
Program Analysis for Adaptivity Analysis

Contents

1 Labeled While Language 2
1.1 Labeled Language . 2
1.2 Trace-based Operational Semantics for Labeled While Language 3

2 Event and Trace 6
2.1 Event . 6
2.2 Trace . 6

3 Dependency and Adapativity 8
3.1 Semantics-based Dependency Graph . 8
3.2 May-Dependency . 9
3.3 Trace-based Adaptivity . 11
3.4 The Walk Through Example . 11

4 The Adaptivity Analysis Algorithm - AdaptFun 13
4.1 A guide to AdaptFun . 13
4.2 Vertex and Query Annotation Estimations . 14
4.3 Edge and Weight Estimation . 14

4.3.1 Abstract Transition Graph . 14
4.3.2 Edge Estimation . 19
4.3.3 Weight Estimation . 22

4.4 Graph Construction . 25
4.5 Adaptivity Upper Bound Computation . 26

5 Examples and Experimental Results 32
5.1 Examples . 32
5.2 Implementation Results . 35
5.3 More Discussions on The Evaluated Examples . 37

5.3.1 More on The Two Rounds Adaptive Data Analysis 37
5.3.2 mRComplete . 38
5.3.3 lRGD . 38

Appendices 40

1

A Proofs of Lemmas for the Language Model 40
A.1 Proof of Lemma 1.1 . 40
A.2 Proof of Lemma 2.1 . 40
A.3 Proof of Lemma 2.0.1 . 41

B Proof of Theorem 4.2 41

C Soundness of Edge Estimation 45
C.1 Main Theorem . 45
C.2 Soundness of flowsTo w.r.t. the Event . 46
C.3 Inversion Lemmas and Helper Lemmas . 48

D Soundness of The Weight Estimation 60
D.1 Proof of Lemma 4.1 . 60
D.2 Proof of Lemma 4.2 . 61
D.3 Soundness of Weight Estimation, Theorem 4.1 . 61

E Soundness of Adaptivity Computation Algorithm 64

F Conditional Completeness of Adaptivity Computation Algorithm 67

G The Detail Evaluation Table 69

H The Programs and Codes of The Evaluated Examples in Table 2 69
H.1 The Programs for Examples from line:6 - 15 in Table.2 69
H.2 The Programs for Examples from line:16 - 20 in Table.2 73

1 Labeled While Language

1.1 Labeled Language

Arithmetic Operators ⊕a ::= + | − | × | ÷ | max | min
Boolean Operators ⊕b ::= ∨ | ∧
Relational Operators ∼ ::= < | ≤ | ==
Label l ∈ N∪ {in,ex}
Arithmetic Expression a ::= n ∈N∞ | x | a ⊕a a | log a | sign a
Boolean Expression b ::= true | false | ¬b | b ⊕b b | a ∼ a
Expression e ::= v | a | b | [e, . . . ,e]
Value v ::= n | true | false | [] | [v, . . . , v]
Query Expression ψ ::= α | a | ψ⊕a ψ | χ[a]
Query Value α ::= n | χ[n] | α⊕a α | n ⊕a χ[n] | χ[n]⊕a n
Labeled Command c ::= [x ← e]l | [x ← query(ψ)]l | while [b]l do c

| c;c | if ([b]l ,c,c) | [skip]l

Event ε ::= (x, l , v,•) | (x, l , v,α) Assignment Event
| (b, l , v,•) Testing Event

2

We use following notations to represent the set of corresponding terms:

VAR : Set of Variables
VAL : Set of Values
QVAL : Set of Query Values
C : Set of Commands
E : Set of Events
Easn : Set of Assignment Events
Etest : Set of Testing Events
L : Set of Labels
VAL : Set of Labeled Variables
DB : Set of Databases
T : Set of Traces
QD : Domain of Query Results

Environment ρ :T→VAR→VAL∪ {⊥}

ρ(τ::(x, l , v,•))x , v ρ(τ::(y, l , v,•))x , ρ(τ)x, y 6= x ρ(τ::(b, l , v,•))x , ρ(τ)x
ρ(τ::(x, l , v,α))x , v ρ(τ::(y, l , v,α))x , ρ(τ)x, y 6= x ρ([])x ,⊥

1.2 Trace-based Operational Semantics for Labeled While Language

〈τ, a〉 ⇓a v : Trace × Arithmetic Expr ⇒ Arithmetic Value

〈τ,n〉 ⇓a n

ρ(τ)x = v

〈τ, x〉 ⇓a v

〈τ, a1〉 ⇓a v1 〈τ, a2〉 ⇓a v2 v1 ⊕a v2 = v

〈τ, a1 ⊕a a2〉 ⇓a v

〈τ, a〉 ⇓a v ′ log v ′ = v

〈τ, log a〉 ⇓a v

〈τ, a〉 ⇓a v ′ sign v ′ = v

〈τ, sign a〉 ⇓a v

〈τ,b〉 ⇓b v : Trace × Boolean Expr ⇒ Boolean Value

〈τ,false〉 ⇓b false 〈τ,true〉 ⇓b true

〈τ,b〉 ⇓b v ′ ¬v ′ = v

〈τ,¬b〉 ⇓b v

〈τ,b1〉 ⇓b v1 〈τ,b2〉 ⇓b v2 v1 ⊕b v2 = v

〈τ,b1 ⊕b b2〉 ⇓b v

〈τ, a1〉 ⇓a v1 〈τ, a2〉 ⇓a v2 v1 ∼ v2 = v

〈τ, a1 ∼ a2〉 ⇓b v

〈τ,e〉 ⇓e v : Trace × Expression ⇒ Value

〈τ, a〉 ⇓a v

〈τ, a〉 ⇓e v

〈τ,b〉 ⇓b v

〈τ,b〉 ⇓e v

〈τ,e1〉 ⇓e v1 · · · 〈τ,en〉 ⇓e vn

〈τ, [e1, · · · ,en]〉 ⇓e [v1, · · · , vn] 〈τ, v〉 ⇓e v

〈τ,ψ〉 ⇓q α : Trace × Query Expr ⇒ Query Value

〈τ, a〉 ⇓a n

〈τ, a〉 ⇓q n

〈τ,ψ1〉 ⇓q α1 〈τ,ψ2〉 ⇓q α2

〈τ,ψ1 ⊕a ψ2〉 ⇓q α1 ⊕a α2

〈τ, a〉 ⇓a n

〈τ,χ[a]〉 ⇓q χ[n] 〈τ,α〉 ⇓q α

3

Command × Trace−→Command × Trace 〈c,τ〉 −→ 〈c ′,τ′〉

〈[skip]l ,τ〉 −→ 〈[skip]l ,τ〉
skip

ε= (x, l , v,•)

〈[x ← a]l ,τ〉 −→ 〈[skip]l ,τ::ε〉
assn

τ,ψ ⇓q α query(α) = v ε= (x, l , v,α)

〈[x ← query(ψ)]l ,τ〉 −→ 〈[skip]l ,τ::ε〉
query

τ,b ⇓b true ε= (b, l ,true,•)

〈 while [b]l do c,τ〉 −→ 〈c; while [b]l do c),τ::ε〉
while-t

τ,b ⇓b false ε= (b, l ,false,•)

〈 while [b]l , do c,τ〉 −→ 〈[skip]l ,τ::ε〉
while-f

〈c1,τ〉 −→ 〈c ′1,τ′〉
〈c1;c2,τ〉 −→ 〈c ′1;c2,τ′〉 seq1

〈c2,τ〉 −→ 〈c ′2,τ′〉
〈[skip]l ;c2,τ〉 −→ 〈c ′2,τ′〉

seq2
τ,b ⇓b true ε= (b, l ,true,•)

〈 if ([b]l ,c1,c2),τ〉 −→ 〈c1,τ::ε〉
if-t

τ,b ⇓b false ε= (b, l ,false,•)

〈 if ([b]l ,c1,c2),τ〉 −→ 〈c2,τ::ε〉
if-f

Figure 1: Trace-based Operational Semantics for Language.

The trace based operational semantics rules are defined in Figure 1.
The labeled variables and assigned variables are set of variables annotated by a label. We use LV

represents the universe of all the labeled variables and AVc ∈P(VAR×N) ⊂LV and LVc ∈P(VAR×
L) ⊆ LV, represents the set of assigned variables and labeled variables for a labeled command c,
defined in Definition 1 and 2.
FV : e →P(VAR), computes the set of free variables in an expression. To be precise, FV (a), FV (b)
and FV (ψ) represent the set of free variables in arithmetic expression a, boolean expression b and
query expression ψ respectively. Labeled variables in c is the set of assigned variables and all the free
variables showing up in c with a default label i n. The free variables showing up in c, which aren’t
defined before be used, are actually the input variables of this program.

Definition 1 (Assigned Variables (AV :C→P(VAR×N))).

AVc ,

{xl } c = [x ← e]l

{xl } c = [x ← query (ψ)]l

AVc1 ∪AVc2 c = c1;c2

AVc ∪AVc2 c = if ([b]l ,c1,c2)
AVc ′ c = while ([b]l ,c ′)

4

Definition 2 (labelled Variables LV).

LVc ,

{xl }∪FV (e)in c = [x ← e]l

{xl }∪FV (ψ)in c = [x ← query (ψ)]l

LVc1 ∪LVc2 c = c1;c2

LVc ∪LVc2 ∪FV (b)in c = if ([b]l ,c1,c2)
LVc ′ ∪FV (b)in c = while ([b]l ,c ′)

We also defined the set of query variables for a program c, it is the set of variables set to the result
of a query in the program formally in Definition 3.

Definition 3 (Query Variables (QV : C→P(LV))). Given a program c, its query variables QV(c) is
the set of variables set to the result of a query in the program. It is defined as follows:

QV(c),

{} c = [x ← e]l

{xl } c = [x ← query (ψ)]l

QV(c1)∪QV(c2) c = c1;c2

QV(c1)∪QV(c2) c = if ([b]l ,c1,c2)
QV(c ′) c = while ([b]l ,c ′)

It is easy to see that a program c’s query variables is a subset of its labeled variables, QV(c) ⊆ LV(c).
Every labeled variable in a program is unique, formally as follows with proof in Appendix A.1.

Lemma 1.1 (Uniqueness of the Labeled Variables). For every program c ∈C and every two labeled
variables such that xi , y j ∈ LV(c), then xi 6= y j .

∀c ∈C, xi , y j ∈L . xi , y j ∈ LV(c) =⇒ xi 6= y j .

5

2 Event and Trace

2.1 Event

Event projection operators πi projects the i th element from an event:
πi :E→VAR∪Boolean Expression∪N∪VAL∪QVAL

Free Variables: FV : e →P(VAR), the set of free variables in an expression.
FV (ψ) is the set of free variables in the query expression ψ.

Definition 4 (Equivalence of Query Expression). Two query expressions ψ1, ψ2 are equivalent, denoted
as ψ1 =q ψ2, if and only if

∀τ ∈T . ∃α1,α2 ∈QVAL . (〈τ,ψ1〉 ⇓q α1 ∧〈τ,ψ2〉 ⇓q α2)
∧(∀D ∈DB,r ∈ D . ∃v ∈VAL . 〈τ,α1[r /χ]〉 ⇓a v ∧〈τ,α2[r /χ]〉 ⇓a v)

.

where r ∈ D is a record in the database domain D. As usual, we will denote by ψ1 6=q ψ2 the negation
of the equivalence.

Definition 5 (Event Equivalence). Two events ε1,ε2 ∈E are equivalent, denoted as ε1 = ε2 if and only
if:

π1(ε1) =π1(ε2)∧π2(ε1) =π2(ε2)∧π3(ε1) =π3(ε2)∧π4(ε1) =q π4(ε2)

As usual, we will denote by ε1 6= ε2 the negation of the equivalence.

2.2 Trace

Definition 6 (Trace Concatenation, ++ :T→T→T). Given two traces τ1,τ2 ∈T, the trace concatena-
tion operator ++ is defined as:

τ1++τ2,
{
τ1 τ2 = []
(τ1++τ′2) :: ε τ2 = τ′2 :: ε

Definition 7. (An Event Belongs to A Trace) An event ε ∈E belongs to a trace τ, i.e., ε ∈ τ are defined
as follows:

ε ∈ τ,

true τ= τ′ :: ε′∧ε= ε′

ε ∈ τ′ τ= τ′ :: ε′∧ε 6= ε′

false τ= []
(1)

As usual, we denote by ε ∉ τ that the event ε doesn’t belong to the trace τ.

We introduce a counting operator cnt :T→N→N whose behavior is defined as follows,

cnt(τ :: (x, l , v,•), l), cnt(τ, l)+1 cnt(τ :: (b, l , v,•), l), cnt(τ, l)+1
cnt(τ :: (x, l , v,α), l), cnt(τ, l)+1 cnt(τ :: (x, l ′, v,•), l), cnt(τ, l), l ′ 6= l
cnt(τ :: (b, l ′, v,•), l), cnt(τ, l), l ′ 6= l cnt(τ :: (x, l ′, v,α), l), cnt(τ, l), l ′ 6= l
cnt([], l), 0

We introduce an operator ι : T→VAR→L∪ {⊥}, which takes a trace and a variable and returns the
label of the latest assignment event which assigns value to that variable. Its behavior is defined as
follows,

ι(τ :: (x, l ,_,_))x , l ι(τ :: (y, l ,_,_))x , ι(τ)x, y 6= x ι(τ :: (b, l , v,•))x , ι(τ)x ι([])x ,⊥

6

The operator TL :T→P(L) gives the set of labels in every event belonging to a trace, whoes behavior
is defined as follows,

TL(τ :: (_, l ,_,_)), {l }∪TL(τ) TL([]), {}

If we observe the operational semantics rules, we can find that no rule will shrink the trace. So we
have the Lemma 2.1 with proof in Appendix A.2, specifically the trace has the property that its length
never decreases during the program execution.

Lemma 2.1 (Trace Non-Decreasing). For every program c ∈ C and traces τ,τ′ ∈ T, if 〈c,τ〉 →∗

〈skip,τ′〉, then there exists a trace τ′′ ∈T with τ++τ′′ = τ′

∀τ,τ′ ∈T,c . 〈c,τ〉→∗ 〈skip,τ′〉 =⇒ ∃τ′′ ∈T . τ++τ′′ = τ′

Since the equivalence over two events is defined over the query value equivalence, when there is
an event belonging to a trace, if this event is a query assignment event, it is possible that the event
showing up in this trace has a different form of query value, but they are equivalent by Definition 4. So
we have the following Corollary 2.0.1 with proof in Appendix A.3.

Corollary 2.0.1. For every event and a trace τ ∈T, if ε ∈ τ, then there exist another event ε′ ∈E and
traces τ1,τ2 ∈T such that τ1++[ε′]++τ2 = τ with ε and ε′ equivalent but may differ in their query value.

∀ε ∈E,τ ∈T . ε ∈ τ =⇒ ∃τ1,τ2 ∈T,ε′ ∈E . (ε ∈ ε′)∧τ1++[ε′]++τ2 = τ

7

3 Dependency and Adapativity

In this section, we formally present the definition of adaptivity of a program, which is the length of the
’longest’ walk with the most queries involved in the semantics-based dependency graph of this program.
We first present the construction of the semantics-based dependency graph before the introduction of
the formal definition of adaptivity.

3.1 Semantics-based Dependency Graph

The semantics-based dependency graph is formally defined in Definition 8. For a program c, there are
some notations used in the definition. The labeled variables of c, LV(c) ⊆LV contains all the variables
in c’s assignment commands, with the command labels as superscripts. The set of query-associated
variables (in query request assignments), QV(c) ⊆ LV(c) contains all labeled variables in c’s query
requests. The set of initial traces of c, T0(c) ⊆ T contains all possible initial trace of c. Each initial
trace, τ0 ∈T0(c) contains the initial values of all input variables of c. For instance, the initial trace of
twoRounds(k) example contains the initial value of the input variable k.

Definition 8 (Semantics-based Dependency Graph). Given a program c, its semantics-based depen-
dency graph Gtrace(c) = (Vtrace(c),Etrace(c),Wtrace(c),Qtrace(c)) is defined as follows,

Vertices Vtrace(c) := {
x l

∣∣ x l ∈ LV(c)
}

Directed Edges Etrace(c) := {
(xi , y j)

∣∣ xi , y j ∈ LV(c)∧DEPvar(xi , y j ,c)
}

Weights Wtrace(c) := {(x l , w) | w :T0(c) →N∧x l ∈ LV(c)
∧∀τ0 ∈T0(c),τ′ ∈T . 〈c,τ0〉→∗ 〈skip,τ0++τ′〉∧w(τ0) = cnt(τ′, l)}

Query Annotations Qtrace(c) := {
(x l ,n)

∣∣ x l ∈ LV(c)∧n = 1 ⇔ x l ∈QV(c)∧n = 0 ⇔ x l ∉QV(c)
} ,

where ++ :T→T→T is the trace concatenation operator, which combines two traces, and cnt :T→
N→ N is the counting operator, which counts the occurrence of of a labeled variable in the trace.
All the definition details are in the appendix. A semantics-based dependency graph Gtrace(c) =
(Vtrace(c),Etrace(c),Wtrace(c),Qtrace(c)) is well-formed if and only if {x l | (x l , w) ∈ Wtrace(c)} =
Vtrace(c).

