Weighted interval scheduling

Weighted Interval Scheduling (WIS) problem.
* Job j starts at s;, finishes at f;, and has weight or value v;.
* Two are jobs compatible if they don’t overlap.

* Goal: find maximum-weight/ max-value subset of mutually compatible jobs.
vodwe (bt 2+ h)s$145

'vajlw,(\d-woz\\ - 320

a | $10

. $3
:d | :$12

» time

Recursive subproblems & 3

XWM

two cases: M

+ in is part of the optimal schedule O~

- recurse on the last job compatible to jn— 4o 3“
* in is not partof O — de W&t coviowL e va&ww W\h

* recurse on job jn-1 A

We will explore these two options to find the full solution

The recursive step corresponds to solving a subproblem:
» a problem considering fewer jobs | witho 4%1\% P Q‘“} o J‘\ i
- note that the subset of jobs is sequential — it contains all jobs before a certain
iIndex. -

&M\SZ) cee) \')Y\-J\
VAV

Qy\) \'\2) . ?(5‘\\

12

WIS — notation for compatibility

Notation. Label jobs by finishing time: fi< f, <...<f,.
Def.(p(j) =largestindex i < js.t. job i is compatible with ;. (if none, then p(j) = 0)
TS - . \ \/7
Ex. p(®)=35,p(7N=3,p(2) =0. it vmamn tha J » et Compadibly, Wit Qo

OPT(1) = maximum total value selection from jobs 1, 2, ..., i

Observation:

1 $10 Suppose job 8 is part of the optimal solution.
Since p(8) = 5, the maximum value
2 $4 containing js is OPT(n) = OPT(5) + $8
3 $3
4 :$12
5 | $3
6 $15
7 $9
8 $8 .
< ; time

15

DP for WIS: recursive formula

Notation. OPT(j) = opt solution, i.e. max total value selection from jobs 1,2, ...,J.

OPT(n) = value of optimal solution to the original problem.

Case 1. OPT(j) selects job ;.
* Collect profit v;.
* Can’t use incompatible jobs { p(j)+ 1,p(j)+2, ..., j—1}.
* Must include optimal solution to problem consisting of remaining compatible
jobs 1,2, ..., p(j). Thisiis OPT(p(j)).

Case 2. OPT(j) does not select job ;.
* Must include optimal solution to problem consisting of remaining
jobs 1,2, ..., j— 1. Thisis OPT(j-1).

Recursive formula : Choose the better from Case &an ‘-b

\
o O° 3 D if =0

OPT(j)= {max{ v+ OPT(p())), m otherwise

18

WIS: exponential recursive algorithm

Algorithm 1: NaiveRecursiveWIS(n jobs: s;, fi, v;)

1 sorted < sort jobs by increasing finish time f1 < ... < fu;
2 Compute p(1),p(2),...,p(n)/* can be done in 0(n) */
3 return RecOpt(n)

wemes h b v i Vim oewe:
Algorithm 1: RecOpt(job index j) / s return Wl oG
if 7 == 0 then
return 0
else
Opt(j) + max{v; + RecOpt(p(j)); RecOpt(j — 1)};
return Opt(j) P W\W\OCSD: OP‘IJ (&)

U = W N =

Running time: Q(2?)

28

WIS — DP algorithm (recursive)

0 if j=0
OPT(j) =
(/) {max{ v, + OPT(p())), OPT(j—l)} otherwise

Memoization table M:
M[j] = OPT(j), array that contains the max value for jobs 0,1...,]

Algorithm 1: WIS(n jobs: s;, f;,v;)

1 Sort jobs by finish time f1 < ... < fu;

> Compute p(1), p(2), ... p(n);

3 M < array(n+1)// Empty array of size n+1, indexed 0...n
4 M[0] <~ 0// no jobs selected

5 return WI1SCompute(n);

Algorithm 2: WISCompute(j)

1 if Mj] is empty then
2 ‘ M]j] < max{v; + WISCompute(p(j)) + WISCompute(j — 1)};
3 return M|[j];

