
Weighted interval scheduling

Weighted Interval Scheduling (WIS) problem.
・Job j starts at sj, finishes at fj, and has weight or value vj.
・Two are jobs compatible if they don’t overlap.
・Goal: find maximum-weight/ max-value subset of mutually compatible jobs.

5

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

$8

$9

$15

$3

$12

$3

$4

$10

Recursive subproblems

two cases:
• jn is part of the optimal schedule O

• recurse on the last job compatible to jn
• jn is not part of O

• recurse on job jn-1

We will explore these two options to find the full solution

The recursive step corresponds to solving a subproblem:
• a problem considering fewer jobs
• note that the subset of jobs is sequential — it contains all jobs before a certain

index.

12

WIS — notation for compatibility

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p (j) = largest index i < j s.t. job i is compatible with j. (if none, then p(j) = 0) 
Ex. p(8) = 5, p(7) = 3, p(2) = 0.
OPT(i) = maximum total value selection from jobs 1, 2, …, i

15

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

$8

$9

$15

$3

$12

$3

$4

$10

Observation:
Suppose job 8 is part of the optimal solution.
Since p(8) = 5, the maximum value
containing j8 is OPT(n) = OPT(5) + $8

DP for WIS: recursive formula

Notation. OPT(j) = opt solution, i.e. max total value selection from jobs 1, 2, ..., j.
OPT(n) = value of optimal solution to the original problem.
 
Case 1. OPT(j) selects job j.
・Collect profit vj.
・Can’t use incompatible jobs { p(j) + 1, p(j) + 2, ..., j – 1 }.
・Must include optimal solution to problem consisting of remaining compatible

jobs 1, 2, ..., p(j). This is OPT(p(j)).
 
Case 2. OPT(j) does not select job j.
・Must include optimal solution to problem consisting of remaining  

jobs 1, 2, ..., j – 1. This is OPT(j-1).

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

18

Recursive formula : Choose the better from Case 1 and 2

28

WIS: exponential recursive algorithm

Algorithm 1: RecOpt(job index j)

1 if j == 0 then
2 return 0

3 else
4 Opt(j) max{vj +RecOpt(p(j));RecOpt(j � 1)};
5 return Opt(j)

Algorithm 1: NaiveRecursiveWIS(n jobs: si, fi, vi)

1 sorted sort jobs by increasing finish time f1 � . . . � fn;
2 Compute p(1), p(2), . . . , p(n)/* can be done in O(n) */

3 return RecOpt(n)

Running time: Ω(2 n
2)

WIS — DP algorithm (recursive)

29

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

Algorithm 1: WIS(n jobs: sj , fj , vj)

1 Sort jobs by finish time f1  . . .  fn;
2 Compute p(1), p(2), . . . p(n);
3 M array(n+ 1)// Empty array of size n+1, indexed 0...n
4 M [0] 0// no jobs selected
5 return WISCompute(n);

Algorithm 2: WISCompute(j)

1 if M [j] is empty then
2 M [j] max{vj +WISCompute(p(j)) +WISCompute(j � 1)};
3 return M [j];

Memoization table M:
M[j] = OPT(j), array that contains the max value for jobs 0,1…,j

WIS — DP algorithm (bottom-up)

bottom-up algorithm to compute the optimal solution for WIS

Running time?

30

Algorithm 1: WIS(n jobs: sj , fj , vj)

1 Sort jobs by finish time f1  . . .  fn;
2 Compute p(1), p(2) . . . p(n);
3 M array(n+ 1)// empty array fo size n+1, indexed 0...n
4 M [0] 0;
5 for j = 1 to n do
6 M [j] max{vj +M [p(j)];M [j � 1]};
7 return M [n];

WIS — DP algorithm — how to write a complete solution

1.: clearly define the subproblems, with proper indexing
 OPT(j) = maximum value selection from job requests 1,..,j

 2.: write the recursive formula:
p(j) = max {i: i <j and job i is compatible with j} = highest index of a job that doesn’t
overlap with j.