There are four components in this graph.

1. The vertices Vtrace(c) of a program c are all its labeled variables, LV(c) which are statically
collected.

2. Qtrace(c) contains the query annotation for every vertex x l ∈ Vtrace(c). It indicates whether x l

comes from a query request (1) or not (0) by checking if the labeled variable x l of the vertex is
in QV(c).

3. Edges in Etrace(c) are built from the DEPvar(xi , y j ,c) relation between two labeled variables.
This is the key definition in order to formalize the intuitive may-dependency relation between
queries and the adaptivity. We present this formalization detail in Section 3.2 below.

4. The weight function in Wtrace(c) for each vertex, w :T→N maps from a starting trace τ0 ∈T0(c)
to a natural number. For each vertex x l , it tracks its visiting times (i.e., the evaluation times
of the command with the label l) when the program c is evaluated from the initial trace τ0

into skip, 〈c,τ0〉 →∗ 〈skip,τ0++τ′〉. The visiting times is computed by the counter operator
cnt(τ′, l) by counting the occurrence of the label l in τ′. As an instance, in the semantics-
based dependency graph of twoRounds in Figure 2(b), the weight, wk of the vertex x3 is a

8

function of type T0(twoRound(k)) →N. Given input τ0, we execute the program under τ0 as
〈twoRound(k),τ0〉→∗ 〈skip,τ0++τ′〉. Then wk (τ0) outputs the occurrence time of the label 3 in
τ′.

The main novelty of the semantics-based dependency graph is the combination of the quantitative and
dependency information. It can tell both the dependency between queries via the directed edge, and the
times they depend on each other via the weight.

3.2 May-Dependency

This section formalizes the may-dependency relation between queries and introduces the variable
may-dependency definition.

There are two possible situations that a query will be “influenced” by previous queries’ results,
where either the query request is changed when the results of previous queries are changed (data
dependency), or the query request is disappeared when the results of previous queries are changed
(control dependency). In this sense, our formal dependency definition considers both the two cases as
follows,

1. One query may depend on a previous query if and only if a change of the value returned to the
previous query request may also change this query request.

2. One query may depend on a previous query if and only if a change of the value returned to the
previous query request may also change the appearance of this query quest.

The first case captures the data dependency. For instance, in a simple program c1 = [x ← query(χ[2])
]1; [y ← query(χ[3]+x)]2, we think query(χ[3]+x) (variable y2) may depend on the query query(χ[2]))
(variable x1), because the equipped function of the former χ[3]+ x may depend on the data stored
in x assigned with the result of query(χ[2])). From our perspective, query(χ[1]) is different from
query(χ[2])).
The second case captures the control dependency. For instance, in the program c2 = [x ← query(χ[1])
]1; if ([x > 2]2, [y ← query(χ[2])]3, [skip]4), we think the query query(χ[2]) (or the labeled variable
y3) may depend on the query query(χ[1]) (via the labeled variable x1).

Since both of the two “influences” are passing through labeled variables, we choose to formally
define the may-dependency relation over all labeled variables, and then recover the query requests from
query-associated variables, QV(c). It relies on the formal observation of the “influence” via events in
Definition 9 and the may-dependency between events in Definition 10.

Definition 9 (Events Differ in Value (Diff)). Two events ε1,ε2 ∈E differ in their value, or query value,
denoted as Diff(ε1,ε2), if and only if:

π1(ε1) =π1(ε2)∧π2(ε1) =π2(ε2) (2a)
∧ (

(π3(ε1) 6=π3(ε2)∧π4(ε1) =π4(ε2) = •)∨ (π4(ε1) 6= •∧π4(ε2) 6= •∧π4(ε1) 6=q π4(ε2))
)

(2b)

where ψ1 =q ψ2 denotes the semantics equivalence between query values, and πi projects the i -th
element from the quadruple of an event.

π1(ε1) = π1(ε2)∧π2(ε1) = π2(ε2) at Eq.2(a) requires that ε1 and ε2 have the same variable name
and label. This guarantees that ε1 and ε2 are generated from the same labeled command. In Eq.2(b),
two kinds of comparisons between the third and fourth element are for the non-query assignment
and query request separately. For events generated from the non-query assignments (via checking

9

π4(ε1) =q π4(ε2) = •), we only compare their assigned values through π3(ε1) 6= π3(ε2). But for these
from query requests (via checking π4(ε1) 6= •∧π4(ε2) 6= •), we are comparing their query expressions
by π4(ε1) 6=q π4(ε2) rather than the assigned value computed from the unknown database server. This
matches the intuitive data dependency between queries, where one query is influenced by others as
long as the query request is changed.

Below is the event may-dependency between events based on formally observing their differences
via Diff.

Definition 10 (Event May-Dependency). An event ε2 is in the event may-dependency relation with
an assignment event ε1 ∈ Easn in a program c with a hidden database D and a witness trace τ ∈ T,
DEPe(ε1,ε2, [ε1]++τ++[ε2],c,D) if and only if

∃τ0,τ1,τ′ ∈T,ε′1 ∈Easn,c1,c2 ∈C . Diff(ε1,ε′1)∧ (3a)

(∃ε′2 ∈E .

 〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ++[ε2]〉∧ 〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[ε′2]〉∧
Diff(ε2,ε′2)∧cnt(τ,π2(ε2)) = cnt(τ′,π2(ε′2))

 (3b)

∨

∃τ3,τ′3 ∈T,εb ∈Etest .

〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ++[εb]++τ3〉
∧〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[(¬εb)]++τ′3〉
∧TL(τ3)∩TL(τ′3) =;∧cnt(τ′,π2(εb)) = cnt(τ,π2(εb))∧ε2 ∈ τ3 ∧ε2 6∈ τ′3

), (3c)

where TL(τ) ⊆L is the set of the labels in all the events from trace τ and ε2 ∈ τ3 or ε2 ∉ τ3 denotes
that ε2 belongs to τ3 or not.

The first line in Eq. 3(a) requires that ε1 comes from an assignment command and then modifies its
assigned value via Diff(ε1,ε′1).

Then, the following two parts in Eq 3(b) and (c) capture the intuitive value dependency and control
dependency respectively. Both parts execute the program two times w.r.t. the different values in ε1 (as
line:1 in Eq 3(b) and line:2 in Eq 3(c)) and ε′1 (as line:2 in Eq 3(b) and line:3 in Eq 3(c)), but observe
the difference in the newly generated traces in different ways (via 3rd line in Eq 3(b) and 4th line in
Eq 3(c)). This idea is similar to the dependency definition from [1].

In Eq 3(b) line:2, if the newly generated trace, τ′++[ε′2] still contains ε2 as ε′2, we check the
difference on their value in line:3. If they only differ in their assigned values, i.e., Diff(ε2,ε′2) and
they are in the same loop iteration (via cnt(τ,π2(ε2)) = cnt(τ′,π2(ε′2))), then we say there is a value
may-dependency relation between ε1 and ε2.

The Eq 3(c) captures the control dependency through observing the disappearance ε2 from newly
generated traces, τ′++[(¬εb)]++τ′3 in the second execution (line:3). ε2 ∈ τ3 ∧ ε2 6∈ τ′3 in Eq 3(c) line:4
specifies this disappearance. cnt(τ′,π2(εb)) = cnt(τ,π2(εb)) is used to make sure the two executions
are in the same loop iteration as well. Different from Eq 3(b) line:3, we use a testing event, εb

here because cnt(τ,π2(ε2)) = cnt(τ′,π2(ε′2)) cannot guarantee the disappearance if there are nested
loops. This is correct because the control dependency can only be passed through the guard of if or
while command, and this guard must be evaluated into two different values (εb and ¬εb) in the two
executions.

Then Considering all the assignment events newly generated during a program’s executions, as
long as there is one pair of events satisfying the event may-dependency, we say that the two labeled
variables in the two assignment events satisfy the variable may-dependency relation below.

10

Definition 11 (Variable May-Dependency). A variable x l2
2 ∈ LV(c) is in the variable may-dependency

relation with another variable x l1
1 ∈ LV(c) in a program c, denoted as DEPvar(x l1

1 , x l2
2 ,c), if and only if.

∃ε1,ε2 ∈Easn,τ ∈T,D ∈DB . π1(ε1)π2(ε1) = x l1
1 ∧π1(ε2)π2(ε2) = x l2

2 ∧DEPe(ε1,ε2,τ,c,D)

From the definition, a labeled assigned variables x l2
2 may depend on another labeled assigned

variable x l1
1 in a program c under the hidden database D, as long as there exist two assignment events

ε1 (for x l1
1) and ε2 for x l2

2 satisfy the event may-dependency relation under a witness trace τ.

3.3 Trace-based Adaptivity

Given a program c’s semantics-based dependency graph Gtrace(c), we define adaptivity with respect to
an initial trace τ0 ∈T0(c) by the finite walk in the graph, which has the most query requests along the
walk. We show the definition of a finite walk as follows.

Definition 12 (Finite Walk (k)). Given the semantics-based dependency graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
of a program c, a finite walk k in Gtrace(c) is a function k. Given an input initial trace τ0 ∈ T0(c),
k(τ0) is a sequence of edges (e1 . . .en−1) for which there is a sequence of vertices (v1, . . . , vn) such that:

• ei = (vi , vi+1) ∈ Etrace for every 1 ≤ i < n.

• every vi ∈ Vtrace and (vi , wi) ∈ Wtrace, vi appears in (v1, . . . , vn) at most w(τ0) times.

The length of k(τ0) is the number of vertices in its vertices sequence, i.e., len(k)(τ0) = n.

WK(Gtrace(c)) is the set of all the finite walks k in Gtrace(c), and kv1→v2 ∈WK(Gtrace(c)) denotes
the walk from vertex v1 to v2.

Because the adaptivity are intuitively describing the dependency between queries, so we calculate
a special “length”, the query length of a walk by counting only the vertices corresponding to queries.
This is formally defined below.

Definition 13 (Query Length of the Finite Walk(lenq)). Given the semantics-based dependency graph
Gtrace(c) of a program c, and a finite walk k ∈WK(Gtrace(c)). The query length of k, lenq(k) is a
function T0(c) →N, such that given an input initial trace τ0, lenq(k)(τ0) is the number of vertices
which correspond to query variables in the vertex sequence, (v1, . . . , vn) as follows,

lenq(k)(τ0) = |(v | v ∈ (v1, . . . , vn)∧Q(v) = 1
)|.

Then the definition of adaptivity is presented in Definition 14 below.

Definition 14 (Adaptivity of a Program). Given a program c, its adaptivity A(c) is function A(c) :T→N

such that for an initial trace τ0 ∈T0(c),

A(c)(τ0) = max
{
lenq(k)(τ0) | k ∈WK(Gtrace(c))

}
3.4 The Walk Through Example

11

towRounds(k),
[a ← 0]0;

[
j ← k

]1;

while
[

j > 0
]2

do([
x ← query(χ[j] ·χ[k])

]3;[
j ← j −1

]4;

[a ← x +a]5
)
;[

l ← query(χ[k]∗a)
]6

(a)

a0 : λτ0.1
0

x3 : λτ0.ρ(τ0)k
1

a5 : λτ0.ρ(τ0)k
0

l 6 : λτ0.1
1

j 1 : λτ0.1
0

j 4 : λτ0.ρ(τ0)k
0

(b)

a0 : 1
0

x3 : k
1

a5 : k
0

l 6 : 1
1

j 1 : 1
0

j 4 : k
0

(c)

Figure 2: (a) The program towRounds(k), an example with two rounds of adaptivity (b) The corre-
sponding semantics-based dependency graph (c) The estimated dependency graph from AdaptFun.

12

Figure 3: The overview of AdaptFun

4 The Adaptivity Analysis Algorithm - AdaptFun

In this section, we present our static program analysis for computing an upper bound on the adaptivity
of a given program c.

4.1 A guide to AdaptFun

In order to have a sound and accurate upper bound on the adaptivity of a program c, we design a program
analysis framework named AdaptFun. This framework composes two algorithms as shown in the
double-stroke box and the dashed box in Fig. 3. The first algorithm in the double-stroke box combines
the quantitative and dependency analysis techniques. It produces an estimated data-dependency graph
for a program. The second algorithm in the dashed box is a walk length estimation algorithm. It
computes the upper bound on the program’s adaptivity over the estimated graph. Below is the outline
of the AdaptFun.

1. Graph Estimation Because adaptivity is defined over a program’s quantitative dependency
graph (in Definition 8), this algorithm first estimates this graph for the program statically in
Section 4.4. It estimates the four components of this graph in two steps and then composes them
into an estimated dependency graph in the last step. The steps are summarized as follows.

(a) Vertex and Query Annotation Estimation Vertices and query annotations in this graph
are the assigned variables with unique labels. These are extracted directly from the program
as in Section 4.2.

(b) Edge and Weight Estimation
This step estimates the edge and weight for a quantitative dependency graph. It combines
the control, data-flow analysis algorithm and the loop bound inference algorithm. There
are three computation steps in this algorithm.
Abstract Control Flow Graph. In order to perform the dependency analysis and quan-
titative analysis, this step first generates an abstract control flow graph for a program in
Section 4.3.1.
Edges Estimation via Combined Flow Analysis. The step is presented in Section 4.3.2.
It performs over the abstract control flow graph, which combines both control flow and
data flow analysis. It estimates the dependency relation between each pair of the labeled
variables in a program by considering both the control flow and data flow. Then it uses the
estimated dependency relation to approximate the edge between each pair of vertices.
Weights Estimation via Quantitative Analysis. This step is presented in Section 4.3.3.
It performs over the same abstract control flow graph and computes the upper bound on the
maximal visiting times of each labeled variable for a program. It estimates the reachability
bound for every vertex over the abstract control flow graph, and this reachability bound is

13

used to estimate the maximal visiting times of each labeled variable in a program and the
weight of the corresponding vertex.

(c) Graph Estimation. In Section 4.4, we construct the final approximated graph, named
estimated dependency graph by simply composing the four estimated ingredients. Overall,
this estimated dependency graph has a similar topology structure as the semantics-based
dependency graph. It has the same vertices and query annotations, but approximated edges
and weights.

2. Adaptivity Computation. Likewise the adaptivity in Definition 14, the static estimation on the
adaptivity also relies on finding a walk in the estimated dependency graph. We discuss some
challenges in finding the ’appropriate’ walk in the graph, and how our algorithm responds to
these challenges as in Section 4.5.

4.2 Vertex and Query Annotation Estimations

Vertex Estimation The first component of the estimated dependency graph is the vertex set, which
is identical to the semantics-based dependency graph. Every vertex is an assigned variable in the
program, which comes from an assignment command or query request command with a unique label.
These vertices are collected by statically scanning the program, like what we do for vertices of the
semantics-based dependency graph, as follows.

Vest(c),
{

x l ∈LV
∣∣∣ x l ∈ LV(c)

}
where Ain is the set of arithmetic expressions over N and program’s input variables.

Query Annotation Computation The static scanning of the programs also tells us whether one
vertex(assigned variable) is assigned by a query request. Identically to the semantics-based dependency
graph, Qest(c) is a set of pairs Qest(c) ∈P(LV× {0,1}) mapping each x l ∈ Vest(c) to either 0 or 1. 1
denotes x l is a member of QVc , which is the set of program’s variables assigned with query requests,
and 0 means x l not in this set. It is defined formally below.

Qest(c) =
{

(x l ,n) ∈LV× {0,1}
∣∣∣ x l ∈ LVc ,n = 1 ⇐⇒ x l ∈QVc ∧n = 0 ⇐⇒ x l 6∈QVc .

}
4.3 Edge and Weight Estimation

The edges and weight are estimated through a combined control, data flow, and loop bound analysis.
Because these analyses are all performed on basis of the Abstract Transition Graph of the program,
we first introduce how to generate this abstract transition graph in Section 4.3.1. Then Section 4.3.2
presents the edge estimation based on a combined control and data flow analysis algorithm, and
Section 4.3.3 computes the weight through a loop bound analysis.

4.3.1 Abstract Transition Graph

This section shows how to generate the abstract transition graph absG(c) of a program c through
constructing its vertices and edges.