29

WIS — DP algorithm (bottom-up)

bottom-up algorithm to compute the optimal solution for WIS

Algorithm 1: WIS(n jobs: s;, f;,v;)

1 Sort jobs by finish time f; < ... < f,; —& a\qQ,Q%h)
2 Compute p(1),p(2)...p(n);
3 M < array(n+1)// empty array fo size n+1, indexed 0...n } @(’n

4[MO]<—OJ
5 for j =1 to n do W&’MJQM
Q)

6 | M[j] + max{v; + Mp(M[j—
7 return M[n]; L J

‘i T

Running time? %we Q>
Olokeyn). The mest uncperamn A i he pre- pawsling

30

WIS — DP algorithm — how to write a complete solution

1.: clearly define the subproblems, with proper indexing P (S \< S
OPT(j) # maximum value selection from job requests 1,..,]

Edho TRy v OPTlG-3) fen ssudbprddoms AN

2. write the recursive formula:

pP(j)) =max{i:i<jandjobiis compatlble with |} = hig he;t |ndex of a job that doesn’t

overlap with j. M 5 W
5 o
OPT(j) = /‘A-’_\ it j=0 i’
max { v; + OPT(p(7)), OPT(j- 1)} otherwise

s g A«dy‘m%/m) AN I Q
. bottom-up algorithm to compute the optimal solution M

Algorithm 1: WIS(n jobs: s;, f;,v;)

1 Sort jobs by finish time f; < ... < f;

2 Compute p(1),p(2)...p(n);

3 M < array(n+1)// empty array fo size n+1, indexed O...n
a4 MI[0] + 0;

5 for j =1 ton do

6 | M[j] < max{v; + Mp(j)}; M[j — 1]};

7 return M [n|;

B -
(4.: use backtracking to find set of jobs in optimal solution

o

31

WIS — DP algorithm (bottom-up/iterative)

Weighted Interval Scheduling: given n jobs, each with start time s;, finish time f; and value
v find the compatible schedule with maximum total value.

OPT(j) = optimal solution for jobs (0),1,2,...,n

0 if j=0
OPT(j)=
(/) {max{ v;+ OPT(p(j), OPT(j-1)} otherwise

Memoization table M:
@ OPT(j), array that contains the max value for jobs 0,1...,j

jm/g&@«& o% C,aﬂm\% INVSTLPVINS VoW,

Algorithm 1: WIS(n jobs: s;, f;,v;) [,\')]\,jq, SOty A‘M\\@Y\ m Wwwgi
\J T

1 Sort jobs by finish time f; < ... < fp;
2 Compute p(1), p(2) ... p(n): y UG
3 M < array(n+1)// empty array fo size n+1, indexed 0...n

4 M[0] < 0;

5 for j =1 ton do

6 | Mj] max{v; +HMlp(5)); M[j — 1]}

7

return M [n|;

WIS — DP algorithm (top-down/recursive)

0 if j=0
OPT(j) =
(/) {max { v;+ OPT(p(j)), OPT(j —1)} otherwise

Memoization table M:

M[j] = OPT(j), array that contains the max value for jobs 0,1...,]

Algorithm 1: WIS(n jobs: s;, f;,v;)
1 Sort jobs by finish time f; < ... < f,;

2 Compute p(1),p(2), ... p(n);

3 M < array(n+1)// Empty array of size n+1, indexed O. 7&\@&}
4 M[0] <~ 0// no jobs selected \D\D’-UD

5 return WI1SCompute(n); Cig M ’E WJ “(‘@\@J
Algorithm 2: WISCompute(j) / / ANW

1 if Mj] is empty then / \

2 | M][j] + max{v; + WISCompute(p(j)) +WISCompute(j —1)};

3 return M|jl;

Finding the set of optimal jobs — backtracking

A dynamic programming algorithm computes the optimal value.

