CS330 Introduction to Analysis of Algorithms

Summer 2023
by Tiago Januario

Last day!!!

Please fill in the course evaluation!
bu.campuslabs.com/courseeval

Rate your Professor!
https://www.ratemyprofessors.com/professor/2880902
Info about final exam

date: Tuesday, June 29, 10-12 pm in CAS 224

format: similar to midterm and practice final
content:
 • cumulative over the entire semester, includes lecture, lab, hw
 • everything that we covered, including proofs

tools:
 • closed book
 • 2 cheat sheets: one from midterm, one for the second half
 • double sided, hand-written. Can’t use typed pseudocode
 • no electronics

must be handed back at the end of the exam

No collaboration!!!!
How to study

• Know the definitions
 - be able to identify them on examples
• Trace all algorithms on specific input
• Be able to compute their running times
 - be able to put running times in order of growth
• Review lab problems & problems from lecture
 - make a list of tricks we used
• Review format of solution
 - DP and network flow applications
• Review proofs
Divide and Conquer

- Break down problem into smaller instances
- Find solution to large instance by first recursively solving the smaller ones
 - instance means solving the same problem with a different (here shorter) input

- Note that instances of the same size have different inputs
 - e.g. in mergeSort we make recursive calls on arrays of length $n/2$ but each $n/2$ array holds different numbers

- We use recurrence equations to compute the running time (= number of computational steps) of the algorithm
- Goal is to find a closed-form math formula
 - in general we consider one mathematical operation or one read/write operation a computational step. The exception being the lecture we spent on integer multiplication
Divide and Conquer - write recurrences

What is the recurrence corresponding to the following algorithm description?

Some algorithm takes as input an array of length n. It divides the data into 5 parts, and makes recursive calls to 4 of those parts. It combines the results in O(n) steps.

A. \(T(n) = 4T\left(\frac{n}{5}\right) + O(n) \)
B. \(T(n) = O\left(n^{\log_4 5}\right) \)
C. \(T(n) = 5T\left(\frac{n}{4}\right) + O(n) \)
D. \(T(n) = 5T\left(\frac{n}{5}\right) + O(1) \)

\[a = 4 \]
\[b = 5 \]

This is not a recurrence

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n) \]

\[T\left(2^{\frac{m}{2}}\right) \]

\[T(n) = 2T(\sqrt{n}) + 1 \Rightarrow T(2^m) = 2T(2^{m/2}) + 1 \]

\[n = 2^m \Rightarrow T(n) = S(m) \Rightarrow S(m) = 2 \cdot S(m/2) + 1 \]
D & C - some common recurrences and rules

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n \log n) \quad \text{- mergeSort} \]

\[T(n) = T\left(\frac{n}{2}\right) + O(1) = O(\log n) \quad \text{- binary search} \]

If the formula is of the form \(T(n) = qT\left(\frac{n}{2}\right) + cn \) where \(q > 2 \)
then we always have \(O\left(n^{\log_2 q}\right) \)

Apply this to \(T(n) = 8T\left(\frac{n}{2}\right) + cn = O(?) \)

A. \(O(\log n) \)
B. \(O(n) \)
C. \(O(n \log n) \)
D. \(O(n^2) \)
E. \(O(n^3) \)

\[O\left(n^{\log_2 8}\right) = O\left(n^3\right) \]
D & C - telescoping method = substitution method

\[\frac{n}{3^k} = 1 \Rightarrow k = \log_3 n \]

\[T(n) = 9T\left(\frac{n}{3}\right) + O(n) = O(n^2) \]

trick: when solving the recurrence use \(cn \) instead of \(O(n) \)

\[T(n) = 9T\left(\frac{n}{3}\right) + cn \]

\[= 9\left(9T\left(\frac{n}{9}\right) + cn\right) + cn = 9^2 T\left(\frac{n}{3^2}\right) + 9\cdot \frac{cn}{3} + cn \]

\[= 9^3 T\left(\frac{n}{3^3}\right) + 9^2 \cdot \frac{cn}{3^2} + 9 \cdot \frac{cn}{3} + 9^0 \cdot cn \]