An Abstract Transition Graph, absG(c) for a program c is composed of a vertex set absV(c) and
an edge set absE(c), absG(c), (absV(c),absE(c)).
Every vertex l ∈ absV(c) is the label of a labeled command in c, which is unique. We also call the

14

unique label as program point.
Each edge (l

dc−→ l ′) ∈ absE(c) is an abstract transition between two program points l , l ′. There is an
edge from l to l ′ if and only if the command with label l ′ can execute right after the execution of the
command with label l . Each edge is annotated by a constraint dc ∈DC>, which is generated from the
command with label l . This constraint describes the abstract execution of the command with l .

Abstract Control Flow Graph Vertices Construction Every vertex l ∈ absV(c) corresponds to a
program point l , which is a unique label of a command in this program. Concretely, the vertices of this
graph is the set of c’s labels with the exit label ex formally as follows,

absV(c) = LV(c)∪ {ex}

Abstract Control Flow Graph Edge Construction Each edge (l
dc−→ l ′) ∈ absE(c) is an abstract

transition between two program points l , l ′. There is an edge from l to l ′ if and only if the command
with label l ′ can execute right after the execution of the command with label l . Each edge is annotated
by a constraint dc ∈DC> generated from the command with label l . This constraint describes the
abstract execution of the command with l . This step shows how to generate the abstract transition
graph absG(c) of a program c through constructing its vertices and edges.
The vertices can be easily collected and the key point of the abstract transition graph for a program
is constructing the edge set, absE(c) for a program c. It relies on the control flow analysis and the
program abstraction of each command. To make it easy to understand, it is an enriched control flow
graph with an annotation on each edge. The edge set is constructed by a program abstraction method in
three steps.
In the first step, Constraint Computation generates a constraint over the expression for every pro-
gram’s labeled command, which is used as the annotation of an edge.
In the second step, Initial and Final State Computation generates two sets for each command. The
initial state is a set that contains the program point where this command starts executing, and the final
state is a set that contains the constraint of this command and the continuation program points after the
execution of this command.
In the third step, Abstract Event Computation generates a set of edges for the program. Each edge is
a pair of initial and finial state.

Constraint Computation In this step, we first show how to compute the constraints for expressions
in a program c, by a program abstraction method adopted from the algorithm in Section 6 in [6].
Given a program c, every expression in an assignment command or in the guard of a if or while

command is transformed into a constraint.
Notations / Formal Definitions:

• Operator: absexpr :A∪B→ DC (VAR∪SMBCST)∪B∪ {>}

• Constrains, DC> is composed of the Difference Constraints DC (VAR∪SMBCST), the Boolean
Expressions B and >.

– The difference constraints DC (VAR∪SMBCST) is the set of all the inequality of form
x ′ ≤ y + v or x ′ ≤ v where x ∈VAR, y ∈VAR and v ∈ SMBCST. The Symbolic Constant
set SMBCST = N∪VARin ∪∞∪Qm is the set of natural numbers with ∞, the input
variables, and a symbol Qm representing the abstract value of a query request. An inequality

15

x ′ ≤ y + v describes that the value of x in the current state is at most the value of y in the
previous state plus the symbolic constant v . An inequality x ′ ≤ v describes that the value
of x in the current state is at most the value v . When a difference constrain shows up as

an edge annotation, l
x ′≤y+v−−−−−→ l ′, it denotes that the value of variable x after executing the

command at l is at most the value of variable y plus v before the execution, and l
x ′≤v−−−→ l ′

respectively denotes value of variable x after executing the command at l is at most the
value of the symbolic constant v before the execution. For every expression in each of the
label command, it is computed in three steps via program abstraction method adopted from
the Section 6 in [6].

– The Boolean Expressions b from the set B. b on an edge l
b−→ l ′ describes that after

evaluating the guard with label l , b holds and the command with label l will execute right
after.

– The top constraint, > denotes true. It is preserved for skip command, or commands that
don’t involve any counter variable.

Computation Steps:

Definition 15 (Constraint Computation). For a program c, a boolean expression b in the guard of a
if or while command or an expression e and a variable x in an assignment command x ← e, the
constraint absexpr(b,_) or absexpr(x − v, x) is computed as follows,

absexpr(x − v, x) = x ′ ≤ x − v x ∈VARguard∧ v ∈N
absexpr(y + v, x) = x ′ ≤ y + v x ∈VARguard∧ v ∈Z∧ y ∈ (VARguard∪SMBCST)
absexpr(v, x) = x ′ ≤ v x ∈VARguard∧ v ∈ (VARguard∪SMBCST)
absexpr(y + v, x) = x ′ ≤ y + v
VARguard =VARguard∪ {y} x ∈VARguard∧ v ∈Z∧ y ∉ (VARguard∪SMBCST)
absexpr(ψ, x) = x ′ ≤Qm x ∈VARguard∧ψ is a query expression
absexpr(e, x) = x ′ ≤∞ x ∈VARguard∧e doesn’t have any of the forms as above
absexpr(e, x) => x ∉VARguard

absexpr(b,_) = b
VARguard =VARguard∪FV (b) x ∈VARguard∧b is a boolean expression

VARguard is the set of variables used in the guard expression of every while command in the
program c. In the case 4, if a variable x, belonging to the set VARguard is updated by a variable y ,
which isn’t in this set, we add y into the set VARguard and repeat above procedure until VARguard and
absexpr(e, x) is stabilized.
Specifically we handle a normalized expression, x > 0 in guards of while loop headers, and the counter
variable x only increase, decrease or reset by simple arithmetic expression (mainly multiplication,
division, minus and plus (able to extend to max and min)). The counter variable x is generalized
into norm when the boolean expression x > 0 in while doesn’t have the form x > 0. The way of
normalizing the guards and computing the norms is adopted from the computation step 1 in Section 6.1
in paper [6].

Definition 16 (Symbolic Expression (AS)). AS is the set of all the symbolic expressions over SMBCST.

The symbolic expression set is a subset of arithmetic expressions over N with input variables, i.e.,
AS ⊆Ain.

16

Abstract Initial and Final State Computation This step computes two sets for each command.
The initial state is a set that contains the program points before executing this command, which is
computed by the standard initial state generation method from control flow analysis. The final state is
a set that contains the constraint of this command and the program points after the execution of this
command. This set is enriched from the standard control flow analysis.

Notations / Formal Definitions:

• The abstract initial state: absinit(c) ∈L.

• The abstract Final State: absfinal(c) ∈P(L×DC>)

Computation Steps:

• The abstract initial state, absinit(c) ∈P(L) for a command c is the set of the initial program
points. Each point in this set is a unique program label corresponds to the command before
executing this command.
Given a program c, its abstract initial state, absinit(c) is computed as follows,

absinit([x ← e]l) = {l }
absinit(

[
x ← query(ψ)

]
l) = {l }

absinit(
[
skip

]l) = l
absinit(if [b]l then c1 else c2) = {l }
absinit(while [b]l do c) = {l }
absinit(c1;c2) = absinit(c1)

• The abstract final state of the program c, absfinal(c) ∈P(L×DC>) is a set of pairs, (l ,dc)
with a program point (i.e., a label), l as the first component and a constraint, dc as the second
component. The program point l corresponds to the labeled command after the execution of c,
and the constraint dc in this pair is computed by absexpr for the expression in c.
Given a program c, its final state, absfinal(c) is computed as follows,

absfinal([x ← e]l) = {(l ,absexpr (e, x))}
absfinal(

[
x ← query(ψ)

]
l) = {(l , x ′ ≤ 0+Qm)}

absfinal(
[
skip

]l) = {(l ,>)}
absfinal(if [b]l then c1 else c2) = absfinal(c1)∪absfinal(c2)
absfinal(while [b]l do c) = {(l ,absexpr(b,>))}
absfinal(c1;c2) = absfinal(c2)

Abstract Event Computation Each abstract event is an edge between two vertices in the abstract
transition graph. It is generated by computing the initial state and finial state interactively and
recursively for a program c.

Notations / Formal Definitions:

• Abstract Event:
α

ε∈ L×DC>×L

• Abstract Event Computation: abstrace ∈C→P(L×DC>×L)

Its type is defined as follows,

17

Definition 17 (Abstract Event). Abstract Event:
α

ε∈ L×DC>×L is a triple where the first and third
components are labels, second component is a constraint from DC>.

In an abstract event (l ,dc, l ′) of a program c, the first label l ∈L corresponds to an initial state of
c, and the second label l ′ ∈L with the constraint dc ∈DC> correspond to an abstract final state of c.
The abstract initial state is a label from L. We abuse the notation P(

α

ε) for the power set of all abstract
events.

Computation Steps:
The set of the abstract events abstrace(c) for a program c is computed as follows in Definition 18.

Definition 18 (Abstract Event Computation). abstrace ∈C→P(L×DC>×L)

We first append a skip command with the label ex, i.e.,
[
skip

]lex at the end of the program c, and
construct the program c ′ = c;

[
skip

]lex . Then, we compute the abstrace(c) = abstrace′(c ′) for c ′ as
follows,

abstrace′([x ← e]l) =;
abstrace′(

[
x ← query(ψ)

]l) =;
abstrace′([skip]l) =;
abstrace′(if [b]l then ct else c f) = abstrace′(ct)∪abstrace′(c f)

∪{(l ,absexpr(b,>),absinit(ct)), (l ,absexpr(¬b,>),absinit(c f))}

abstrace′(while [b]l do cw) = abstrace′(cw)∪ {(l ,absexpr(b,>),absinit(cw))}
∪{(l ′,dc, l)|(l ′,dc) ∈ absfinal(cw)}

abstrace′(c1;c2) = abstrace′(c1)∪abstrace′(c2)
∪{(l ,dc,absinit(c2))|(l ,dc) ∈ absfinal(c1)}

Notice abstrace′([x := e]l), abstrace′([x := query(ψ)]l) and abstrace′([skip]l) are all empty
set.

Theorem Guarantee: For every event ε with label l in an execution trace τ of program c, there is an
abstract event in program’s abstract execution trace of form (l ,_,_). Our soundness is presented below
with the proof in Appendix D.1

Lemma 4.1 (Soundness of the Abstract Events). For every program c and an execution trace τ ∈ T
that is generated w.r.t. an initial trace τ0 ∈T0(c), there is an abstract event

α

ε= (l ,_,_) ∈ abstrace(c)
for every event ε ∈ τ having the label l , i.e., ε= (_, l ,_,_).

∀c ∈C,τ0 ∈T0(c),τ ∈T,ε= (_, l ,_,_) ∈E . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

For every program point l corresponding to an assignment command in a program c, there is a
unique abstract event in the program’s abstract events set

α

ε∈ abstrace(c) of form (l ,_,_).

Lemma 4.2 (Uniqueness of the Abstract Events Computation). For every program c and an execution
trace τ ∈ T that is generated w.r.t. an initial trace τ0 ∈ T0(c), there is a unique abstract event
α

ε= (l ,_,_) ∈ abstrace(c) for every assignment event ε ∈Easn in the execution trace having the label l ,
i.e., ε= (_, l ,_,_) and ε ∈ τ.

∀c ∈C,τ0 ∈T0(c),τ ∈T,ε= (_, l ,_) ∈Easn . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃!

α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

This lemma is proved in Appendix D.2.

18

[a ← 0]0;
[

j ← k
]1;

while
[

j > 0
]2

do([
x ← query(χ[j])

]3;[
j ← j −1

]4;

[a ← x +a]5
)
;[

l ← query(χ[k]∗a)
]6

(a)

0 1

2

3

45

6

ex

>
j ′ ≤ k

j > 0

>j ′ ≤ j −1

>

j ≤ 0

>

(b)

0 : 1 1 : 1

2 : k

3 : k

4 : k5 : k

6 : 1

ex : 1

>
j ′ ≤ k

j > 0

>j ′ ≤ j −1

>

j ≤ 0

>

(c)

Figure 4: (a) The same towRounds(k) program as Figure 2 (b) The abstract control flow graph for
towRounds(k) (c) The abstract control flow graph with the reachability bound for towRounds(k).

Edge Construction The edge for c’s abstract transition graph is constructed simply by computing
the program’s abstract events set, abstrace(c) as follows,

absE(c) = {(l1,dc, l2)|(l1,dc, l2) ∈ abstrace(c)}

Abstract Transition Graph Construction With the vertices absV(c) and edges absE(c) ready, we
construct the abstract transition graph, formally in Definition 19.

Definition 19 (Abstract Transition Graph). Given a program c, its abstract transition graph absG(c) =
(absV(c),absE(c)) is computed as follows,
absE(c) = {(l1,dc, l2)|(l1,dc, l2) ∈ abstrace(c)},
absV(c) = LV(c)∪ {ex}

Example The edge (1
j ′≤k−−−→ 2) on the top tells us the command

[
j ← k

]1 is executed with a continua-
tion point 2 such that the guard

[
j > 0

]2 will be evaluated next. The annotation j ′ ≤ k is a difference
constraint computed for the expression k from the assignment command j ← k. It represents that the
value of j is less than or equal to value of input variable k after the execution of [a ← 0]0 and before

executing the loop. The boolean constraint j ≤ 0 on the edge 2
j≤0−−→ 6 represents the negation of the

testing guard j > 0 of the while command with header at label 2.

4.3.2 Edge Estimation

Since the edges of the semantics-based graph of a program relies on the dependency relation, it contains
both control flow and data flow. In this sense, We first develop a feasible data-flow relation to estimate
the data dependency relation, which catches these two flows. Then we construct the edges for Gest(c)
based on this feasible data-flow relation. This algorithm named Feasible Data-Flow Generation. It
considers both the control flow and data flow and is a sound approximation of the edges in the semantics
based dependency graph. The three steps in this algorithm is summarized as follows,

1. The Reaching Definition analysis computes a set of labeled variables, RD(l ,c) for every label
l in c over its abstract control flow graph, absG(c). The computation performs the standard
reaching definition analysis and working-list algorithm over the abstract control flow graph,
absG(c). RD(l ,c) contains all the labeled variables which are reachable at program point l .

19

2. The Feasible Data-Flow computation combines the RD(l ,c), absG(c) and data flow analysis.
It computes the feasible data-flow relation, flowsTo(xi , y j ,c) for each pair of the c’s labeled
variables, xi , y j ∈ LV(c) in Definition 20. flowsTo(xi , y j ,c) is a sound approximation of the
variable may-dependency relation, DEPvar(xi , y j ,c) for every xi , y j ∈ LV(c). The formal proof
is in the Appendix. We also discuss that the combined analysis gives more precise approximation
on the data may-dependency than single analysis in Appendix.

3. Edge Estimation Using the flowsTo(xi , y j ,c) relation, we define the estimated directed edges
as set of pairs of vertices xi , y j ∈ Vest(c), Eest(c) ∈ P(LV×LV). Every flowsTo(xi , y j ,c)
relation indicates a directed edge from the xi to y j if and only if it is true.

The details are as follows.

Reaching definition analysis This part performs the standard reaching definition analysis given a
program c, on every label in absV(c). This step generates set of all the reachable variables at location
of label l in the program c. The RD(l ,c) represent the analysis result, which is the set of reachable
labeled variables in program c at the location of label l . For every labelled variable x l in this set, the
value assigned to that variable in the assignment command associated to that label is reachable at the
point of executing the command of label l . It is computed in five steps as follows,

1. The block, is either the command of the form of assignment, skip, or a test of the form of [b]l ,
denoted by blocks(c) the set of all the blocks in program c, where blocks :C→P(C∪ [b]l).

A block is either the command of the form of assignment, skip, or test of the form of [b]l .
The operator blk :C→ bl ocks gives all the blocks in program c.
Set ? to be undefined.

2. The operator kill: bl ocks →P(VAR×L∪{?}) produces the set of labelled variables of assignment
destroyed by the block.

3. The operator gen: bl ocks →P(VAR×L∪ {?}) generates the set of labelled variables generated
by the block.

4. The operator i n(l), out (l): L→LV∪ {?} for every block in program c is defined as follows,

i n(l) = {x?|x l ∈ LVc ∧ l = absinit(c)}∪ {out (l ′)||(l ′,_, l) ∈ absE(c)∧ l 6= absinit(c)}
out (l) = g en(B l)∪ {i n(l) \ ki l l (B l)}

computing i n(l) and out (l) for every B l ∈ bl ocks(c), and repeating these two steps until the
i n(l) and out (l) are stabilized for every B l ∈ bl ocks(c) We use RD(l ,c) to represent denote the
stabilized result of i n(l) at label l in program c.

5. The stabilized i n(l) and out (l) for program c, as well as RD(l ,c), is computed by the standard
work-list algorithm with detail as below.