 3.: bottom-up algorithm to compute the optimal solution

4.: use backtracking to find set of jobs in optimal solution

31

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

Algorithm 1: WIS(n jobs: sj , fj , vj)

1 Sort jobs by finish time f1  . . .  fn;
2 Compute p(1), p(2) . . . p(n);
3 M array(n+ 1)// empty array fo size n+1, indexed 0...n
4 M [0] 0;
5 for j = 1 to n do
6 M [j] max{vj +M [p(j)];M [j � 1]};
7 return M [n];

WIS — DP algorithm (bottom-up/iterative)

2

Algorithm 1: WIS(n jobs: sj , fj , vj)

1 Sort jobs by finish time f1  . . .  fn;
2 Compute p(1), p(2) . . . p(n);
3 M array(n+ 1)// empty array fo size n+1, indexed 0...n
4 M [0] 0;
5 for j = 1 to n do
6 M [j] max{vj +M [p(j)];M [j � 1]};
7 return M [n];

OPT(j) =

0 if j = 0
max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

Memoization table M:
M[j] = OPT(j), array that contains the max value for jobs 0,1…,j

Weighted Interval Scheduling: given n jobs, each with start time sj, finish time fj and value
vj find the compatible schedule with maximum total value.

OPT(j) = optimal solution for jobs (0),1,2,…,n

WIS — DP algorithm (top-down/recursive)

4

OPT(j) =

0 if j = 0
max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

Algorithm 1: WIS(n jobs: sj , fj , vj)

1 Sort jobs by finish time f1  . . .  fn;
2 Compute p(1), p(2), . . . p(n);
3 M array(n+ 1)// Empty array of size n+1, indexed 0...n
4 M [0] 0// no jobs selected
5 return WISCompute(n);

Algorithm 2: WISCompute(j)

1 if M [j] is empty then
2 M [j] max{vj +WISCompute(p(j)) +WISCompute(j � 1)};
3 return M [j];

Memoization table M:
M[j] = OPT(j), array that contains the max value for jobs 0,1…,j

Finding the set of optimal jobs — backtracking

A dynamic programming algorithm computes the optimal value.

How to find the solution itself?
We can reconstruct it from the table.
・backtrack based on the memoization table without explicitly storing values (by

checking which case was chosen)

7

Algorithm 1: FindSolution(j)

1 if j == 0 then
2 return ;;
3 else if vj +M [p(j)] > M [j � 1] then
4 return {j} [FindSolution(p(j));
5 else
6 return FindSolution(j � 1);

6

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

$8

$9

$15

$12

$3

$10

$3

$4

j 0 1 2 3 4 5 6 7 8

OPT(j) $0 $4 $3 $10 $10 $12 $19 $19 $20
predecesso

r
0 0 0 0 3 0 1 3 (or 6) 5

OPT(j) =

0 if j = 0
max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

0

Finding the set of optimal jobs — backtracking

Minimum Number of Operations - TopHat

Problem: Given an integer n, find the minimum number of operations to get from 0 to n, if
you are only allowed to perform two specific operations: (1.) add 1 (2.) multiply by 2.

example compute 12:
0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 12 //12 operations
(((0+1) x 2) x 2) + 1 +1 +1 +1 = 12 // 7 operations
(((0 +1) +1 + 1) x 2) x 2 = 12 // 5 operations

Question: Suppose OPT(j) is the minimum number of operations required to make the
number j. What is the recursive formula for computing OPT(j)? we may assume the base
case OPT(0) = 0.

A. C.

B. D.

OPT(j) = {OPT(j − 1) if j is odd
OPT(j/2) if j is even

OPT(j) = {OPT(j − 1) if j is odd
min{OPT(j/2); OPT(j − 1)} if j is even

OPT(j) = {OPT(j − 1) + 1 if j is odd
1 + min{OPT(j/2); OPT(j − 1)} if j is even

OPT(j) = {OPT(j − 1) + 1 if j is odd
OPT(j/2) + 1 if j is even

Minimum Number of Operations

Problem: Given an integer n, find the minimum number of operations to get from 0
to n, if you are only allowed to perform two specific operations: (1.) add 1 (2.)
multiply by 2.