How to find the solution itself?
We can reconstruct it from the table.
* backtrack based on the memoization table without explicitly storing values (by

checking which case was chosen) - o /};p
o X WD%SW WM W’

Algorithm 1: FindSolution(Mﬁ XQQW\ Kj))%'
1 if j == 0 then //
2 return ();

else if v; + M|p(j)] > M|j — 1] then
return {;j} U FindSolution(p(j));
else

return FindSolution(j — 1);

2%%

o A W

Finding the set of optimal jobs — backtracking Qi‘“"u&

19+ QPJF(\\(é >
N if j=0 16—&0(3*(25
OPT(J)_{maX{ v-+OPT(p(j)), OPT(j—l)} otherwise 1S+ Y = '%
—ll----- @ RSN
orT() Y $10 $10 $12 $19 \
PIedecesso. 0 o\ 3 0 1 3(r6) 5 QG(NMAUJH
0 m ~ %w? (=)
2 $3 \ >+ ‘OP_“J(ZJ))
3 $10 3+ 0pt(o)
4 $3 >t o >
5 g$12 4_\\ @(}f(fr\
< : ° $8 time

Minimum Number of Operations - TopHat
-2

Problem: Given an integer n, find the minimum number of operations to get from.0 to n, if

you are only allowed to perform two specific operations: (1.) add 1 (2.) multiply by 2.

example compute 12;
O+1+1+1+1+1+1+1+1+1+1+1+1=12//12 operations
(((0+1)x2)x2)+1+1 +1 +1 =12 // 7 operations

((O+1)+1 +1)x2)x2=12// 5 operations

Question: Suppose OPT(j) is the minimum number of operations required to make the
number . What is the recursive formula for computing OPT(j)? we may assume the base
case OPT(0) =0.

OPT(j—1) if jis odd

A. OPT(j) = {OPT(i12) if j is even C. OPI))= {

OPT(j— 1)+ 1ifjis odd
I + min{OPT(j/2); OPT(j — 1)} if j is even

OPT(j—1) if jis odd
min{OPT(j/2); OPT(j— 1)} if j is even

OPT(j— 1)+ 1 if j is odd

. o D. OPT(j) = {
OPT(jl2)+ 1 if jis even

B. OPT(j) = {

Minimum Number of Operations

Problem: Given an integer n, find the minimum number of operations to get from O
to n, if you are only allowed to perform two specific operations: (1.) add 1 (2.)
multiply by 2.

J@ﬂy\m&m!

Algorithm 1: MinOperations(n)

M < length-(n+1) array;
M10] = 0;
for j =1 ton do
if 7 is odd then
M[j) = M[j — 1] + 1
else if Mj—1]+1< M[j/2] + 1 then
Mlj] = M[j — 1] + 1
else
Mj} = Mlj/2] + 1;
10 return M

© 0 N O Ok W N -

Finding the sequence of operations— backiracking
A dynamic programming algorithm computes the optimal value.

How to find the solution itself?
We can reconstruct it from the table.
* backtrack based on the memoization table without explicitly storing values (by
checking which case was chosen)

Algorithm 1: Findsolution(j, M)
if 7 == 0 then

return () @W\M)(RNU

if j is odd then Roen
return FindSolution(j — 1,M).append(’+1’) M \,@y

else if M[j—1]+1< M|[j/2] +1 then)()O];i;
return FindSolution(j — 1,M).append(’+1’) i 'X}/\J/

else e
return FindSolution(j/2,M).append(’x2’)

® N & Ok W N

12

Subset sum — dynamic programming

Subset Sum problems given a set of n positive integer weights w1, wa, ..., Wy and a
weight limit W. Find the subset of weights S with maximum total weight that doesn’t

exceed W. That is, find Tn Dhins /(MBWMW\ we Save Awe

fmpit 5 oy waghd> + Weighd Jiwil .

5 el MY G hotts s ok sy
l M, "ermoindun u)mgg?/\x QD

DP: OPT(j) =\.the max weight solution among weights wi,wo,...,w;
OPT(j) = max{ ? }

'. o mdgumolie T A
Complications: Nielice, Waat O Mt M@B%/m

* there are no compatibility issues as with overlapping jobs (good)
* once a weight is chosen the available weight limit is decreased. Can we

express this with just a single variable in OPT?