(a) initialize in[l]=out[l]=;; in[0] = ;
(b) initialize a work queue W , contains all the blocks in c

(c) while |W | != 0
pop l in W
old = out[l]

20

i n(l) = out (l ′) where (l ′,_, l) ∈ absE(c)
out (l) = gen(bl) ∪ (i n(l)−ki l l (bl)), where bl ∈ blk(c)
if (old != out(l)) W =W ∪ {l ′|(l , l ′) ∈ (l ′,_, l) ∈ absE(c)}
end while

Feasible Data-Flow Computation This part presents the computation of the feasible data-flow
relation between each pair of labeled variables in a program c, formally in Definition 20,

Definition 20 (Feasible Data-Flow). Given a program c and two labeled variables xi , y j in this
program, flowsTo(xi , y j ,c) is

flowsTo(xi , y j ,
[

y ← e
]

l) , (xi , y j) ∈ {(xi , y l)|x ∈FV(e)∧xi ∈ RD(l ,
[

y ← e
]l)}

flowsTo(xi , y j ,
[

y ← query(ψ)
]

l) , (xi , y j) ∈ {(xi , y l)|x ∈FV(ψ)∧xi ∈ RD(l ,
[

y ← query(ψ)
]l)}

flowsTo(xi , y j , [skip]l) =;
flowsTo(xi , y j , if ([b]l ,c1,c2)) , flowsTo(xi , y j ,c1)∨flowsTo(xi , y j ,c2)

∨(xi , y j) ∈ {
(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , if ([b]l ,c1,c2))∧ y j ∈ LV(c1)

}
∨(xi , y j) ∈ {

(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , if ([b]l ,c1,c2))∧ y j ∈ LV(c2)
}

flowsTo(xi , y j , while [b]l do cw) , flowsTo(xi , y j ,cw)∨
(xi , y j) ∈ {

(xi , y j)|x ∈FV(b)∧xi ∈ RD(l , while [b]l do cw)∧ y j ∈ LV(cw)
}

flowsTo(xi , y j ,c1;c2) , flowsTo(xi , y j ,c1)∨flowsTo(xi , y j ,c2)

We prove that the transitive closure of the Feasible Data-Flow relation is a sound approximation of
the Variable May-Dependency relation over labeled variables for every program, in Appendix C.

Improvement Analysis. Combining the result of reaching definition, RD(l ,c) with the abstract
control flow graph, absG(c) with control flow analysis into the feasible data-flow generation improves
the data-dependency relation approximation accuracy. For example, a program [x = 0]1; [x = 2]2; [y =
x +1]3. The standard data flow analysis tells us that both the labeled variable x1 and x2 may flow to
y3, which will result in an unnecessary edge (x1, y3). The result of reaching definition can help us
eliminate this kind of edge by telling us, at line 3, only variable x2 is reachable.

Edge Estimation The Edge Estimation is based on the flowsTo(xi , y j ,c) relation. For each pair
of vertices xi , y j in Vest(c), there is a directed edge from the xi to y j if and only if they have
feasible flows-to relation, i.e., flowsTo(xi , y j ,c) is true. Using the flowsTo(xi , y j ,c) relation, we
define the estimated directed edges as a set which contains all pair of vertices xi , y j in Vest(c),
Eest(c) ∈P(LV×LV) satisfying this relation formally as follows,

Eest(c), {(y j , xi) | y j , xi ∈ Vest(c)∧∃n, zr1
1 , . . . , zrn

n ∈ LV(c) .
n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)}

We prove that this estimated directed edge set Eest(c) is a sound approximation of the edge set in c’s
semantics-based dependency graph by Lemma B.2in Appendix B .

Example As in the Figure 3(c), the edge l 6 → a5 is built by flowsTo(l 6, a5,c) relation because
a is used directly in the query expression χ[k] ∗ a in the command

[
l ← query(χ[k]∗a)

]6, i.e.,
a ∈ FV (χ[k]∗a). And we also have a5 ∈ RD(6,twoRounds(k)) from the reaching definition analysis.
Another edge x3 → j 5 in the same graph represents the control flow from j 5 to x3, which is soundly
caught by our flowsTo relation.

21

4.3.3 Weight Estimation

This section presents the quantitative analysis algorithm, which performs over the same abstract control
flow graph, absG(c) of a program c as well. As the Wtrace(c) defined in Definition 8, the weight of
every x l ∈ Vest(c) is the execution times of the command with label l . In this sense, to estimate weight
of x l , this step first computes an upper bound, the reachability-bound[3] for every l ∈ absV(c) on the
execution times of the command with label l . Then, the reachability-bound is used to estimate the
maximal visiting times of the labeled variable x l ∈ LV(c) and the weight of the vertex x l ∈ Vest(c). The
two computation steps are summarized as follows,

1. Reachability Bound Analysis As the Wtrace(c) defined in Definition 8, the weight of every
x l ∈ Vest(c) is the execution times of the command with label l . In this sense, to estimate weight
of x l , this step first computes an upper bound, the reachability-bound for every l ∈ absV(c) on
the execution times of the command with label l . Then, the reachability bound on l ∈ absV(c) is
used to estimate the weight of the vertex x l ∈ Vest(c)

2. Weight Estimation Because the vertex in program’s absG(c) shares the same unique label with
the vertex in Vest(c), we use the reachability-bound on the vertex l ∈ absV(c) directly as the
weight of the vertex x l in Vest(c).

Step-1: Reachability Bound Analysis This symbolic reachability bound analysis performs over
the same abstract control flow graph, absG(c) of a program c. It first computes a reachability bound
for every edge l

dc−→ l ′ ∈ absE(c), which is a symbolic bound on the maximum execution times of the
command with label l of c. Then the reachability bound for edge l

dc−→ l ′ is used as the bound on the
maximum visiting times of the vertex l ∈ absV(c). It is a sound upper bound on the visiting times of
every label l ∈ absV(c), named reachability-bound. The computation steps are summarized as follows,

1. It first collects three edge sets for each variable, in which the variable increases, decreases and
reset respectively.

2. Then, for each edge l
dc−→ l ′ ∈ absE(c), it assigns a variable x (or a symbolic constant c ∈

SMBCST) if x (or c) decreases in dc, as this edge’s local bound.

3. It then computes the bound on the maximum value of the local bound for each edge, and the
reachability-bound on the execution times of the corresponding edge recursively.

4. The last step uses reachability-bound w for edge l
dc−→ l ′ as the bound on the maximum visiting

times of the vertex l ∈ absV(c) and generates a set absW(c) contains a pair (l , w) for every
l ∈ absV(c).

The algorithm in this step is inspired from the Algorithm.2 in paper [5], the Algorithm.3 in paper [7],
and the Definition.25 in Section 4 of paper [6].

• Algorithm.3 in paper [7] assigns a set of variables to each transition in which these variables
decrease as the local bound and estimates the maximum value each variable in this set.

• Algorithm.2 in paper [5] assigns a variable to each edge on which this variable decrease as its
ranking function and then estimates the maximum value for the ranking function.

• The Definition.25 in paper [6] assigns each transition with a variable that decreases in this
transition, as the local bound and computes the bound similarly.

22

The computation steps are as follows,

1. Variable Modifications For each variable x in a program c, this step computes three edge sets,
inc(c, x), dec(c, x), and re(c, x) for x. Every edge in a set corresponds to a transition in which
x is increased, decreased or reset respectively.
inc :C→VAR→P(

α

ε) is the set of the edges where the variable increase,
inc(c, x) = {

α

ε | αε= (l , l ′, x ′ ≤ x + v)∧ α

ε∈ abstrace(c)}
dec :VAR→P(

α

ε) is the set of abstract events where the variable decrease,
dec(c, x) = {

α

ε | αε= (l , l ′, x ′ ≤ x − v)∧ α

ε∈ abstrace(c)}
re :C→VAR→P(

α

ε) is the set of the abstract events where the variable is reset,
re(c, x) = {

α

ε | αε= (l , l ′, x ′ ≤ y − v)∧x 6= y∧ α

ε∈ abstrace(c)}
rechain : C→VAR→P(P(

α

ε)) is the set of the chain of abstract events where the variable is
reset through the chain.
In addition to collect the edge set that x is reset on every edge in this set, i.e., compute the
re(c, x), we also compute a set, rechain(c, x) contains sequences of edges for x based on
the Definition.20 in [6]. In each sequence, (e0, · · · ,em) ∈ rechain(c, x) a variable xi is reset
by another variable xi+1 on edge ei and xi+1 is reset on edge ei+1 recursively for every i =
0, · · · ,m −1. x is reset on the first edge e0 of every sequence in rechain(c, x). Rephrase: Each
edge ei in a sequence (e0, · · · ,em) ∈ rechain(c, x) resets a variable xi by another variable xi+1

such that xi+1 is reset on edge ei+1 recursively. The first edge e0 of each sequence resets the
variable x.
In the following steps, c is omitted in inc(x), dec(x) and re(x) for concise when the reference
of a program c is clear in the context.

2. Assigning The Local Bound to An Edge For each edge in the transition graph absG(c) of a
program c, this step assigns the variable that decreases on this edge as the local bound of this
edge. This step adopts the local bound computation method in Section 4 of [6] to assign the local
bound to each edge, formally as follows.

Definition 21 (Local Bound Generatation). For every edge
α

ε in the transition graph absG(c) of
a program c, its local bound, locb(

α

ε,c) is the variable that decreases on this edge, computed as
follows,

locb(
α

ε,c), 1
α

ε∉ SCC (absG(c))

locb(
α

ε,c), x
α

ε∈ SCC (absG(c))∧ α

ε∈ dec(x)∧ α

ε= (_,_, x ′ ≤ x − v)

locb(
α

ε,c), x
α

ε∈ SCC (absG(c))∧ α

ε∉⋃
x∈VARdec(x)∧ α

ε∉ SCC (absG(c) \dec(x)).

SCC (absG(c)) is the set of all the strong connected components of absG(c).

The first case is straightforward. For the label l which is not in any while loop, the labeled
command with the label l will be evaluated at most once. The second and third cases are
guaranteed by the Discussion on Soundness in Section 4 in [6]. We formalized the soundness
and proof by Lemma D.1 in Appendix D.

3. Local Bound Estimation This step estimates the upper bound, Vinvar(x,c) ∈ Ain on the
maximum value for each local bound x ∈VAR∪SMBCST.
For a program c, the local bound of an , Vinvar(locb(

α

ε,c)) ∈Ain is the bound on the maximum
value of the local bound assigned to the edge

α

ε∈ absE(c), formally in Definition 22 and 23.
In order to estimate the maximum value of locb(

α

ε,c) assigned to edge
α

ε∈ absE(c), the bound

23

on the iteration times of each corresponding edge, TB(
α

ε,c) is computed interactively in a path-
insensitive manner.
Vinvar : (VAR∪SMBCST×C) →Ain

TB : (
α

ε×C) →Ain

Definition 22 (Local Bound Computation). For a program c and an edge
α

ε∈ absE(c), the local
bound, Vinvar(locb(

α

ε,c),c) for the local bound locb(
α

ε,c) of this edge is computed as follows,

Vinvar(x,c) , x x ∈ SMBCST

Vinvar(x,c) , increase(x,c)+max({Vinvar(y,c)+ v | (l , x ′ ≤ y + v, l ′) ∈ re(x)}) x ∉ SMBCST

increase(x,c),
∑

α
ε∈inc(x)

{TB(
α

ε,c)× v | α

ε= (l , x ′ ≤ x + v, l ′)}

Definition 23 (Transition Bound). For a program c and an edge
α

ε∈ absE(c), the path-insensitive
transition bound, TB(

α

ε,c) ∈Ain for this edge is computed as follows,

TB(
α

ε,c) , Vinvar(locb(
α

ε,c),c) if locb(
α

ε,c) ∈ SMBCST

TB(
α

ε,c) , increase(x,c)+ ∑
α
ε
′∈re(x,c)∧α

ε
′=(l ,x≤y+v,l ′)

(
TB(

α

ε
′
,c)× (

Vinvar(y,c)+ v
))

if locb(
α

ε,c) = x ∧x ∉ SMBCST ,

Then we construct the set of reachability bound w for every program point l , as absW(c). For
each pair (l , w) ∈ absW(c), w =∑{

TB(
α

ε,c)
∣∣∣αε= (l ,_,_)

}
.

Theorem Guarantee For a program c and an edge
α

ε∈ absE(c), TB(
α

ε) is a sound upper bound
on the execution times of this transition by paper [6]. The soundness theorem is attached in
Theorem 4.1 in Appendix D.

Theorem 4.1 (Soundness of the Transition Bound). For each program c and an edge
α

ε= (l ,_,_) ∈
absG(c), if l is the label of an assignment command, then its path-insensitive transition bound
TB(

α

ε,c) is a sound upper bound on the execution times of this assignment command in c.

∀c ∈C, l ∈ LV(c),τ0 ∈T0(c),τ ∈T, v ∈N . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧〈TB(
α

ε,c),τ0〉 ⇓a v ∧cnt(τ, l) ≤ v

Example We perform the symbolic reachability bound analysis on the abstract control flow
graph in Figure 4(b) and compute the result in Figure 4(c). We would like to generate the
closure of every edge, which is an equality relation between variables. Solving this closure
gives us the reachability bound for this edge. With all the bound for all the edges in the abstract
control flow graph, we can calculate the weight for every vertex in this graph. For example, we

show the closure generated for the edge 4
j ′≤ j−1−−−−−→ 5, TB(4

j ′≤ j−1−−−−−→ 5) = Vinvar(j). The invariant

for variable j , Vinvar(j) used here is Vinvar(j) = k ∗TB(1
i ′≤k−−−→ 2), which is generated by

all the difference constraints involving j in the graph. Notice the k in Vinvar(j) comes from

considering both difference constraint j ′ ≤ k from edge 1
j ′≤k−−−→ 2 and j ′ ≤ j −1 from 4

j ′≤ j−1−−−−−→ 5,
which intuitively reflects the while loop whose counter is set to k at the beginning and decreases
by 1 at each iteration. With all the closures for all the edges of the abstract control flow graph,
we can solve them to obtains the reachability bound of every edge. We decide the weight for

24

every vertex in the abstract control flow graph by using the bound of the edges which head out
from this vertex, by taking the max of the bound from these involving edges. For instance, By

the constraint on the edge 4
j ′≤ j−1−−−−−→ 5, we get bound k for this edge. Then, we assign vertex

4 by reachability bound k, as in Figure 4(c). Another interesting vertex is 2, which has more

than one edge heading out from it,2
j≥0−−→ 3 and 2

j≤0−−→ 6. For the weight for vertex 2, we choose

the max between the bound k from 2
j≥0−−→ 3 and 1 from 2

j≤0−−→ 6. The same way for the rest
weights’ computation. We use absW(c) for the set of weights we just computed for each label in
the abstract control flow graph of c. The same way for the rest weights’ computation.

Vertex Weight Computation Because the vertices in the two graph share the same unique label,
the line number. We use the reachability bound on each program label from absW(c) to estimate the
maximal visiting times of each labeled variable. We show that the reachability bound on one vertex of
absW(c) is also the upper bound for the corresponding vertex in the static analysis dependency graph,
both vertices share the same unique line number.

Then we compute the weight for each vertex in Vest(c), as a set of pairs mapping each vertex
x l ∈ LV(c) to a symbolic expression over SMBCST. West(c) ∈P(LV×Ain) is formally computed as
follows,

West(c),
{

(x l , w) | x l ∈ Vest(c)∧ (l , w) ∈ absW(c)
}

.

We prove that this symbolic expression for x l ∈ Vest(c) is a sound upper bound of the weight for the
same vertex x l in Program’s semantics-based dependency graph by Lemma B.3 in Appendix B, and
Theorem D.2 in Appendix D.3.

Example Going back to the quantitative dependency graph for two-round example in Figure 5(c),
which we aim to estimate. Every vertex from Vest(c) in this graph corresponds to a labeled variable, for
example a5, and this label 5 is also a vertex 5 in the abstract control flow graph in Figure 4(b). Then,
it is straight forward, that the reachability bound for the label 5, is also the maximum visiting times
bound of the labeled variable a5. So, we estimate the visiting time for labeled variable a5 in estimated
dependency graph in Figrue 4(c) as k as well. The same way for the rest weights’ computation.

4.4 Graph Construction

With the four components Vest(c),Eest(c),West(c), and Qest(c) computed in each steps above, this step
simply combine the four components into the quantitative dependency graph for program c as follows,

Gest(c) = (Vest(c),Eest(c),West(c),Qest(c)).

We prove that this graph is a sound approximation of the program’s semantics-based dependency graph
by soundness of each component formally in Appendix.

This estimated graph estimated graph has a similar topology structure as the Semantics-based
Dependency Graph. It has the same vertices but approximated edges and weights. This graph is a
sound approximation of the quantitative dependency graph for a program c.