Algorithm 1: MinOperations(n)

1 M length-(n+1) array;

2 M [0] = 0;

3 for j = 1 to n do
4 if j is odd then
5 M [j] = M [j � 1] + 1;

6 else if Mj � 1] + 1 < M [j/2] + 1 then
7 M [j] = M [j � 1] + 1;

8 else
9 M [j] = M [j/2] + 1;

10 return M

Finding the sequence of operations— backtracking

A dynamic programming algorithm computes the optimal value.

How to find the solution itself?
We can reconstruct it from the table.
・backtrack based on the memoization table without explicitly storing values (by

checking which case was chosen)

12

Algorithm 1: Findsolution(j, M)

1 if j == 0 then
2 return ;
3 if j is odd then
4 return FindSolution(j � 1,M).append(’+1’)
5 else if M [j � 1] + 1 < M [j/2] + 1 then
6 return FindSolution(j � 1,M).append(’+1’)
7 else
8 return FindSolution(j/2,M).append(’x2’)

Subset sum — dynamic programming

Subset Sum problem: given a set of n positive integer weights w1, w2, …, wn and a
weight limit W. Find the subset of weights S with maximum total weight that doesn’t
exceed W. That is, find

DP: OPT(j) = the max weight solution among weights w1,w2,…,wj

OPT(j) = max{ ? }

Complications:
・there are no compatibility issues as with overlapping jobs (good)
・once a weight is chosen the available weight limit is decreased. Can we

express this with just a single variable in OPT?

16

S : max
S⊆{w1…wn} ∑

wi∈S
wi ≤ W

Subset sum — dynamic programming — 2-dimensional DP

Subset Sum problem: given a set of n positive integer weights w1, w2, …, wn and a
weight limit W. Find the subset of weights S with maximum total weight that doesn’t
exceed W. That is, find

OPT(j, w) = the max weight solution among weights w1,w2,…,wj with available
weight limit w.

18

OPT (j, w) =

8
><

>:

0 if j = 0

OPT (j � 1, w) if wj > w

max{wj +OPT (j � 1, w � wj);OPT (j � 1, w)} otherwise

S : max
S⊆{w1…wn} ∑

wi∈S
wi ≤ W

Subset sum — 2D memoization table — TopHat

Input: w1,w2,…,wn and W (assume weights are ints)
Output: OPT(n,W)

Implementation:

Question: What is the size of the memoization table and what is the running time of
the resulting DP algorithm?

A. n2 & O(n3)
B. W2 & O(W2)
C. nW & O(n2W)
D. (n+1)(W+1) & O(nW)

20

OPT (j, w) =

8
><

>:

0 if j = 0

OPT (j � 1, w) if wj > w

max{wj +OPT (j � 1, w � wj);OPT (j � 1, w)} otherwise

Subset sum — 2D DP

Input: w1,w2,…,wn and W (assume weights are ints)
Output: OPT(n,W)

21

OPT (j, w) =

8
><

>:

0 if j = 0

OPT (j � 1, w) if wj > w

max{wj +OPT (j � 1, w � wj);OPT (j � 1, w)} otherwise

Algorithm 1: SubsetSum(w1, w2, . . . , wn,W)

1 M (n+ 1)⇥ (W + 1) table/* 2D array/ matrix */
/* set border cases */

2 M [0][⇤] = 0/* set row 0 to zeros */
3 M [⇤][0] = 0/* set column 0 to zeros */
4 for j = 1 . . . n do
5 for w = 1 . . .W do

/* apply recursive formula */
6 M [j][w] = max{wj +M [j � 1][w � wj];M [j � 1][w]};
7 return M [n][W]

Subset sum — 2D DP — backtracking the solution

Input: filled memoization table M
Output: set of weights in the optimal solution S
runtime?