16

Subset sum — dynamic programming — 2-dimensional DP

Subset Sum problem: given a set of n positive integer weights w1, wo, ..., Wy and a
weight limit W. Find the subset of weights S with maximum total weight that doesn’t
exceed W. That is, find

S: max Zw,-SW

SC{w;...w, } es

OPT(j, w) = the max weight solution among weights w1,wp,...,w; with available

weight limit w. @@W
@g; o
OPT(jw) = %PTU —1,w) Xo < y ZU:>O N -
(max{w; + OPT(j — 1w — w;); OPT(i_%,_I\U/)) otherwise W W
e e g M2
W% ' N M

18

Subset sum — 2D memoization table — TopHat

i

0 ifj=0 R w=o
OPT(j,w) =< OPT(j —1,w) if w; > w
|\ max{w; + OPT(j — 1,w —w;); OPT(j —1,w)} otherwise

Input: wq,wo,...,wn and W (assume weights are ints)
Output: OPT(n,W)

Implementation:

Question: What is the size of the memoization table and what is the running time of
the resulting DP algorithm?

A. n2 & O(ns3)
B. W2 & O(W?2)

/ g
C. nW & O(n2W)
SR

D. (n+#1)(W+1) & O(nW

20

Subset sum — 2D DP

i

0
OPT(j,w) = { OPT(j — 1,w)

Input:r\r@wQ,...,V\@‘and W (assume weights are ints)
Output: OPT(n,W)

if =0 &8 WwW=0

ifwj>w

|\ max{w; + OPT(j — 1,w —w;); OPT(j —1,w)} otherwise

Algorithm 1: SubsetSum(wy, ws,...,w,, W)

1 M+ (n+1)x (W +1) table/* 2D array/ matrix
/* set border cases

M|0][*] =0/* set row O to zeros

M|x][0] = 0/* set column O to zeros

for j=1...ndo

for w=1...W do @('&\W)

/* apply recursive formula
M|j]lw] = max{w; + M|j — 1w — w;]; M|j — 1][w]};
7 return M [n][W]

Uk W N

21

Subset sum — 2D DP — backtracking the solution

0 if j=0
OPT(j,w) =< OPT(j —1,w) if w; > w
|\ max{w; + OPT(j — 1,w —w;); OPT(j —1,w)} otherwise

Input: filled memoization table M
Output: set of weights in the optimal solution S
runtime?

Algorithm 1: SubsetSumSolution(M,w = [wq, ... w,]|,W)

1 S+ []|/* set of opt weights */
214 n,) <+ W;
3 while . >0 AND 7 >0
s | if(Mi][5])> i - 1][j))then

/* thhe_case where w; is chosen */
5 S.appen ' Y,
6 141 — 1, 7\&/ % W) i \
7] = 7 — wy; vrg m VY)(\Ju ,
8 else OVW ,J) \-"

/* w; 1s not chosen * /
9 14— 1 — 1;

10 return S

22

Dynamic programming: adding a new variable

Def. OPT(i,w) = max-profit on items 1, ..., i with weight limit w.
Goal. OPT(n, W).

Case 1. OPT(i, w) does not select item 1.
* OPT(i,w) selects bestof {1,2,...,i—1 } using weight limit w.

Case 2. OPT(i,w) selects item i.
* Collect value v;.
* New weight limit = w — w..
* OPT(i,w-w;) selects bestof { 1,2, ...,i-1 } using this new weight limit.

(0 if 1=0
OPT(i,w)=30PT(i-1,w) it w,>w
‘max{ OPT(i-1,w), v,+ OPT(i-1,w—w;)} otherwise

NS I Ak
DeRpd T M Yo < ot T Wﬁ;
oy o B m

25

Knapsack problem example

(0 J7 37 if i=0
OPT(i,w)={0PT(i-1,w) if w,>w

‘max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

——

@ @

OPT(i, w) = max-profit subset of items 1, ..., i with weight limit w.