It is formally defined in Definition 24 as follows.

Definition 24 (Estimated Dependency Graph). Given a program c, with its abstract weighted control
flow graph absG(c) = (absV,absE) and feasible data flow relation flowsTo(xi , y j ,c) for every xi , y j ∈
LV(c), its estimated dependency graph is generated as follows,

Gest(c) = (Vest(c),Eest(c),West(c),Qest(c))

25

Vertices Vest :=
{

xl ∈LV
∣∣∣ xl ∈ LVc

}
Directed Edges Eest :=

{
(xi

1, x
j
2) ∈LV×LV

∣∣∣∣∣ xi
1, x

j
2 ∈ V∧∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧

flowsTo(xi , zr1
1 ,c)∧·· ·∧flowsTo(zrn

n , y j ,c)

}
Weights West :=

{
(xl , w) ∈LV×Ai n | xl ∈ LVc ∧ (l , w) ∈ absW(c)

}
Query Annotation Qest :=

{
(xl ,n) ∈LV× {0,1}

∣∣∣ xl ∈ LVc ,n = 1 ⇐⇒ xl ∈QVc ∧n = 0 ⇐⇒ xl ∈QVc .
}

The construction of the static analysis dependency graph is of great value of showing some useful
properties of the target program, such as dependency between variables, the execution upper bound
of a certain command, while the key novelty is our path searching algorithm, which connects all the
information we need in the static anlaysis dependency graph and provides us a sound over-estimation
of adaptivity.

4.5 Adaptivity Upper Bound Computation

This phase computes the adaptivity upper bound for a program c.
Based on c’s estimated dependency graph, Gest(c) approximated above, its adaptivity upper bound
is estimated as the length of the longest finite walk over WK(Gest(c)) formally in Definition 27, and
computed by Algorithm 1. WK(Gest(c)) represents the set of all finite walks on Gest(c). Different from
the finite walk on Gtrace(c), the κ ∈WK(Gest(c)) doesn’t rely on the initial trace. The occurrence time
of every vi in κ’s vertices sequence is bound by an arithmetic expression wi where (vi , wi) ∈ West(c)
is vi ’s estimated weight. Then its query length lenq(κ) and the estimated adaptivity Aest(c) are both
arithmetic expression as well. They are formally defined as follows.

Definition 25 (Finite Walk on estimated dependency graph (κ)). .
Given a program c’s estimated dependency graph Gest(c) = (Vest(c),Eest(c),West(c),Qest(c)), a finite
walk k in Gtrace(c) is a sequence of edges (e1 . . .en−1) for which there is a sequence of vertices
(v1, . . . , vn) such that:

• ei = (vi , vi+1) ∈ Eest(c) for every 1 ≤ i < n.

• every vertex vi ∈ Vest(c), and (vi , wi) ∈ West(c), vi appears in (v1, . . . , vn) at most wi times.

The length of k is the number of vertices in its vertex sequence, i.e., len(k) = a.

We abuse the notation WK(Gest(c)) represents the walks over the estimated dependency graph for c.
Different from the walks on a program c’s semantics based graph, k ∈WK(Gtrace(c)), k ∈WK(Gest(c))
doesn’t rely on initial trace. The occurrence times of every vi in k’s vertex sequence is bound by an
arithmetic expression wi where (vi , wi) ∈ Vest(c), is vi ’s estimated weight. The length of a finite walk
k ∈WK(Gest(c)) is an arithmetic expression as well, i.e., len(k) ∈Ai n

Then the query length of a finite walk in Gest(c) is an arithmetic expression as well as follows,

Definition 26 (Query Length of the Finite Walk on estimated dependency graph (lenq)). Given a
program c’s semantics-based dependency graph Gest(c) = (Vest(c),Eest(c),West(c),Qest(c)), and a
finite walk k ∈WK(Gest(c)), The query length of k, lenq(k) ∈Ai n is the number of vertices which
correspond to query variables in the vertices sequence of this walk k (v1, . . . , vn) as follows,

lenq(k) = |(v | v ∈ (v1, . . . , vn)∧ v ∈ Qest(c)
)|.

Definition 27 (estimated Adaptivity). Given a program c and its estimated dependency graph Gest(c)
the estimated adaptivity for c is

Aest(c),max
{
lenq(k) | k ∈WK(Gest(c))

}
.

26

whileSim(k),[
j ← k

]0;
[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do([
x ← query(χ[x])

]3;
[

j ← j −1
]4

)
(a)

x1 : 1
1

x3 : k
1

j 2 : 1
0

j 4 : k
0

(b)

Figure 5: (a) The simple k adaptivity rounds while loop example (b) The estimated dependency graph
generated from AdaptFun.

Based on the soundness of the estimated dependency graph, our estimated adaptivity is a sound
upper bound of its adaptivity in Definition 14.

Theorem 4.2 (Soundness of AdaptFun). For every program c, its estimated adaptivity is a sound
upper bound of its adaptivity.

∀τ0 ∈T0(c), v ∈N∞ . 〈Aest(c),τ0〉 ⇓e v =⇒ A(c)(τ0) ≤ c

The proof is in Appendix B. To compute Aest(c) accurately and soundly, we develop an adaptivity
computation algorithm named AdaptSearch. It combines the depth first search and breath first search
strategies and computes a sound upper bound on Aest(c). AdaptSearch also involves another algorithm
AdaptSearchSCC in 2 recursively, which finds the longest walk for a strong connected component (SCC)
(SCC is the maximal strongly connected subgraph) of Gest(c). Theorem 4.3 below formally describes
the soundness of this algorithm with proof in Appendix E.

Theorem 4.3 (Soundness of AdaptSearch). For every program c, we have

AdaptSearch(Gest(c)) ≥ Aest(c).

By Definition 27, the key point is to find the walks in the estimated dependency graph. We first
discuss two challenges when we try to find the walks, and then show that how we solve them using our
algorithms.

Non-Termination Challenge: One naive walk finding method is to simply traverse on this graph
and decrease the weight of every node by one after every visiting. However, this simple traversing
strategy leads to non-termination dilemma for most programs which we are interested in. Because the
weight of each vertex in a program’s estimated dependency graph, which is an arithmetic expression
containing input variables. In this sense, the simple traversing could never terminate when domain
of the input variables isn’t finite. However, it is very common that the domain of program’s input
variables is infinite such as natural number N, real number R, or etc. As the simple while loop example
program in Figure 5 with k adaptivity rounds, the input variable k has domain N. If we traverse on the
estimated dependency graph, and decrease the weight of x3 (the weight k is symbolic) by one after
every visit, we will never terminate because we only know k ∈N.

To solve this non-termination challenge, we switch to another walk finding approach: finding the
longest path in the estimated dependency graph via depth first search and then use this path as the
estimated longest walk. Through a simple depth first search algorithm, we find the longest weighted
path as the dotted arrow in Figure 5(c), x3 : k

1 → x1 : 1
1. Then, by summing up the weights on this path

where the vertices have query annotations 1, depth first search algorithm gives the adaptivity bound k.
This is a tight bound for this simple k adaptivity rounds example program.

Approximation Challenge: However, this naive approximation via depth first searching over-
approximates the adaptivity rounds largely in many cases. It computes ∞ adaptivity upper bound for
our twoRounds example program in Figure 2, which has only 2 adaptivity rounds. More specifically,

27

the depth first searching finds the longest weighted path, x3 : k
1 → a5 : k

0 → l 6 : 1
0. Then, it computes the

weighted length, 1+k. If we use this path to approximate the longest finite walk, and weight of each
vertex as its visiting time, then we have a walk, x3 → ··· → x3 → a5 → ··· → a5 → l 6. However, this
isn’t a qualified walk by our Definition 12. Because l 6 has weight 1, it can only be visited as most
once. In this sense, x3 is only able to be visited at most once as well, because the only way to re-visit
x3 is through l 6 → a5 → x3. Contradictory, x3 is visited k times in this approximated walk. As a result,
the weighted length of this path is 1+k, which over approximates this two rounds example program’s
adaptivity rounds, which is supposed to be 2.

Adaptivity Computation Algorithm To this end, we combine the depth first search and breath first
search strategies in our longest walk estimation algorithm. Our algorithm reduces the task of computing
the longest walk into the computation of local adaptivity and the composition of local adaptivity into
global adaptivity. We exploit the structure of the estimated dependency graph Gest(c) for a program
c: 1). Partitioning the PDG of programs into its strongly connected components (SCCs) (SCCs are
maximal strongly connected subgraphs). 2). Then, for each SCC, we compute an adaptivity bound
3). In the last, we compose these local bounds to an overall adaptivity bound. AdaptSearch(c,Gest(c))
algorithm in Algorithm 1 arranges the estimated dependency graph Gest(c) into SCCs (SCC1, · · · ,SCCn)
and obtains the adaptivity local bound of each SCC from AdaptSearchSCC(c,SCCi) algorithm in
Algorithm 2. Then AdaptSearch shrinks the estimated dependency graph into a directed acyclic graph
(DAG) by reducing each SCC into a vertex with the weight equal to its adaptivity local bound. In this
way, it simply computes the length of the longest path over this DAG.

Algorithm 1 Adaptivity Computation Algorithm (AdaptSearch(c,Gest(c)))

Require: The program c, Its estimated dependency graph: Gest(c) = (V,E,W,Q)
1: init

q: empty queue.
adapt : the adaptivity of this graph initialize with 0.

2: Find all Strong Connected Components (SCC) in G: SCC1, · · · ,SCCn,0 ≤ n ≤ |V|,
3: for every SCC: SCCi, compute its Adaptivity SCCi:
4: adaptscc[SCCi] =AdaptSearchscc(c,SCCi);
5: for every SCCi:
6: q.append(SCCi);
7: adapttmp = 0;
8: while q isn’t empty:
9: s= q.pop(); #{take the top SCC from head of queue}

10: adapttmp0 = adapttmp; #{record the adaptivity of last level}
11: SCCmax; #{record the SCC with longest walk in this level}
12: for every different SCC, s′ connected by s by a directed edge from s:
13: if (adapttmp < adapttmp0 +adaptscc[s′]):
14: adapttmp = adapttmp0 +adaptscc[s′];
15: SCCmax = s′; #{update the SCC with the longest walk in this level}
16: q.append(SCCmax);
17: adapt= max(adapt,adapttmp);
18: return adapt.

28

The Adaptivity Computation Algorithm (AdaptSearch(c,Gest(c))) At Line:3, this algorithm first
finds all the SCCs of Gest(c), SCC1, · · · ,SCCn where 0 ≤ n ≤ |V| by the standard Kosaraju’s algorithm,
where each SCCi = (Vi ,Ei ,Wi ,Qi). Then, it computes the adaptivity local bound on every SCCi in
line:4-5 by AdaptSearchSCC(c,SCCi). We guarantee the soundness of the adaptivity local bound on
an SCC by Lemma E.1 with formal proof in Appendix E. The Gest(c) is then shrunk into a directed
acyclic graph where SCC1, · · · ,SCCn are all the vertices and the adaptivity local bounds are their weights.
There is an edge si → s j in this shrank graph, as long as we can find an edge vi → v j ∈ Eest(c) such
that v1 ∈ Vi , v j ∈ V j and i 6= j . Then, we use the standard breath first search strategy to find the longest
weighted path on this DAG and return this length as the adaptivity upper bound.
We guarantee that the length of this longest weighted path is a sound computation of the adaptivity
for program c and this longest weighted path is a sound computation of the finite walk having the
longest query length on c’s estimated dependency graph in Theorem E.1 in Appendix E. If a program
c’s estimated dependency graph Gest(c) is a DAG, then we prove that the adaptivity upper bound by
Algorithm 1 is tight formally in Theorem F.1 in Appendix F.

Adaptivity Computation Algorithm on An SCC (AdaptSearchscc(c,SCCi)) This algorithm takes
the program, and an SCC (a subgraph), SCCi of a program’s estimated dependency graph Gest(c) as
input and outputs the adaptivity local bound of SCCi. For an SCC containing only one vertex without
any edge, it returns the query annotation of this vertex as adaptivity. For SCC containing at least one
edge, there are three steps in this algorithm: 1. It first collects all the paths in the input SCC 2. Then
it calculates the adaptivity of every path by a novel adaptivity computation method. 3. The maximal
adaptivity among over all paths is the adaptivity of this SCC in the end. Because the input graph is
SCC, when the algorithm starts to traverse from a vertex, it finally goes back to the same vertex. In this
sense, the paths collected in step 1 are all simple cycles with the same starting and ending vertex. The
most interesting part is step 2. It recursively computes the adaptivity upper bound on the fly of paths
collecting through a depth first search procedure dfs from line: 5-15. It designs a novel adaptivity
computation method, which guarantees the visiting times of each vertex by its weight and addresses
the Approximation Challenge. The guarantee is achieved by two special parameters flowcapacity
and querynum and the updating operations in line:7 and line:10.

• flowcapacity is a list of arithmetic expression Ai n . It tracks the minimum weight along the
path during the searching procedure. For each vertex, it updates the minimum weight when the
path reaches that vertex with ∞ as the initial value.

• querynum is a list of integer initialized by query annotation Qi (v) for every vertex. It tracks the
total number of vertices with query annotation 1 along the path.

• The updating operation during the traversal (line: 7) and at the end of the traverse (line: 10)
is flowcapacity[v]×querynum[v]. Because querynum[v] is the # of the vertices with query
annotation 1 and flowcapacity[v] is the minimum weight over this path, this number is the
accurate query length of this path. It guarantees the visiting times of each vertex on the path
reaching a vertex v is no more than the maximum visiting times it can be on a qualified walk by
flowcapacity[v], and in the same time compute the query length instead of weighted length
through querynum[v].

In this way, we resolve the Approximation Challenge without losing the soundness, formally in
Appendix E. This step also guarantees the termination through a boolean list, visited in line:7 and
line:13.

29

Algorithm 2 Adaptivity Computation Algorithm on An SCC (AdaptSearchscc(c,SCCi))

Require: The program c, An strong connected component of Gest(c): SCCi = (Vi ,Ei ,Wi ,Qi)
1: init

rscc: Ain, initialized 0, the Adaptivity of this SCC
2: init

visited : {0,1} List,
#{length |Vi |, initialize with 0 for every vertex, recording whether a vertex is visited.}
r : Ain List,
#{length |Vi |, initialize with Q(v) for every vertex, recording the adaptivity reaching each

vertex.}
flowcapacity: Ain List,
#{length |V|, initialize with ∞ for every vertex, recording the minimum weight when the walk

reaching that vertex, inside a cycle}
querynum: INT List,
#{length |V|, initialize with Q(v) for every vertex, recording the query numbers when the path

reaching that vertex, inside a cycle}
3: if |Vi | = 1 and |Ei | = 0:
4: return Q(v)
5: def dfs(G,s,visited):
6: for every vertex v connected by a directed edge from s:
7: if visited[v] = false:
8: flowcapacity[v] = min(Wi(v),flowcapacity[s]);
9: querynum[v] = querynum[s]+Qi(v);

10: r[v] = max(r[v],flowcapacity[v]×querynum[v]);
11: visited[v] = 1;
12: dfs(G,v,visited);
13: else: #{There is a cycle finished}
14: r[v] = max(r[v],r[s]+min(Wi(v),flowcapacity[s])∗ (querynum[s]+Qi(v)));

#{update the length of the longest walk reaching this vertex on this cycle}
15: return r[c]
16: for every vertex v in Vi :
17: initialize the visited,r,flowcapacity,querynum with the same value at line:2.
18: rscc = max(rscc,dfs(SCCi,v,visited));
19: return rscc

30

Algorithm Detail Steps The detail steps of dfs from line: 2-15 in Algorithm 2 is described as
follows.
Line:2 initialize parameters:

1. flowcapacity is a list of arithmetic expressions with length |Qi (c)| and the initial value ∞ for
every element. For every vertex, it records the minimum weight when the path traverses to this vertex.

2. querynum is a list of integer with length |Vi (c)| and the initial value Qi (v) for every element. For
every vertex, it records the total query numbers when the path traverses to this vertex.

3. The visited is initialized by 0 for every element and has length |Vest(c)i | as well. It is used to
guarantee the termination during recursion.

4. r is a list of Ain initialized with query annotation for each vertex. For each vertex, it maintains
the longest query length when the recursion reaches it.

Line:7-12 updates the parameters and recursively traverses for every unvisited vertex head-
ing out from v . In each recursion, Line:8 maintains the minimum weight for the flowcapacity

and Line:9 updates the number of query vertices querynum so far when the traversing reaches v .
Line:10 updates the longest query length r alone the path when the traverse arrives vertex v by
flowcapacity[v]×querynum[v]. This computation guarantees: 1. The visiting times of each vertex
on the walk reaching v is no more than the maximum visiting it can be on this walk; 2. Only the
vertices have annotation 1 are counted in adaptivity. In this way, we accurately approximate a walk
using this path and computes the query length of this walk safely. This addresses the Approximation
Challenge and in the same time without losing the soundness.