22

Algorithm 1: SubsetSumSolution(M ,w = [w1, . . . wn],W)

1 S [] /* set of opt weights */
2 i n, j W ;
3 while i > 0 AND j > 0 do
4 if M [i][j] > M [i� 1][j] then

/* the case where wi is chosen */
5 S.append(w[i]);
6 i i� 1;
7 j j � wi;
8 else

/* wi is not chosen */
9 i i� 1;

10 return S

OPT (j, w) =

8
><

>:

0 if j = 0

OPT (j � 1, w) if wj > w

max{wj +OPT (j � 1, w � wj);OPT (j � 1, w)} otherwise

Dynamic programming: adding a new variable

Def. OPT(i, w) = max-profit on items 1, …, i with weight limit w.
Goal. OPT(n, W).
 
Case 1. OPT(i, w) does not select item i.
・OPT(i, w) selects best of { 1, 2, …, i – 1 } using weight limit w.
 
Case 2. OPT(i, w) selects item i.
・Collect value vi.
・New weight limit = w – wi.
・OPT(i, w-wi) selects best of { 1, 2, …, i – 1 } using this new weight limit.

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

25

Knapsack problem example

26

0 1 2 3 4 5 6 7 8 9 10 11

{ }

{ 1 }

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1, 2, 3, 4, 5 }

i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

weight limit w

subset  
of items
1, …, i

OPT(i, w) = max-profit subset of items 1, …, i with weight limit w.

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

Knapsack problem: running time

Theorem. There exists an algorithm to solve the knapsack problem with n items and
maximum weight W in Θ(n W) time and Θ(n W) space.
Pf.
・Takes O(1) time per table entry.
・There are Θ(n W) table entries.
・After computing optimal values, can trace back to find solution: 

take item i in OPT(i, w) iff M [i, w] > M [i – 1, w]. ▪
 
 

30

weights are integers
between 1 and W

Knapsack problem is NP-complete

Knapsack is in fact not polynomial in the input size!
Input:
2n integers: vi and wi

one additional integer W

How many bits to describe the input?
・W requires log W bits, wi requires O(log W) bits
・overall O(n log W)

The algorithm would be polynomial in the input size, if the running time was a
polynomial of n and log W
But the running time is O(nW) = O(n 2logW)

・Decision version of knapsack problem is NP-complete. [CHAPTER 8]
・There exists a poly-time algorithm that produces a feasible solution that has

value within 1% of optimum. [SECTION 11.8]

31

DP algorithm — full solution

32

Here is how you would properly write out the solution to a DP problem:

1. precisely define the subproblem with proper indexing
• OPT(i) = ……. or OPT(i,j) = …. is also possible! (or even more variables)

2. give the recursive formula to compute OPT() and argue about its correctness
• make sure to define everything that needs to be, e.g. p(j) = …
• don’t forget about border cases (sometimes you may want to add a dummy index, e.g.

j=0, OPT(0) = 0)
3. write the DP algorithm.

• bottom-up and recursive are equally good. The asymptotic running time is the same.
• be clear about what values your memoization table holds,

• e.g. M[i,j] = OPT(i,j), size of M is n x W
• don’t forget initialization steps for border cases

4. write an algorithm that prints the elements (e.g. jobs) in the optimal solution
• sometimes called “back-tracking” the solution

Bounded Knapsack problem

As input we are given the weights wi and values vi of each of n items, further we are
given a maximum capacity of W. Suppose there are two identical copies of each
item available. Select a maximum value subset of the items within the capacity limit
W, such that we can take at most two of each item.

Bounded Knapsack problem - backtracking

Backtracking the maximum choice over multiple items is tedious.
Instead: keep track of our decisions on the fly:

C = length (n+1)x(W+1) array
C[i][w] = how many copies of i we select for OPT(i,w)

Algorithm 1: BoundedKnapsack(i = 1 . . . n : (wi, vi),W)

/* (wi, vi) weight and value of item i, W capacity */
1 M (n+ 1)⇥ (W + 1) array/* DP table */
2 C (n+ 1)⇥ (W + 1) array/* number of copies */
3 M [0][⇤] 0 and M [⇤][0] 0;
4 for i = 1 to n do
5 for w = 1 to W do
6 c0 M [i� 1][w]/* 0 of item i */
7 c1 = vi +M [i� 1][w � wi] if wi < w else c1 �1/* 1 of i */
8 c2 = 2vi+M [i� 1][w� 2wi] if 2wi < w else c2 �1/* 2 of i */
9 M [i][w] max{c0, c1, c2};