26

Knapsack problem: running time

Theorem. There exists an algorithm to solve the knapsack problem with » items and
maximum weight Win ©(n W) time and ©(n W) space.
Pf. weights are integers
* Takes O(1) time per table entry. between 1 and W
* There are ®(n W) table entries.
* After computing optimal values, can trace back to find solution:
take itemiin OPTGi,w)if M [i,w] > M[i—1,w]. =

30

Knapsack problem is@ (e, one %Qm% Yo A i

Knapsack is in fact not polynomial in the input size! ~> 4" wlb he amd &

Input: JU% /X/ﬂ‘)@%

2n integers: vi and w;
one additional integer W

How many bits to describe the input?
* W requires log W bits, wi requires O(log W) bits
* overall O(nlog W)

The algorithm would be polynomial in the input size, if the running time was a
polynomial of nand log W
But the running time is O(nW) = O(n 2/°3W)

* Decision version of knapsack problem is NP-complete. [CHAPTER 8 |
* There exists a poly-time algorithm that produces a feasible solution that has
value within 1% of optimum. [SECTION 11.8]

31

DP algorithm — full solution

Here is how you would properly write out the solution to a DP problem: N

>
1. precisely define the subproblem with proper indexing QQ% W@

- (OPT() E or OPT(i,j) = is also possible! (or even more variables)
N—

2. give the recursive formula to compute OPT() and argue about its correctness

- make sure to define everything that needs to be, e.g. p(j) =
- don’t forget about border cases (sometimes you may want to add a dummy index, e.g.
j=0, OPT(0) = 0) W‘W}b »omMeL LAt
3. write the DP algorithm. 7
 bottom-up and recursive are equally good. The asymptotic running time is the same.
* be clear about what values your memoization table holds,
e.g. M[i,jl = OPT(i,j), size of Misn x W
don’t forget initialization steps for border cases
4. write an algorithm that prints the elements (e.g. jobs) in the optimal solution

» sometimes called “back-tracking” the solution

32

Bounded Knapsack problem

As input we are given the weights w; and values v; of each of n items, further we are
given a maximum capacity of W. Suppose there are two identical copies of each

item available. Select a maximum value subset of the items within the capacity limit
W, such that we can take at most two of each item.

S, il on = OPTCL, w)

0 umy
D W™t 4 4 il

2. domon

Bounded Knapsack problem - backtracking

Backtracking the maximum choice over multiple items is tedious.

Instead: keep track of our decisions on the fly:

C = length (n+1)x(W+1) array

C[i][w] = how many copies of i we select for OPT(i,w)

Algorithm 1: BoundedKnapsack(i =1...n: (w;,v;), W)

/* (w;,v;) weight and value of item i, W capacity

M <+ (n+1) x (W +1) array/* DP table

C' <+ (n+1)x (W +1) array/* number of copies

M |0][*] < 0 and M [x][0] < 0;

for : =1 ton do

for w=1to W do

co < M|t — 1][w]/* 0 of item i

c1 =v; + M[i — 1w —w;] if w; <welsecy < —1/x 1 of i
co = 2v; + M[i — 1][w — 2w;] if 2w; < w else cg < —1/* 2 of i
M i]|w] < max{cg, c1, 2 };

Cli][w] < argmaz{cg,c1,c2}/* index of max case

11 return M, C

© 0 N O Ok W N -

ol
o

Bounded Knapsack problem - backtracking

Backtracking the maximum choice over multiple items is tedious.

Instead: keep track of our decisions on the fly:

C = length (n+1)x(W+1) array

C[i][w] = how many copies of i we select for OPT(i,w)

Algorithm 1: BKBacktrack(C, W)

1 sol < empty list;

2 1< nand w <+ W;

3 while : > 0 and w > 0 do

4 sol.add(Cli||w]x item i)/* add0, 1 or 2 of item i
5 14— 1— 1;

6 w < w — Cli][w] - w;;

7 return sol

Bounded Knapsack problem - TopHat

As input we are given the weights w; and values v; of each of n items, further we are given a
maximum capacity of W. Suppose there are #wo m identical copies of each item available.
Select a maximum value subset of the items within the capacity limit W, such that we can

take at most #w0 m of each item.