At line: 14, if this vertex v is visited, i.e., the traverse of this path goes back to its starting point,
we only update the longest query length r[v] for v in the same way as Line:11. However, we do not
update querynum and flowcapacity in this case. This improves the accuracy and still guarantees the
soundness. The soundness is formally proved in Lemma E.1 in Appendix E. We also discuss how these
computations guarantee the soundness and improves the accuracy in the following example.

Example The example program in Figure 6 illustrates how these special operations computes ac-
curate and sound adaptivity for the program. AdaptSearch first find the SCC contains vertices y6 and x9,
SCC= (V,E) where V= {y6, x9} and E= {(y6, y6), (x9, x9), (x9, y6), (y6, x9)}. Then AdaptSearchSCC(SCC,nestedW)
takes this SCC as input. When start from vertex y6, it first finds the path y6 → y6. By updating parame-
ters through Line:10 and 14, it computes the longest query length for this path as k. As highlighted in
Line:14, we do not update querynum and flowcapacity when we identify the simple cycle y6 → y6.
This improves the accuracy and still guarantees the soundness. Because in the following recursions, we
continuously search for walks heading out from y6, the flowcapacity of this simple cycle does not
restrict the walks going out of this vertex that do not interleave with the cycle y6 → y6. However, if we
keep updating the minimum weight, then we restrict the visiting times of vertices on a walk by using
the minimum weight of vertices that do not on this walk. This leads to the unsoundness in computing
adpativity. Concretely, if we update the flowcapacity[y6] as k after visiting y6 the second time
on this walk, and continuously visit x9, then the flowcapacity[k] is updated as min(k,k2). So the
visiting times of x9 is restricted by k on the walk y6 → y6 → x9. This restriction excludes the finite
walk y6 → y6 → x9 → x9 where y6 and x9 visited by k2 times in the computation. However, the finite
walk y6 → y6 → x9 → x9 where y6 is visited k times and x9 k2 times is a qualified walk, and exactly
the longest walk we aim to find. So, by Non-updating the flowcapacity after visiting y again, we
guarantee that the visiting times of vertices on every searched walk will not be restricted by weights
not on this walk, i.e., the soundness. Line: 15 returns the adaptivity heading out from its input vertex.
Line:16-18 applies dfs on every vertex of this SCC and computes the adaptivity of this SCC by taking
the maximum value.The soundness is formally guaranteed in Lemma E.1 in Appendix E.

31

nestedW(k),
[i ← k]0;

[
x ← query(χ[0])

]1;
[

y ← query(χ[1])
]2;

while [i > 0]3 do(
[i ← i −1]4;

[
j ← k

]5;
[

y ← query(χ(ln(x)+ y))
]6;

while
[

j > 0
]7

do([
j ← j −1

]8;
[
x ← query(χ(ln(y))+χ[x])

]9
))

(a)

a0 : 1
0

x1 : 1
0 y6 : k

0

x9 : k
0

i 0 : 1
0

i 4 : k
0

j 0 : 1
0

j 8 : k
0

(b)
Figure 6: (a) The nested while loop example, (b) The estimated dependency graph generated from
AdaptFun.

Algorithm 3 Over-Approximated Adaptivity on SCC

Require: G = (V,E,W,Q) #{An Strong Connected Symbolic Weighted Directed Graph}
1: AdaptSearchscc−naive(G):
2: init

rscc: the Adaptivity of this SCC
3: for every vertex v in V:
4: rscc+= W(v)∗Q(v)
5: return r [c]

Theorem 4.4 (Soundness of AdaptSearch). For every program c, given its estimated dependency
graph Gest,

AdaptSearch(Gest) ≥ Aest(Gest).

5 Examples and Experimental Results

We present four examples, illustrating AdaptFun. Then we show our implementation of AdaptFun
and its experimental results on 18 examples including these four examples.

5.1 Examples

Example 5.1 (Multiple Rounds Algorithm). We look at an advanced adaptive data analysis algorithm
- multipleRounds algorithm in Figure 7(a). This is a simplified version of the Monitor Augment
from [4] with complete program in Appendix. It takes the user input k which decides the number
of iterations. It starts from an initialized empty tracking list I , goes k rounds and at every round,
tracking list I is updated by a query result of query(χ[I]). After r rounds, the algorithm returns the
columns of the hidden database D not specified in the tracking list I . The functions updnscore(p, a),
updcscore(p, a), update(I ,ns,cs) simplify the computations of updating ns, cs and I .

Different from twoRounds(k) in Figure 2, the query request,
[
a ← query(I)

]6 in each loop iteration
is not independent. query(I) in each iteration depends on the tracking list I from all the previous
iterations, and I is updated by all the query results in the previous iterations as well. In this sense, all
these k queries are adaptively chosen according to our discussion in overview. The program-based
dependency graph is presented in Figure 7(b). We omitted its execution-based dependency graph
Gtrace(multipleRounds(k)) because they have the same graph topology and only differ in weights.
For each vertex v in Gest(multipleRounds(k)) in Figure 7(b), we use wv to denote its weight function
in Gtrace(multipleRounds(k)).

32

multipleRounds(k),[
j ← k

]0; [I ← []]1;
[ns ← 0]2; [cs ← 0]3;

while
[

j > 0
]4

do([
j ← j −1

]5;
[
a ← query(I)

]6;[
ns ← updnscore(ns, a)

]7;[
cs ← updcscore(cs, a)

]8;[
I ← updI(I ,ns,cs)

]9
)

(a)

I 1 : 1
0

ns2 : 1
0

cs3 : 1
0

a6 : k
1

ns7 : k
0

cs8 : k
0

I 9 : k
0

j 0 : 1
0

j 5 : k
0

(b)
Figure 7: (a) The simplified multiple rounds example (b) The estimated dependency graph by AdaptFun

lR(k,r),
[a ← 0]0; [c ← 0]1;

[
j ← k

]2;

while
[

j > 0
]3

do([
d a ← query(−2∗ (χ[1]− (χ[0]×a + c))× (χ[0]))

]4;[
dc ← query(−2∗ (χ[1]− (χ[0]×a + c)))

]5;
[a ← a −r∗d a]6; [c ← c −r∗dc]7;[

j ← j −1
]8

)
;

(a)

a0 : 1
0

c1 : 1
0

d a4 : k
1

dc5 : k
0

a6 : k
0

c7 : k
0

j 0 : 1
0

j 8 : k
0

(b)
Figure 8: (a) The linear regression algorithm (b) The estimated dependency graph by AdaptFun

As the adaptivity definition in our formal adaptivity model in Definition 14, there is a finite walk
along the dashed arrows, a6 → I 9 → ns7 → ···→ ns7 , where the vertices a6, I 9 and ns7 are visited
wa6 (τ0), w I 9 (τ0) and wns7 (τ0) times respectively with input τ0. The vertex a6 has query annotation
1, and it is visited wa6 (τ0) times. In this sense, the adaptivity of this program is wa6 (τ0) given input
τ0, i.e., A(multipleRounds(k))(τ0) = wa6 (τ0). Since wa6 (τ0) counts the execution times of command[
a ← query(I)

]6;, this count is at most the loop iteration numbers, i.e., k’s initial value, ρ(τ0)k
from the initial trace τ0. Next, we show that AdaptFun provides a tight upper bound for this
example by AdaptSearch(multipleRounds(k)). It first finds a path on Gest(multipleRounds(k))
a6 : k

1 → I 9 : k
0 → ns7 : k

0 with three weighted vertices. Then AdaptSearch approximates this path to a
walk a6 : k

1 → I 9 : k
0 → ns7 : k

0 → a6 : k
1 · · · . In this walk, a6, I 9,ns7 are all visited k times respectively.

So Aest(multipleRounds(k)) = k. We know for any initial trace τ0, 〈τ0,k〉 ⇓e ρ(τ0) So we guarantee
A(multipleRounds(k))(τ0) ≤ ρ(τ0) for any τ0 and k is a sound bound.

Example 5.2 (Linear Regression Algorithm with Gradient Decent Optimization). The linear regression
algorithm with gradient decent Optimization works well in our AdaptFun as well. It computes
Aest(lR(k,r)) = k.

This linear regression algorithm aims to find a linear relationship, y = a×x+c between a dependent
variable y and an independent variable x, by approximating the model parameter a and c. In order
to have a good approximation on the model parameter a and c, it sends query to a training data
set adaptively in each iteration. This training data set contains two columns (can extend to higher
dimensional data sets), the first column contains the observed values of the independent variable x and
the second column for the dependent variable y . lR(k,r) is the program of this example written in our
language model in Figure 12(a) with input variables k and r .

33

lR(k,r) starts from initializing the linear model parameters and the counter variable in commands
0,1,2, and then goes into the while iterations. In each iteration, it computes the differential value
w.r.t. parameter a and c, through two query requests, query(−2∗ (χ[1]− (χ[0]×a + c))× (χ[0])) and
query(−2∗ (χ[1]− (χ[0]×a +c))) in commands of label 4 and 5. Then, it uses these two differential
values stored in variables d a and dc to update the model parameters a and c. In this sense, the
two query requests in each iteration depends on queries in the previous iterations and the intuitive
adaptivity rounds is k. Its program-based dependency graph, Gest(lR(k,r)) is shown in Figure 12(b),
and Gtrace(lR(k,r)) is omitted for the same reason as Example 5.1. In Figure 12(b), we omit the
edges which are constructed by the transition of flowsTo relation for concise, but these edges exist
in Gtrace(lR(k,r)) because they can be constructed directly by DEPvar relation. Given an input τ0,
there are multiple walks having the same longest query length in Gtrace(lR(k,r)), such as the walks
c7 → dc5 :→ c7 → ··· → dc5 and a6 → d a4 → a6 → ··· → d a4 along the dotted arrows. The vertices
c7,dc5, a6,d a4 in the two walks are visited wc7 , wdc5 , wa6 , wd a4 respectively. Though the different
weight functions count the execution times of the different corresponding command, the counts are
expected to be the same number, i.e., the loop iterations. And the loop iterations are indeed the initial
value of input k from initial trace τ0. In this sense, A(lR(k,r))(τ0) = wdc5 (τ0) = wd a4 (τ0). Similar to
Example 5.1, AdaptFun estimates the tight adaptivity bound, k for this example.

Example 5.3 (Multiple Rounds Odds Algorithm). The AdaptFun comes across an over-approximation
due to its path-insensitive nature. It occurs when the control flow can be decided in a particular
way in front of conditional branches, while the static analysis fails to witness. As in Figure 9(a),
multiRoundsO(k) is an example program with 1+k adaptivity rounds and two paths while loop. In
each iteration, the query

[
y ← query(χ[x])

]5 and
[
p ← query(χ[x])

]6 are based on previous query
results stored in x, which is similar to Example 5.1. The difference is that, only the query answer from[

y ← query(χ[x])
]5 in the first branch is used in the query in command 7, query(χ[ln(y)]), and the

first branch is only executed in even iterations (i = 0,2, · · ·). From the Semantics-based dependency
graph in Figure 9(b), the weight wy5 (τ0) for the vertex y5 will count the precise evaluation times of[

y ← query(χ[x])
]5, i.e., half of the iteration numbers. This number is expected to be half of the initial

value of input k from τ0. However, AdaptFun fails to realize that all the odd iterations only execute
the first branch and only even iterations execute the second branch. So it considers both branches for
every iteration when estimating the adaptivity. In this sense, the weight estimated for y5 and p6 are
both k as in Figure 9(c). As a result, AdaptFun computes y5 → x7 → y5 → ··· → x7 as the longest
walk in Figure 9(c)1 where each vertex is visited k times. In this sense, the estimated adaptivity is
1+2∗k, instead of 1+k.

Example 5.4 (Over-Defined Adaptivtiy Example). The program’s adaptivity definition in our formal
model, (in Definition 14) comes across an over-approximation on capturing the program’s intuitive
adaptivity rounds. It is resulted from the difference between its weight calculation and the variable
may-dependency definition. It occurs when the weight is computed over the traces different from the
traces used in witnessing the variable may-dependency relation.

The program multiRoundsS(k) in Figure 10(a) demonstrates this over-approximation. It is a
variant of the multiple rounds strategy with input k. In each iteration the query query(χ[y]+p) in
command 7 is based on previous query results stored in p and y Differ from Example 5.1, only the
query answer from the one iteration, the (k −2)th one is used in query request

[
p ← query(χ[y]+p)

]7.
Because the execution will reset p’s value by the constant 0 in all the other iterations at line 10 after this

1Again, we omit the edges which are constructed by the transition of flowsTo relation for concise, but these edges exist
in Gtrace(multiRoundsO(k)) because they can be constructed directly by DEPvar relation.

34

multiRoundsO(k),[
j ← k

]0;
[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do
([

j ← j −1
]3;

if (
[

j %2 == 0
]4,[

y ← query(χ[x])
]5,

[
p ← query(χ[x])

]6);[
x ← query(χ(ln(y)))

]7
)

(a)

x1 : f1

1

y5 : fk /2
1

p6 : fk /2
1

x7 : fk

1

j 0 : f1

0

j 3 : fk

0

(b)

x1 : 1
1

y5 : k
1

p6 : k
1

x7 : k
1

j 0 : 1
0

j 3 : k
0

(c)
Figure 9: (a) The multiple rounds odd example (b) The semantics-based dependency graph (c) The
estimated dependency graph from AdaptFun.

multiRoundsS(k)[
j ← 0

]0;
[
z ← query(0)

]1;
[
p ← 0

]2;

if ([k = 0]3,
[

y ← query(z)
]4,

[
skip

]5);

while
[

j 6= k
]6

do([
p ← query(χ[y]+p)

]7;
[

j ← j +1
]8

if (
[

j 6= k −2
]9,

[
p ← 0

]10,
[
skip

]10)
)
;

(a)
z1 :

wz1

1

p2 :
wp2

0

y4 :
wy4

1

p7 :
wp7

1

p10 :
wp10

0

j 0 :
w j 0

0

j 8 :
w j 8

0

(b)

Figure 10: (a) The multi rounds single example (b) The semantics-based dependency graph.

query request. In this way, all the query answers stored in p is erased and isn’t used in the query request
at next iteration, except the one at the (k −2)th iteration. In this sense, the intuitive adaptivity rounds
for this example is 2. However, our adaptivity definition fails to realize that there is only dependency
relation between p7 and p7 in one single iteration, but not in all the others. As shown in the semantics-
based dependency graph in Figure 10(b), there is an edge from p7 to itself representing the existence
of Variable May-Dependency from p7 on itself, and the visiting times of labeled variable p7 is w(τ0).
w(τ0) will count the execution times of command

[
p ← query(χ[y]+p)

]7 during execution, which is
expected to be equal to the loop iteration numbers, i.e., initial value of input k from the initial trace
τ0. As a result, the walk with the longest query length is p7 →···→ p7 → y4 → z1 with the vertex p7

visited wp7 (τ0), as the dotted arrows. The adaptivity based on this walk is 2+wp7 (τ0), instead of 2.
Though the AdaptFun is able to give us 2+k, as an accurate bound w.r.t this definition. x

5.2 Implementation Results

We implemented AdaptFun as a tool which takes a labeled command as input and outputs two upper
bounds on the program adaptivity and the number of query requests respectively. This implementation
consists of an abstract control flow graph generation, edge estimation (as presented in Section 4.3.2),
and weight estimation (as presented in Section 4.3.3) in Ocaml, and the adaptivity computation
algorithm shown in Section 4.5 in Python. The OCaml program takes the labeled command as input
and outputs the program-based dependency graph and the abstract transition graph, feeds into the
python program and the python program provides the adaptivity upper bound and the query number as
the final output.

35

We evaluated this implementation on 23 example programs with the evaluation results shown
in Table 2. In this table, the first column is the name of each program. For each program c, the
second column is its intuitive adaptivity rounds, the third column is the output of the AdaptFun
implementation, which consists of two expressions. The first one is the upper bound for adaptivity and
the second one is the upper bound for the total number of query requests in the program. And the last
column is the performance evaluation w.r.t. the program size.

The last column is the performance evaluation. The time contains three parts. The first part is the
running time of the Ocaml code, which parses the program and generates the Gest(c). The second
and third parts are the running times of the reachability bound analysis algorithm and the adaptivity
computation algorithm, AdaptSearch(c).

The first 5 programs are adapted from real world data analysis algorithms. The first two programs
twoRounds(k), multiRounds(k) are the same as Figure 2(a) and Figure 7(a). AdaptFun computes
tight adaptivity bound for the first 3. For the forth program multiRoundsO(k), AdaptFun outputs
an over-approximated upper bound 1+2∗k for the A(c), which is consistent with our expectation as
discussed in Example 5.3. The fifth program is the evaluation results for the example in Example 5.4,
where AdaptFun outputs the tight bound for A(c) but A(c) is a loose definition of the program’s actual
adaptivity rounds.

The programs from Tab. 2 line:6-17 all have small size but complex structures, to test the programs
under different situations including data, control dependency, the multiple paths nested loop with
related counters, etc. Both implementations compute the tight bound for examples in line:6-14
and over-approximate the adaptivities for 15th and 16th due to path-insensitivity. For the 17th one,
implementation I gives tight bound bound while II gives loose bound, so we keep both implementations.

The last six programs are composed of some programs above in order to test the performance
limitation when the input program is large. From the evaluation results, the performance bottleneck
is the reachability bound analysis algorithm. By implementing the bound analysis algorithm in
Section 4.3.3 (adapted from [6]), we are unable to evaluate the Jumbo in a reasonable time period.
Alternatively, we implement another light reachability bound analysis algorithm and compute the
adaptivity for jumboS,jumbo and big effectively.

Overall for these examples, our system gives both the accurate adaptivity definition and estimated
adaptivity upper bound through our formalization and analysis framework AdaptFun. The complete
programs are defined below from Example 5.5 to Example H.14 in the Appendix H.

36

Table 1: Experimental results of AdaptFun implementation

Program c adaptivity
AdaptFun performance

AdaptSearch(c) (I | II) query# (I | II) lines running time (second)
Ocaml Weight AdaptSearch

twoRounds(k) 2 2|− k +1|− 8 0.0005 0.0017 | 0.0002 0.0003
multiRounds(k) k k|max(1,k) k|− 10 0.0012 0.0017 | 0.0002 0.0002

lRGD(k,r) k k|max(1,k) 2k|− 10 0.0015 0.0072 | 0.0002 0.0002
mROdd(k) 1+k 2+max(1,2k)|− 1+3k|− 10 0.0015 0.0061 | 0.0002 0.0002

mRSingle(k) 2 1+max(1,k)|− 1+k|1+k 9 0.0011 0.0075 | 0.0002 0.0002
ifCD() 3 3|4 3|4 5 0.0005 0.0003 | 0.0001 0.0001

while(k) 1+k/2 1+max(1,k/2)|− 1+k/2|− 7 0.0021 0.0015| 0.0001 0.0001
whileRV(k) 1+2k 1+2k|1+max(1,2k) 2+3k|− 9 0.0016 0.0056| 0.0002 0.0001

whileVCD(k) 1+2Qm Q +max(1,2Qm) | - 2+2Qm | - 6 0.0016 0.0007 |0.0002 0.0001
whileMPVCD(k) 2+Qm 2+Qm | - 2+2Qm | - 9 0.0017 0.0043 | 0.0002 0.0001

nestWhileVD(k) 2+k2 3+k2 |− 1+k +k2 |− 10 0.0018 0.0126 | 0.0002 0.0001
nestWhileRV(k) 1+k +k2 2+k +k2 |− 2+k +k2 |− 10 0.0017 0.0186 | 0.0002 0.0001
nestWhileMV(k) 1+2k 1+max(1,2k)|− 1+k +k2 |− 10 0.0016 0.0071 | 0.0002 0.0001

nestWhileMPRV(k) 1+k +k2 3+k +k2 |− 2+2k +k2 |− 10 0.019 0.0999 | 0.0002 0.0002
whileM(k) 1+k 2+max(1,2k)|− 1+3k|− 9 0.0017 0.0062 | 0.0002 0.0001

whileM2(k) 1+k 2+k|− 1+3k|− 9 0.0017 0.0062 | 0.0002 0.0001
nestWhileRC(k) 1+3k 1+3k|2+3k +k2 1+3k|1+k +k2 11 0.019 0.2669 | 0.0002 0.0007
mRComplete(k,N) k k|− k|− 27 0.0026 85.9017 | 0.0003 0.0004

mRCompose(k) 2k 2k|− 2k|− 46 0.0036 5104 | 0.0003 0.0013
seqCompose(k) 12 12 | - 326|− 502 0.0426 1.2743 | 0.0003 0.0223
tRCompose(k) 2 ∗|2 ∗|1+5k +2k2 42 0.0026 * | 0.0003 0.0005

jumboS(k) max(20,8+k2) ∗|max(20,6+k +k2) ∗|44+k +k2 71 0.0035 *| 0.0003 0.0085
jumbo(k) max(20,10+k +k2) ∗|max(20,12+k +k2) ∗|286+26k +10k2 502 0.0691 * | 0.0009 0.018

big(k) 22+k +k ∗k ∗|28+k +k2 ∗|121+11k +4k2 214 0.0175 * | 0.0004 0.002

5.3 More Discussions on The Evaluated Examples

5.3.1 More on The Two Rounds Adaptive Data Analysis

Example 5.5 (Complete Two Rounds Algorithm).

twoRounds(k),

[a ← []]1;[
j ← k

]2;

while
[

j > 0
]3

do([
x ← query(χ[k − j] ·χ[k])

]4;[
j ← j −1

]5;

[a ← x :: a]6
)
;[

l ← (sign
(∑

i∈[k]χ[i]× ln 1+a[i]
1−a[i]

)
)
]7

Algorithm 4 A two-round analyst strategy for random data (The example in [2])

Require: Mechanism M with a hidden data set D ∈ {−1,+1}n×(k+1) ⊂DB.
for j ∈ [k] do.

define q j (d) = d(j) ·d(k) where d ∈ {D(i) | i = 0, · · · ,n} ⊆ {−1,+1}k+1.
let a j =M(q j)
{In the line above, M computes approx. the exp. value of q j over D. So, a j ∈ [−1,+1].}

define qk (d) = d(k) ·sign(∑
i∈[k] x(i) · ln 1+ai

1−ai

)
where x ∈ {−1,+1}k+1.

{In the line above, sign(y) =
{ +1 if y ≥ 0

−1 otherwise
.}

let ak+1 =M(qk+1)
{In the line above, M computes approx. the exp. value of qk+1 over X . So, ak+1 ∈ [−1,+1].}
return ak+1.

Ensure: ak+1 ∈ [−1,+1]

37

multiRounds(k,c,N),[
j ← N

]0; [cs ← 0]1; [ns ← 0]2; [I ← 0]3; [w ← k]4;

while
[

j > 0
]5

do([
j ← j −1

]6; [cs ← 0+ cs]7; [ns ← 0+ns]8
)
;

while [w > 0]9 do(
[w ← w −1]10;

[
p ← c

]11;
[
q ← c

]12;
[
a ← query(χ[I])

]13;

[i ← N]14; while [i > 0]15 do(
[i ← i −1]16;

[
cs(i) ← cs(i)+ (a −p)∗ (q −p)

]17;

if ([I < i]18,
[
ns(i) ← ns(i)+ (a −p)∗ (q −p)

]19, [ns ← ns(i)]20)
)
;

[i 2 ← N]21;
while [i 2 > 0]22 do(
[i 2 ← i 2−1]23; if ([ns(i 2) > max(cs)]24, [I ← i + I]25, [I ← I]26)

))
(a)

Figure 11: (a) The labeled program implementing the multiple round algorithm (b)The same program
in the SSA version

5.3.2 mRComplete

Algorithm 5 A multi-round analyst strategy for random data base [2]
Example 5.6 (Complete Multiple Round Algorithm). Require: Mechanism M with a hidden state X ∈ [N]n

sampled u.a.r., control set size c
Define control dataset C = {0,1, · · · ,c −1}
Initialize N scor e(i) = 0 for i ∈ [N], I =; and C scor e(C (i)) = 0 for i ∈ [c]
for j ∈ [k] do

let p = uniform(0,1)
define q(x) = bernoulli(p) .
define qc(x) = bernoulli(p) .
let a =M(q)
for i ∈ [N] do

N scor e(i) = N scor e(i)+ (a −p)∗ (q(i)−p) if i ∉ I
for i ∈ [c] do

C scor e(C (i)) =C scor e(C (i))+ (a −p)∗ (qc(i)−p)
let I = {i |i ∈ [N]∧N scor e(i) > max(C scor e)}
let D = D \ I

return D.

5.3.3 lRGD

Example 5.7 (Linear Regression Algorithm with Gradient Decent Optimization). The linear regression
algorithm with gradient decent Optimization works well in our AdaptFun as well. It computes
Aest(lR(k,r)) = k.

This linear regression algorithm aims to find a linear relationship, y = a×x+c between a dependent
variable y and an independent variable x, by approximating the model parameter a and c. In order
to have a good approximation on the model parameter a and c, it sends query to a training data
set adaptively in each iteration. This training data set contains two columns (can extend to higher
dimensional data sets), the first column contains the observed values of the independent variable x and

38

lR(k,r),
[a ← 0]0; [c ← 0]1;

[
j ← k

]2;

while
[

j > 0
]3

do([
d a ← query(−2∗ (χ[1]− (χ[0]×a + c))× (χ[0]))

]4;[
dc ← query(−2∗ (χ[1]− (χ[0]×a + c)))

]5;
[a ← a −r∗d a]6; [c ← c −r∗dc]7;[

j ← j −1
]8

)
;

(a)

a0 : 1
0

c1 : 1
0

d a4 : k
1

dc5 : k
0

a6 : k
0

c7 : k
0

j 0 : 1
0

j 8 : k
0

(b)
Figure 12: (a) The linear regression algorithm (b) The estimated dependency graph by AdaptFun

the second column for the dependent variable y . lR(k,r) is the program of this example written in our
language model in Figure 12(a) with input variables k and r .

lR(k,r) starts from initializing the linear model parameters and the counter variable in commands
0,1,2, and then goes into the while iterations. In each iteration, it computes the differential value
w.r.t. parameter a and c, through two query requests, query(−2∗ (χ[1]− (χ[0]×a + c))× (χ[0])) and
query(−2∗ (χ[1]− (χ[0]×a +c))) in commands of label 4 and 5. Then, it uses these two differential
values stored in variables d a and dc to update the model parameters a and c. In this sense, the
two query requests in each iteration depends on queries in the previous iterations and the intuitive
adaptivity rounds is k. Its program-based dependency graph, Gest(lR(k,r)) is shown in Figure 12(b),
and Gtrace(lR(k,r)) is omitted for the same reason as Example 5.1. In Figure 12(b), we omit the
edges which are constructed by the transition of flowsTo relation for concise, but these edges exist
in Gtrace(lR(k,r)) because they can be constructed directly by DEPvar relation. Given an input τ0,
there are multiple walks having the same longest query length in Gtrace(lR(k,r)), such as the walks
c7 → dc5 :→ c7 → ··· → dc5 and a6 → d a4 → a6 → ··· → d a4 along the dotted arrows. The vertices
c7,dc5, a6,d a4 in the two walks are visited wc7 , wdc5 , wa6 , wd a4 respectively. Though the different
weight functions count the execution times of the different corresponding command, the counts are
expected to be the same number, i.e., the loop iterations. And the loop iterations are indeed the initial
value of input k from initial trace τ0. In this sense, A(lR(k,r))(τ0) = wdc5 (τ0) = wd a4 (τ0). Similar to
Example 5.1, AdaptFun estimates the tight adaptivity bound, k for this example.

39

Appendices

A Proofs of Lemmas for the Language Model

A.1 Proof of Lemma 1.1

Proof. This is proved directly by the consistency property of the command label.

A.2 Proof of Lemma 2.1

Proof. Taking arbitrary trace τ ∈T, by induction on program c, we have the following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ :: (x, l , v,•)〉, for some v ∈N.
Picking τ′ = τ :: (x, l , v,•) and τ′′ = [(x, l , v,•)], it is obvious that τ++τ′′ = τ′.
This case is proved.

case: c = [x ← query(ψ)]l ′

This case is proved in the same way as case: c = [x ← e]l .

case: while [b]lw do c
By the first rule applied to c, there are two cases:

sub-case: while-t
If the first rule applied to is while-t, we have
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 (1).
Let τ′w ∈T be the trace satisfying following execution:
〈cw ,τ :: (b, lw ,true,•)〉 ∗−→〈skip,τ′w 〉
By induction hypothesis on sub program cw with starting trace τ :: (b, lw ,true,•) and ending trace τ′w ,
we know there exist τw ∈T such that τ′w = τ :: (b, lw ,true,•)++τw .
Then we have the following execution continued from (1):
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 ∗−→〈 while [b]lw do cw ,τ :: (b, lw ,true,•)++τw 〉 (2)
By repeating the execution (1) and (2) until the program is evaluated into skip, with trace τi ′

w for
i = 1, · · · ,nn ≥ 1 in each iteration, we know in the i − th iteration, there exists τi

w ∈ T such that
τi ′

w = τ(i−1)′
w :: (b, lw ,true,•)++τi ′

w

Then we have the following execution:
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ :: (b, lw ,true,•)〉 ∗−→〈 while [b]lw do cw ,τn′

w 〉 −→while-f

〈skip,τn′
w :: (b, lw ,false,•)〉 and τn′

w = τ :: (b, lw ,true,•)++τ1
w :: · · · :: (b, lw ,true,•)++τn

w .
Picking τ′ = τn′

w :: (b, lw ,false,•) and τ′′ = [(b, lw ,true,•)]++τ1
w :: · · · :: (b, lw ,true,•)++τn

w , we have
τ++τ′′ = τ′.
This case is proved.

sub-case: while-f
If the first rule applied to c is while-f, we have
〈 while [b]lw do cw ,τ〉 −→while-f 〈skip,τ :: (b, lw ,false,•)〉, In this case, picking τ′ = τ :: (b, lw ,false,•)
and τ′′ = [(b, lw ,false,•)], it is obvious that τ++τ′′ = τ′.
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = while [b]l do c.

40

case: c = cs1;cs2

By the induction hypothesis on cs1 and cs2 separately, we have this case proved.

A.3 Proof of Lemma 2.0.1

Proof. By unfolding the aq ∈aq t , we have the following cases:

case: t = []
The hypothesis is false, this case is proved.

case: t = aq′ :: t ′∧aq′ =aq aq

Let t1 = [] and t2 = t ′, by unfolding the list concatenation operation, we have:

t1 ++[aq′]++t2 = []++[aq′]++t ′ = t

Since aq′ =aq aq by the hypothesis, this case is proved.

case: t = aq′ :: t ′∧aq′ 6=aq aq

By induction hypothesis on aq ∈aq t ′, we know:

∃t ′1, t ′2,aq′′. s.t ., (aq=aq aq
′′)∧ t ′1 ++[aq′′]++t ′2 = t ′

Let t1 = aq′ :: t ′1 and t2 = t ′2, by unfolding the list concatenation operation, we have:

t1 ++[aq′′]++t2 = (aq′ :: t ′1)++[aq′′]++t ′2 = aq′ :: t ′ = t

Since aq′′ =aq aq by the hypothesis, this case is proved.

B Proof of Theorem 4.2

Theorem B.1 (Soundness of AdaptFun). For every program c, its estimated adaptivity is a sound
upper bound of its adaptivity.

∀τ0 ∈T0(c), v ∈N∞ . 〈Aest(c),τ0〉 ⇓e v =⇒ A(c)(τ0) ≤ c

Proof Summary:
construct the program-based graph Gest(c) = (Vest,Eest,West,Qest)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
1. prove the one-on-one mapping from Vest to Vtrace, in Lemma B.1;
2. prove the total map from Etrace to Eest, in Lemma B.2;
3. prove that the weight of every vertex in Gtrace is bounded by the weight of the same vertex in Gest,
in Lemma B.3;
4. prove the one-on-one mapping from Qest to Qtrace, in Lemma B.4;
5. show every walk in WK(Gtrace) is bounded by a walk in WK(Gest) of the same lenq.
6. get the conclusion that A(c) is bounded by the Aest(c).

Proof. Given a program c, we construct its
program-based graph Gest(c) = (Vest,Eest,West,Qest) by Definition 24
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace) by Definition 8.