10 C[i][w] argmax{c0, c1, c2}/* index of max case */

11 return M, C

Bounded Knapsack problem - backtracking

Backtracking the maximum choice over multiple items is tedious.
Instead: keep track of our decisions on the fly:

C = length (n+1)x(W+1) array
C[i][w] = how many copies of i we select for OPT(i,w)

Algorithm 1: BKBacktrack(C,W)

1 sol empty list;
2 i n and w W ;
3 while i > 0 and w > 0 do
4 sol.add(C[i][w]⇥ item i)/* add0, 1 or 2 of item i */
5 i i� 1;
6 w w � C[i][w] · wi;
7 return sol

Bounded Knapsack problem - TopHat

As input we are given the weights wi and values vi of each of n items, further we are given a
maximum capacity of W. Suppose there are two m identical copies of each item available.
Select a maximum value subset of the items within the capacity limit W, such that we can
take at most two m of each item.

OPT(i,w) = maximum value within capacity w if we can consider items 1,…,i
What is the recursive formula for OPT(i,w) - excluding boundary cases?

A.

B.

C.

D.

OPT(i, w) = max
j=0…m

{j ⋅ vi + OPT(i − 1,w − j ⋅ wi)}

OPT(i, w) = max{OPT(i − 1,w); m ⋅ vi + OPT(i − 1,w − m ⋅ wi)}

OPT(i, w) = max
j=0…m

{j ⋅ vi + OPT(i − 1,w − wi)}

OPT(i, w) = max
j=0…m

{j ⋅ vi + OPT(i − j, w − wi)}

Coin change problem

In a far away country there are four different valued coins, the dream dollar amounts
are $1, $4, $7, $13. In this country people always try to pay with the fewest number
of coins possible. Design a DP algorithm to pay $n with the fewest number of coins.

bonus: the greedy algorithm - pay with the largest denomination while possible -
doesn’t work. However, you’ll probably need to implement it to find the smallest $n
counter example

String matching example — plagiarism

Plagiarism is often not a verbatim copy.

source: https://www.turnitin.com/static/plagiarism-spectrum/ “Find-Replace”
method

Some words, e.g. “the”, “and”, or given the topic of this text “Yosemite”, naturally appear in
both and are not plagiarized. We want to assign some kind of similarity score between the
two texts.

2

Type “Define ocurrance” in Google.
 Google will correct your spelling. How does it know which word you wanted to find?
(source: google.com search result)

String similarity

3

Q. How similar are two strings? ocurrance and occurrence.

Which alignment is best depends on relative cost of gap and mismatch penalties
• The cost of a mismatch and of a gap is part of the input

String similarity

6

6 mismatches, 1 gap

o c u r r a n c e –

o c c u r r e n c e

1 mismatch, 1 gap

o c – u r r a n c e

o c c u r r e n c e

0 mismatches, 3 gaps

o c – u r r – a n c e

o c c u r r e – n c e

α δ

cost = ↵· mismatch + �· gap

String similarity — Levenshtein Distance

Edit distance:
・first introduced by Levenshtein (1966)
・number of single character edits (insertion, deletion or substitution) required to

change one string into another.
- sometimes called Levenshtein distance

Longest Common Subsequence: special case, only allows insertions and deletions,
not substitutions

7

String similarity — Longest Common Subsequence (Substring)

Longest Common Subsequence: given two sequences x = [x1,x2,…,xn] and
y=[y1,y2,…,ym] find a longest (not consecutive) subsequence common to them both.