\[= 9^k \cdot T\left(\frac{n}{3^k}\right) + \sum_{i=0}^{K-1} \frac{2^i \cdot cn}{3^i} = 9^k T\left(\frac{n}{3^k}\right) + cn \sum_{i=0}^{K-1} \frac{3^i \cdot \frac{2^i \cdot cn}{3^i}}{3^i} \]

\[= 3^{2 \log_3 n} + cn \left(\frac{3^k - 1}{3-1}\right) = 3^{\log_3 n^2} + cn \left(\frac{n-1}{2}\right) = n^2 + cn(n-1) \]

Formula for geometric progression \(\left(\frac{3^k}{3-1}\right) = 3^k \)
D & C - recurrence tree method

\[T(n) = 4T\left(\frac{n}{2}\right) + O(n) \]

\[T(n) = 4^k T(1) + \sum_{i=0}^{k-1} 2^i n = 4 \log_2 n + n\left(\frac{2^k - 1}{2 - 1}\right) \]

\[= n^2 + n(n-1) = \Theta(n^2) \]

\[S = a + ar + ar^2 + \ldots + ar^{k-1} = \frac{a(r^k - 1)}{r - 1} \]
DP - structure, layout of solution

Subproblems correspond to the solution on a smaller input
- “smaller input” is a fixed subset of elements
- may be described by 1, 2, … variables
- always make clear what a solution to a subproblem means

Recursive formula
- find the “last” choice (corresponding to the highest index) to get the opt solution
- may be a max/min over multiple cases
- recursive call is always made to (at least one) lower index

Implementation
- use memoization table
- running time: (size of table)* (operations to compute one entry of the table)

backtrack solution:
- find the actual elements in min/max solution
- find what choice was made, e.g. what was the min/max
- recurse on the index corresponding to the choice
- can store info on choice in an extra table while computing opt, not required
knapsack with infinite resources

We are given the info on n items, each with value v_i and weight w_i. We are also given a maximum capacity W. We have an infinite supply of each item available.

Decide how many of each item to select to maximize the total value while not exceeding the weight limit W.

$$OPT(i,w) = \max \left\{ OPT(i-1,w); v_i + OPT(i-1,w-w_i) \right\}$$

What is the size of the corresponding DP table?

Select the best recursive formula:

A. $OPT(i, w) = \max \{ OPT(i - 1, w); v_i + OPT(i - 1, w - w_i) \}$
B. $OPT(i, w) = \max \{ OPT(i - 1, w); v_i + OPT(i, w - w_i) \}$
C. $OPT(i, w) = \max \{ OPT(i - 1), v_i + OPT(i) \}$
Flow

Input: weighted directed graph G, source s, sink t, capacity on each edge c(u,v)

Flow: a value \(f(u,v) \) assigned to each edge

- flow constraints
 \[
 0 \leq f(e) \leq c(e)
 \]
 - when updating an existing flow we have to make sure that the constraints are still met
 - a flow is given as an input, if we know its value on the edges

Value of flow: total flow from s to t

- max flow: maximum achievable
 - the value of the max flow is a unique number
 - the amount of flow on each edge in a max flow is not unique

FF: be comfortable running it

Residual graph:
- be able to draw it, when you are given the flow on each edge (may not be max)
Flow - MFMC

Value of flow: total flow from s to t
 • max flow: maximum achievable

st-cut: subset of nodes connected to s that doesn’t contain t
edges in cut: edges directed from nodes in A to V-A

capacity of cut: total capacity of edges in the cut
 • not flow values
 • min-cut: the cut with the minimum sum
 • not always unique
 • be able to find min-cut given the max flow
 • be able to verify whether a flow is maximum

MFMC: The value of the max flow = capacity of the min-cut
 • intuition: edges in the cut are a bottleneck to the max flow
How many min-cuts do you see in this graph?

A. 1
B. 2
C. 3
D. 4

$\text{flow} = 47$
Flow apps as reductions

examples:
• max bipartite matching
• unique paths
• advertising
• word problems

Solution structure:
1. define corresponding flow graph
 1. specify nodes, edges, capacities
2. find flow
3. relate that back to solution of original problem
Asymptotic growth

big-Oh:
intuition: $f(n) = O(g(n))$ if g is an “upper bound” on f
 - always look for best upper bound
 - combinatoric def: $f(n) = O(g(n))$ iff there exist constant $c>1$ and n_0, such that for every $n > n_0$, $f(n) \leq cg(n)$ is true.
 - analytic def: $f(n) = O(g(n))$ iff $\limsup_{n \to \infty} \frac{f(n)}{g(n)} = 0$

- the two definitions are equivalent

Write the definition for Ω and Θ
 - Know the rules for ordering functions (see relevant slide)
Analysis of an iterative algorithm

Algorithm 1: arrayIter\((A, B)\)

```plaintext
/* A, B are arrays of ints */
/* this algorithm is nonsense ;) */
1 n ← len\(A\);
2 m ← len\(B\);
3 for \(i = 1\) to \(n\) do
4    for \(j = 1\) to \(m\) do
5      \(A[i] = A[i] \times B[j]\);
6 return \(A\)
```

Algorithm 1: arrayIter2\(A\)

```plaintext
/* A are arrays of ints */
/* this algorithm is nonsense ;) */
1 n ← len\(A\);
2 for \(i = 1\) to \(n\) do
3    for \(j = i + 1\) to \(n\) do
5 return \(A\)
```
Analysis of iterative graph algorithms

Algorithm 1: deleteEdge(G)

/* G is the adjacency list if a graph */
1 for u in G do
2 for v in G[u] do
3 if u > v then
4 del G[u][v];
5 return G

Algorithm 1: reverseEdge(G)

/* G is the adjacency list if a graph */
1 for u in G do
2 for v in G[u] do
3 if u > v then
4 del G[u][v];
5 add G[v][u];
6 return G
Graph data structures

Adjacency list:
• implement as hash table of hash tables
• hash table:
 • can be used for (non)numerical indices: H[id]
 • can access index in O(1)
 • notation for nested table: G[u][v], for v in G[u]
• iterate over entire adj. list takes O(n+m)
How would you solve the following using an adjacency list?

Problem: Given a directed graph G, fix some random order of its nodes.
- Delete all back-edges (from higher to lower index) in this graph.
 - What kind of graph is this? How can we find the source nodes?
- Instead of deleting edges, reverse the direction of the back edges (and leave forward edges unchanged). How should we update the adjacency list?
BFS and DFS and applications

Output
• tree/ parent list
• can use to backtrack paths from s
• depends on random choices

BFS:
• find paths with min number of edges
• can use to explore weighted graphs but not to find minimum weighted paths

DFS:
• doesn’t find shortest paths!
• What is it used for?
• connectivity
 • is there a (directed) path between nodes u and v?
 • is the graphs connected

applications:
• connected components
• strong connectedness
• decide whether DAG and topological order
Scheduling and partitioning

greedy algorithm:
• makes choices based on local information, doesn’t look at the global structure.
• Once a decision has been made, it’s never changed.

algorithm:
• need to fix (and state) what order to iterate over elements
• sorting or selection order is part of the running time
• fine to order on the fly, e.g. the way the next edge is selected in Prim’s

proof:
• most often we assume that there is some optimal solution
• we could find it using brute force
• we prove that the output of the greedy algorithm is at least as good as the optimal.
Priority queues

Data structure containing keys and corresponding values <key, value>
• keys are priorities
• we used it in applications where lower key = higher priority

implementation:
• many implementations
• we assume binary min-heap
• running times:
 • insert, update (DECREASE-KEY), EXTRACT-MIN: $O(\log n)$
 • if n elements are stored (edges are $O(m)$!!)
 • PEEK (= read key and value of minimum key): $O(1)$
Dijkstra’s

Find shortest paths in a weighted graph
- negative edge weights are not allowed

minimum path = minimum sum of weights
- in case of unweighted graphs we may assume that the edge weights are one.
 Then number of edges = weight of paths

uses PQ for efficiency