OPT(i,w) = maximum value within capacity w if we can consider items 1,...,i

What is the recursive formula for OPT(i,w) - excluding boundary cases?

' o+ Canen
A. OPT(i,w) = max U vi+OPTG—1w—j-w)} (MVWQ\UU\JE O\M)

j=0...m
B. OPT(i,w) = max{OPT(i— lw);m-v;+ OPT(i— 1w —m-w,)}
Ty ™ opin o ’rw’an%/
C.OPT(i,w) = max {j-v,+ OPT(i—1,w—w)}

j=0...m Hho w0
G o6ty sk m& M‘*’“’am f

D. OPT(i,w) = max {j-v;,+ OPT(i—jw—w,)}
Jj=0...m

Coin change problem

In a far away country there are four different valued coins, the dream dollar amounts
are $1, $4, $7, $13. In this country people always try to pay with the fewest number
of coins possible. Design a DP algorithm to pay $n with the fewest number of coins.

Sienilan. To Mo pretlian founmdsa i M pussions slde

bonus: the greedy algorithm - pay with the largest denomination while possible -
doesn’t work. However, you’ll probably need to implement it to find the smallest $n
counter example

String matching example — plagiarism

Plagiarism is often not a verbatim copy.

source: https://www.turnitin.com/static/plagiarism-spectrum/ “Find-Replace”
method

SOURCE TEXT STUDENT WORK

A Natural Setting: A History of Exploration and Settlement in A Beautiful Setting in Yosemite
Yosemite Valley
Since its first discovery by non-native people in the mid-19th
Since its first discovery by non-indigenous people in the mid- century Yosemite Valley has held a special, even sacred, hold on
nineteenth century, Yosemite Valley has held a special, even the American psyche because its beauty makes it an incomparable

religious, hold on the American conscience because its beauty valley and one of the grandest of all special temples of Nature.
makes it an incomparable valley and one of the grandest of all While Yosemite holds a special grip on the western mindset,
special temples of Nature. While Yosemite holds a special grip on perceptions about the Valley have evolved over time due to

the western mind, perceptions about the Valley have evolved over changing political movements, migration patterns and

time due to changing politics, migration patterns and environmental environmental issues as man has become more attuned to their
concerns as man has become more attuned to his relationship and relationship and impact on nature.

impact on nature.

Some words, e.g. “the”, “and”, or given the topic of this text “Yosemite”, naturally appear in
both and are not plagiarized. We want to assign some kind of similarity score between the

two texts.

String similarity

Type “Define ocurrance” in Google.
Google will correct your spelling. How does it know which word you wanted to find?
(source: google.com search result)

GCRQIG define occurance X Q
Dictionary
Search for a word Q.
“» OcC-currence
/a8 'karans/
noun
an incident or event.
"vandalism used to be a rare occurrence”
Similar: event incident happening phenomenon affair matter v
. the fact or frequency of something happening.
"the occurrence of cancer increases with age”
Similar: existence instance appearance manifestation v

. the fact of something existing or being found in a place or under a particular set of conditions.
"the occurrence of natural gas fields"

String similarity
Q. How similar are two strings? ocurrance and occurrence.

Which alignment is best depends on relative cost of gap and mismatch penalties
- The cost a of a mismatch and 5 of a gap is part of the input

Onooos = mimalny

6 mismatches, 1 gap %QP 1 mismatch, 1 gap

cost = «- mismatch + J- gap

n C

mismatches aps ?/\BWYY\ - ol amd, 5) whods
0 hes, 3 gap N Ma“w”wm @{f .
Twe /ﬂﬁxm%z:

String similarity — Levenshtein Distance

Edit distance:
* first introduced by Levenshtein (1966)
* number of single character edits (insertion, deletion or substitution) required to
change one string into another.
- sometimes called Levenshtein distance

Longest Common Subsequence: special case, only allows insertions and deletions,
not substitutions

String similarity — Longest Common Subsequence (Substring)

Longest Common Subsequence: given two sequences x = [x1,X2,...,Xn] and
v=[v1,y2,...,ym] find a longest (not consecutive) subsequence common to them both.