- special case of the similarity problem with mismatch penalty = infinite, gap
penalty = 1

application: Genome similarity
・used in computational biology
・algorithm is named after Needleman and Wunsch (1970s)

8

cgtacgtacgtacgtacgtacgtatcgtacgt

acgtacgtacgtacgtacgtacgtacgtacgt

 cgtacgtacgtacgtacgtacgta t cgtacgt

a cgtacgtacgtacgtacgtacgta cgtacgt

Sequence alignment

9

x2x1 x3 x4 x5 x6 x7 x8 xm-2 xm-1 xm

y2y1 y3 y4 y5 y6 y7 y8 yn-2 yn-1 yn

x2x1 x3 x4 x5 x6 x7 x8 xm-2 xm-1 xm

y2y1 y3 y4 y5 y6 y7 y8 yn-2 yn-1 yn

Problem. Given two strings X = [x1 x2… xm] and Y = [y1 y2…yn] and costs find the
minimum-cost alignment Align(X,Y).

Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered
pairs (a matching) (xi, yj), such that
• each character is matched at most once
• there are no two pairs (xi, yk) and (xj, yl), such that xi comes before xj but yk after yl

or vice verse, i.e. there are no crossing pairs

invalid alignment:

α, δ

Sequence alignment

Problem. Given two strings X = [x1 x2… xm] and Y = [y1 y2…yn] and costs find the
minimum-cost alignment Align(X,Y).

Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered
pairs (a matching) (xi, yj), such that
• each character is matched at most once
• there are no two pairs (xi, yk) and (xj, yl), such that xi comes before xj but yk after yl

or vice verse, i.e. there are no crossing pairs

valid alignment:

10

x2x1 x3 x4 x5 x6 x7 x8 xm-2 xm-1 xm

y2y1 y3 y4 y5 y6 y7 y8 yn-2 yn-1 yn

α, δ

Problem. Given two strings X = [x1 x2… xm] and Y = [y1 y2…yn] and costs find the
minimum-cost alignment Align(X,Y).

Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered
pairs (a matching) (xi, yj), such that
• each character is matched at most once
• there are no two pairs (xi, yk) and (xj, yl), such that xi comes before xj but yk after yl

or vice verse, i.e. there are no crossing pairs

Cost of an alignment:

Sequence alignment

11

of unmatched characters in X +
of unmatched chars in Y

are given as input.α, δ

cost(Align(X,Y)) = ↵· #(mismatch) + �· #(gap)

α, δ

mismatch:
gap:

Question: cost of alignment?

12

↵ = 3

� = 2

P A RN T H E

P A NT T E R

P A RN T H E

P A NT T E R

Brute-force approach — TopHat

Algorithm: Try all possible valid alignments and return the min-cost

valid alignment:
• each character xi is matched to at most one character yj
• there are no crossing pairs

Question. Guess how many valid alignments there are if X is a string of m, and Y a
string of n characters. (we may assume)

A.

B.

C.

D.

14

m

∑
k=0

(m
k) (n

k) = (m + n
m)

m!n! = O(mmnn)

m ⋅ n

mn

m ≤ n

Brute-force approach — number of valid alignments

Some facts:
・each character xi in X is aligned to either a character yj or a gap.
・if k characters in X are matched to characters in Y, then the number of matched

characters in Y is also k.

compute number of valid assignments:
 count how many ways there are to pick k among X and k among Y. Those are the
characters matched to each other.

• note that the order in which these k are matched is fixed, and hence
unambiguous

16

choose the k characters in X that are
assigned to characters in Y(as opposed
to gaps)

choose the k characters in Y that are
assigned to characters in X

if m < n we get:
m

∑
k=0

(m
k) (n

k) = (m + n
m) ≥ (2m

m) = Θ (4m

m)

tricks with binomial coefficients

17

2n = (1 + 1)n =
nX

k=0

✓
n

k

◆
1n�k1k =

nX

k=0

✓
n

k

◆

(a+ b)n =
nX

k=0

✓
n

k

◆
an�kbk

✓
n

k

◆
=

✓
n

n� k

◆

nX

k=0

✓
n

k

◆✓
m

k

◆
=

nX

k=0

✓
n

k

◆✓
m

m� k

◆
=

✓
n+m

m

◆
=

✓
n+m

n

◆

nX

k=0

✓
n

k

◆✓
m

m� k

◆
=

✓
n+m

m

◆

Computation on previous slide:

Good to know:

