≤  c · f (m, n)  for all n  ≥  n0 and m  ≥  m0.
 
Ex.   T(m, n) = 32mn2 + 17mn + 32n3.
・T(m, n) is O(mn2 + n3). — we don’t know which of the two is larger, hence we 

keep both
・T(m, n) is neither O(n3) nor O(mn2). 

Typical usage.  Breadth-first search takes                    time to find the shortest path 
from s to t in a graph. (Here m is the number of edges, n the number of nodes in a 
graph.)

Θ(n + m)



Graphs

A graph G(V,E) consist of a pair 
 set of vertices (nodes) V 
and a set of edges E; an edge e = (u,v) is a pair of vertices

G is undirected if the edges (u,v) are unordered pairs.
・(u,v) and (v,u) have the same meaning; the two are connected

G is directed if the edges (u,v) are ordered pairs.
・we say there is an edge from u to v
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Florentine Families

Marriage and business ties between 
families in 15th century Florence.

Padgett and Ansell 1993



Graphs

A graph G(V,E) consist of a pair 
 set of vertices (nodes) V   — number of vertices |V| 
and a set of edges E; an edge e = (u,v) is a pair of vertices — number of edges |E|

G is undirected if the edges (u,v) are unordered pairs.
• degree(v) = number of edges adjacent to v

G is directed if the edges (u,v) are ordered pairs.
• outdegree(v) = number of edges directed from v
• indegree(v) = number of edges directed to v

• notation: often we use |V| = n, |E| = m
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MBTA subway map



Graphs of subway networks in major cities

S. Derrible, Network Centrality of Metro Systems, PLOS One, 2012



Paths and connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence of nodes 
v1, v2, …, vk with the property that each consecutive pair vi–1, vi is joined  
by an edge in E.

Def.  A path is simple if all nodes are distinct.

39
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path: h - b - i - c - d



Paths and connectivity

Question. Is there a path from a to e?  yes: a-c-d-e
Def. An undirected  graph is connected, if there is a path between any pair of nodes.
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Can I get from Boston to NYC by car?
From Boston to London UK?



Paths and connectivity

Question. Is there a path from s to e? 
Def. An undirected  graph is connected, if there is a path between any pair of nodes.

Task: Given a source node s, find all nodes connected to s.
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Min and max number of edges in a connected graph?



Flood fill.  Given lime green pixel in an image, change color of entire blob of 
neighboring lime pixels to blue.
・Node:  pixel.
・Edge:  two neighboring lime pixels.
・Blob:  connected component of lime pixels.

42

Application of connectivity: Flood fill

recolor lime green blob to blue



Flood fill.  Given lime green pixel in an image, change color of entire blob of 
neighboring lime pixels to blue.
・Node:  pixel.
・Edge:  two neighboring lime pixels.
・Blob:  connected component of lime pixels.
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Application of connectivity: Flood fill

recolor lime green blob to blue