- special case of the similarity problem with mismatch penalty = infinite, gap
penalty = 1

application: Genome similarity
* used in computational biology
* algorithm is named after Needleman and Wunsch (1970s)

cgtacgtacgtacgtacgtacgtatcgtacgt
acgtacgtacgtacgtacgtacgtacgtacgt

cgtacgtacgtacgtacgtacgta t cgtacgt
a cgtacgtacgtacgtacgtacgta cgtacgt

Sequence alignment

Problem. Given two strings X = [x1 X2... xm] @and Y = [y1 y2...yn] and costs «a, éfind the
minimum-cost alignment Align(X,Y).
Xoomd Y cam Jrowve Supfound Avrgn
Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered
pairs (a matching) (xi vj), such that
- each character is matched at most once
- there are no two pairs (X, yk) and (x;, yi1), such that x; comes before x; but yk after y;
or vice verse, i.e. there are no crossing pairs

invalid alignment:

X2 X3 X4 X5 X6 X7 X8 .viiiiiiiininnnnn.

1 Y2 Y3 VY4 VY5 Y6 Y7 Y8 ., Yn-2 Yn-1 Yn

1 y2 y3 y4 y5 y6 y7 y8 yn 1

Sequence alignment

Problem. Given two strings X = [x1 X2... xm] @and Y = [y1 y2...yn] and costs «a, éfind the
minimum-cost alignment Align(X,Y).

Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered

pairs (a matching) (xi vj), such that

- each character is matched at most once

- there are no two pairs (X, yk) and (x;, yi1), such that x; comes before x; but yk after y;
or vice verse, i.e. there are no crossing pairs

valid alignment:

Y1 Y2 Y3 VY4 Y5 Ye Y7 VY8 ... Yn-1

10

Sequence alignment

Problem. Given two strings X = [x1 X2... xm] @and Y = [y1 y2...yn] and costs «a, éfind the
minimum-cost alignment Align(X,Y).

Alignment. Given two strings X and Y, their alignment Align(X,Y) is a set of ordered

pairs (a matching) (xi vj), such that

- each character is matched at most once

- there are no two pairs (X, yk) and (x;, yi1), such that x; comes before x; but yk after y;
or vice verse, i.e. there are no crossing pairs

Cost of an alignment: cost(Align(X,Y)) = a- #(mismatch) + J- #(gap)

a,0 are given as input. /A

of unmatched characters in X +
of unmatched charsin Y

11

Question: cost of alignment?

mismatch: a =3
gap: 0=2

Brute-force approach — TopHat

Algorithm: Try all possible valid alignments and return the min-cost

valid alignment:
 each character xi is matched to at most one character yj

* there are no crossing pairs

Question. Guess how many valid alignments there are if X is a string of m, and Y a
string of n characters. (we may assume m <n)

a2 (0= (0) [T =2
M_, ™M

14

Brute-force approach — number of valid alignments

Some facts:
* each character x; in X is aligned to either a character y;or a gap.
* if k characters in X are matched to characters in Y, then the number of matched

characters in Y is also K.

compute number of valid assignments:
count how many ways there are to pick k among X and k among Y. Those are the

characters matched to each other.
 note that the order in which these k are matched is fixed, and hence

unambiguous
if m < n we get:

()= (") - ()-o ()

/N

choose the k characters in X that are choose the k characters in Y that are
assigned to characters in Y(as opposed assigned to characters in X

to gaps)

16

tricks with binomial coefficients

Good to know:

(6" - (")

Computation on previous slide:

> ()= ()0)= ()=