41

The parameter (c) for the components in the two graphs are omitted for concise.
According to the Definition 27 and Definition 14, it is sufficient to show:

∀τ ∈T . 〈max
{
lenq(k) | k ∈WK(Gest(c))

}
,τ〉 ⇓e n =⇒ n ≥ max

{
lenq(k)(τ) | k ∈WK(Gtrace(c))

}
Then it is sufficient to show that:

∀kt ∈WK(Gtrace(c),∃kp ∈WK(Gest(c)) . ∀τ ∈T . lenq(kp),τ ⇓e n =⇒ n ≥ lenq(kt (τ))

Let kt ∈WK(Gtrace(c)) be an arbitrary walk in Gtrace(c), and τ ∈T be arbitrary trace.
Then, let (ep1, · · · ,ep(n−1)) and (v1, · · · , vn) be the edges and vertices sequence for kt (τ).
By Lemma B.1 and Lemma B.2, we know

∀ei ∈ kt . ei = (vi , vi+1) =⇒ ∃epi . epi = (vi , vi+1)∧epi ∈ Eest
Then we construct a walk kp with an edge sequence (ep1, · · · ,ep(n−1)) with a vertices sequence
(v1, · · · , vn) where epi = (vi , vi+1) ∈ Eest for all epi ∈ (ep1, · · · ,ep(n−1)).
Let n ∈N such that 〈lenq(kp),τ〉 ⇓e n, then, it is sufficient to show

kp ∈ Gest(c)∧n ≥ lenq(kt)(τ)

To show kp ∈ Gest(c), by Definition 12 for finite walk, we know

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ Wtrace(c) . visit((v1, · · · , vn), (vi)) ≤ wi (τ)

By Lemma B.3, we know for every

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ West(c),ni ∈N . 〈wi ,τ〉 ⇓e ni =⇒ wi (τ) ≤ ni (?)

Then, by Definition 25, we know the occurrence times for every vi ∈ (v1, · · · , vn) is bound by the
arithmetic expression wi where (vi , wi) ∈ West(c).
So we have kp ∈WK(Gest) proved.
In order to show n ≥ lenq(kt)(τ), it is sufficient to show

∀vi ∈ (v1, · · · , vn), (vi , wi) ∈ West(c), (vi , w ′
i) ∈ Wtrace(c),ni ∈N . 〈wi ,τ〉 ⇓e ni

=⇒ ∑
Qtrace(c)(vi)=1

w ′
i (τ) ≤ ∑

Qest(c)(vi)=1
ni

By Lemma B.4 and Definition 26, we know for every vi , Qtrace(c)(vi) = Qest(c)(vi)
Then by (?), we know

∑
Qtrace(c)(vi)=1

w ′
i (τ) ≤ ∑

Qest(c)(vi)=1
ni .

Then we have n ≥ lenq(kt)(τ) proved.
This theorem is proved.

The following are the four lemmas used above, showing the correspondence properties between
the program based graph and trace based graph.

Lemma B.1 (One-on-One Mapping of vertices from Gtrace to Gest). Given a program c with its
program-based graph Gest(c) = (Vest,Eest,West,Qest) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace),
then for every v ∈VAR×N, v ∈ Vest if and only if v ∈ Gtrace.

∀c ∈C, v ∈VAR×N . Gest(c) = (Vest,Eest,West,Qest)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ v ∈ Vest ⇐⇒ v ∈ Vtrace

42

Proof. Proof Summary: Proving by Definition 24 and Definition 8.
Taking arbitrary program c, by Definition 24 and Definition 8, we have
its program-based graph Gest(c) = (Vest,Eest,West,Qest)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
By the two definitions, we also know Vtrace = LVc and Vest = LVc .
Then we know Vtrace = Vest, i.e., for arbitrary v ∈VAR×N, v ∈ Vest ⇐⇒ v ∈ Vtrace.

Lemma B.2 (Mapping from Egdes of Gtrace to Gest). Given a program c with its program-based graph
Gest(c) = (Vest,Eest,West,Qest) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace), then
for every e = (v1, v2) ∈ Etrace, there exists an edge e ′ = (v ′

1, v ′
2) ∈ Eest with v1 = v ′

1 ∧ v2 = v ′
2.

∀c ∈C . Gest(c) = (Vest,Eest,West,Qest)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ ∀e = (v1, v2) ∈ Etrace . ∃e ′ ∈ Eest . e ′ = (v1, v2)

Proof. Proof Summary: Proving by Lemma B.1, Lemma C.1 Definition 24 and Definition 8
Taking arbitrary program c, by Definition 24 and Definition 8, we have
its program-based graph Gest(c) = (Vest,Eest,West,Qest)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
Taking arbitrary edge e = (xi , y j) ∈ Etrace, it is sufficient to show (xi , y j) ∈ Eest.
By Lemma B.1, we know xi , y j ∈ Vest.
By definition of Etrace, we know DEPvar(xi , y j ,c).
By Theorem C.1, we know ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c).

Then by definition of Eest, we know (xi , y j) ∈ Eest. This Lemma is proved.

Lemma B.3 (Weights are bounded). Given a program c with its program-based graph Gest(c) =
(Vest,Eest,West,Qest) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace), for every v ∈
Vtrace, there is v ∈ Vest and Wtrace(v) ≤ West(v).

∀c ∈C . Gest(c) = (Vest,Eest,West,Qest)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ ∀(x l , wt) ∈ Wtrace, (x l , wp) ∈ West,τ,τ′ ∈T, v ∈N . 〈wp ,τ〉 ⇓e v =⇒ wt (τ) ≤ v

Proof. Proof Summary: Proving by Definition 24, Definition 8 and relying on the soundness of
Reachability Bound Analysis.
Taking arbitrary program c, by Definition 24 and Definition 8, we have
its program-based graph Gest(c) = (Vest,Eest,West,Qest)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
Taking arbitrary (x l , wt) ∈ Wtrace, (x l , wp) ∈ West,τ,τ′ ∈T, satisfying:
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈wp ,τ〉 ⇓e v
By soundness of reachability bound analysis in Theorem D.2, we know cnt(τ′, l) ≤ v
By definition 8, we know wt (τ) = cnt(τ′, l), then we have wt (τ) ≤ v and this is proved.

Lemma B.4 (One-on-One Mapping for Query Vertices). Given a program c with its program-based
graph Gest(c) = (Vest,Eest,West,Qest) and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace),
then for every (xi ,n) ∈VAR×N× {0,1}, (xi ,n) ∈ Qtrace if and only if (xi ,n) ∈ Qest.

∀c ∈C, (xi ,n) ∈VAR×N× {0,1} .
Gest(c) = (Vest,Eest,West,Qest)∧Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace)
=⇒ (xi ,n) ∈ Qtrace ⇐⇒ (xi ,n) ∈ Qest

43

Proof. Proving by Definition 24, Definition 8.
Taking arbitrary program c, by Definition 24 and Definition 8, we have
its program-based graph Gest(c) = (Vest,Eest,West,Qest)
and trace-based graph Gtrace(c) = (Vtrace,Etrace,Wtrace,Qtrace).
By the two definitions, we also know Qtrace = Qest, i.e., for arbitrary (xi ,n) ∈ VAR×N× {0,1},
(xi ,n) ∈ Qtrace ⇐⇒ (xi ,n) ∈ Qest.
This lemma is proved. �

44

C Soundness of Edge Estimation

C.1 Main Theorem

Theorem C.1 (DEPvar implies flowsTo). Given a program c, for all xi , y j ∈ LVc , if DEPvar(xi , y j ,c),
then there exist zr1

1 , · · · , zrn
n ∈ LVc with n ≥ 0 such that flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)

∀xi , y j ∈ LVc .DEPvar(xi , y j ,c)

=⇒
(
∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)

)
Proof Summary, for arbitrary two xi , y j ∈ LVc , with Variable May-Dependency relation, in order to

show there exists a "flows-to chain" relation from the static analysis results from xi to y j , it is sufficient
to show:
1. xi is directly used in the expression of the assignment command associated to y j , or a boolean
expression of the guard for a if or while command with the assignment command associated to y j

showing up in the body of that command, we call it, xi directly flows to y j , i.e., flowsTo(xi , y j ,c);
2. otherwise, there exists another labelled variable z l with variable May-Dependency relation on xi

and z l directly flows to y j , where the variable May-Dependency relation between xi and z l implies a
"sub flowsto-chain" from zi to z l , i.e.,(
∃z l ∈ LVc .

(
DEPvar(xi , z l ,c) =⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , z l ,c)

)∧
flowsTo(z l , y j ,c)

)
.

By definition of DEPvar(xi , y j ,c), let D ∈DB be the dataset, and τ ∈ T, εx ,εy be the trace and two
events satisfying the definition, with π1(εx) = x and π1(εy) = y ,

(flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)
∨(∃εz ∈ τ′ . εz ∈Easn∧DEPe(εx ,εz ,τ[εx : εz],c,D)

=⇒ ∃n ∈N, zr1
1 , · · · , zrn

n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1
1 ,c)∧·· ·∧flowsTo(zrn

n ,π1(εz)π2(εz),c))
∧flowsTo(π1(εz)π2(εz),π1(ε2)π2(ε2),c)

It is clearer to show it in two lemmas:
1. Existence of a middle event: in Lemma C.3.
2. The middle event with a sub-trace implies a "sub flowsto-chain", by induction on the trace τ

∀D ∈DB,c ∈C,τ ∈T . ∀ε1,ε2 ∈E . ε1,ε2 ∈Easn∧∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2,τ,c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(ε2)π2(ε2),c)

with the induction hypothesis:

∀εi h1,εi h2 ∈ τ . εi h1,εi h2 ∈Easn∧∃τ′ ∈T . τ[εi h1 : εi h2] = [εi h1]++τ′++[εi h2] =⇒ DEPe(εi h1,εi h2,τ[εi h1 : εi h2],c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(εi h1)π2(εi h1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(εi h2)π2(εi h2),c)

Proved in Theorem C.2 with the main proof logic:
(1). obtaining the existence of εz ∈Easn with dependency on εx , and a "direct flowsto" from εz to εy

from step 1;
(2). from the dependency of the εz with εx on the subtrace, obtaining a "sub flowsto-chain" by induction
hypothesis;
(3). composing the "sub flowsto-chain" from (2) with the "direct flowsto" from (1), and getting the
conclusion of the complete "flowsto chain".

45

Proof. Taking arbitrary xi , y j ∈ LVc , by definition of DEPvar(xi , y j ,c), let D ∈DB be the dataset,
and τ ∈ T, εx ,εy be the trace and two events satisfying the definition, with π1(εx)π2(εx) = xi and
π1(εy)π2(εy) = y j , it is sufficient to show:

DEPe(εx ,εy ,τ,c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(xi , zr1

1 ,c)∧·· ·∧flowsTo(zrn
n , y j ,c)

By Theorem C.2, we have this theorem proved.

C.2 Soundness of flowsTo w.r.t. the Event

For concise of the proof, we introduce some conventional operators as follows.

Definition 28 (Subtrace). Subtrace: [:] :T→E→E→T

τ[ε1 : ε2],

τ′[ε1 : ε2] τ= ε :: τ′∧ε 6=e ε1

ε1 :: τ′[: ε2] τ= ε :: τ′∧ε=e ε1

[] τ= []

For any trace τ and two events ε1,ε2 ∈E, τ[ε1 : ε2] takes the subtrace of τ starting with ε1 and ending
with ε2 including ε1 and ε2.
We use τ[: ε2] as the shorthand of subtrace starting from head and ending with ε2, and similary for
τ[ε1 :].

τ[: ε],

ε′ :: τ′[: ε] τ= ε′ :: τ′∧ε′ 6=e ε

ε′ τ= ε′ :: τ′∧ε′ =e ε

[] τ= []
τ[ε :],

τ′[ε :] τ= ε′ :: τ′∧ε 6=e ε

′

ε′ :: τ′ τ= ε′ :: τ′∧ε=e ε
′

[] τ= []

Program Entry Point: entryc : Command→N

entryc ,

l c = [skip]l

l c = [x ← e1]l

l c = [
x ← query(ψ1)

]
l

l c1 = if ([b]l ,ct ,c f)
l c = while [b]l do c ′

entryc1 c = c1;c2

Theorem C.2 (DEPe implies flowsTo). For every D ∈DB,c ∈ C,τ ∈ T . ∀ε1,ε2 ∈ E . ε1,ε2 ∈ Easn,
if ∃τ′ ∈ T . τ = [ε1]++τ′++[ε2] and DEPe(ε1,ε2,τ,c,D), then zr1

1 , · · · , zrn
n ∈ LVc with n ≥ 0 such that

flowsTo(xi , zr1
1 ,c)∧·· ·∧flowsTo(zrn

n , y j ,c)

∀D ∈DB,c ∈C,τ ∈T . ∀ε1,ε2 ∈E . ε1,ε2 ∈Easn∧∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2,τ,c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(ε2)π2(ε2),c)

Proof Summary: I. Vacuously True cases, where trace doesn’t satisfy the hypothesis
II. Base case where τ= [ε1;ε2]
III. inductive case where τ= [ε1, · · · ,ε2].
1. Existence of a middle event:
Proved by showing a contradiction, with detail in Lemma C.3.
2. The middle event with a sub-trace implies a "sub flowsto-chain", informally:

46

(1). obtaining the existence of εz ∈Easn with dependency on εx , and a "direct flowsto" from εz to εy by
Lemma C.3.
(2). from the dependency of the εz with εx on the subtrace, obtaining a "sub flowsto-chain" by induction
hypothesis;
(3). composing the "sub flowsto-chain" from (2) with the "direct flowsto" from (1), and getting the
conclusion of the complete "flowsto chain".

Proof. Taking arbitrary D ∈DB,c ∈C, by induction on the trace τ we have the following cases:

Case 1. (τ= [])
Since for all ε1,ε2 ∈Easn, 6 ∃τ′ ∈T,satisfies [] = [ε1]++τ′++[ε2], the theorem is vacuously true.

Case 2. (ε ∈E,τ= [ε])
Since for all ε1,ε2 ∈Easn, 6 ∃τ′ ∈T,satisfies [] = [ε1]++τ′++[ε2], the theorem is vacuously true.

Case 3. (ε′1,ε′2 ∈E, τ= [ε′1;ε′2])
To show:

∀ε1,ε2 ∈Easn . ∃τ′ ∈T . [ε′1;ε′2] = [ε1]++τ′++[ε2]
=⇒ DEPe(ε1,ε2, [ε1;ε2],c,D) =⇒ flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

Taking arbitrary ε1,ε2 ∈Easn, by law of excluded middle, there are 2 cases:
ε1 = ε′1 ∧ε2 = ε′2
¬(ε1 = ε′1 ∧ε2 = ε′2)
In case of ¬(ε1 = ε′1 ∧ε2 = ε′2), since 6 ∃τ′ ∈T,satisfies [ε′1;ε′2] = [ε1]++τ′++[ε2], the theorem is vacuously
true.
In case of ε1 = ε′1 ∧ε2 = ε′2, let τ′ = [], we know ∃τ′ ∈T satisfying [ε1;ε2] = [ε1]++τ′++[ε2].
Then it is sufficient to show:

DEPe(ε1,ε2, [ε1;ε2],c,D) =⇒ flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

By Lemma C.1, we have this case proved.

Case 4. (ε′1,ε′2 ∈E, τi h ∈T,τ= [ε′1]++τi h++[ε′2]∧τi h 6= [])
It is sufficient to show:

∀ε1,ε2 ∈E . ε1,ε2 ∈Easn∧∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2, [ε′1]++τi h++[ε′2],c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(ε2)π2(ε2),c)

with the induction hypothesis:

∀εi h1,εi h2 ∈ τ . εi h1,εi h2 ∈Easn∧∃τ′ ∈T . τ[εi h1 : εi h2] = [εi h1]++τ′++[εi h2] =⇒ DEPe(εi h1,εi h2,τ[εi h1 : εi h2],c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(εi h1)π2(εi h1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(εi h2)π2(εi h2),c)

Taking arbitrary ε1,ε2 ∈Easn, by law of excluded middle, there are 2 cases:
ε1 = ε′1 ∧ε2 = ε′2
¬(ε1 = ε′1 ∧ε2 = ε′2)
In case of ¬(ε1 = ε′1 ∧ ε2 = ε′2), since 6 ∃τ′ ∈ T,satisfies [ε′1]++τi h++[ε′2] = [ε1]++τ′++[ε2], the theorem is
vacuously true.
In case of ε1 = ε′1 ∧ε2 = ε′2, let τ′ = τi h , we know ∃τ′ ∈T satisfying [ε′1]++τi h++[ε′2] = [ε1]++τ′++[ε2].
To show:

DEPe(ε1,ε2, [ε1]++τi h++[ε2],c,D)
=⇒ ∃n ∈N, zr1

1 , · · · , zrn
n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1

1 ,c)∧·· ·∧flowsTo(zrn
n ,π1(ε2)π2(ε2),c)

47

By Lemma C.3, we know:

flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)
∨∃ε ∈ τi h . DEPe(ε1,ε,τ[ε1 : ε],c,D)∧flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)

In first case, we have flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c) proved directly.
In the second case, let εi h be this event, from the induction hypothesis, we know:

∃n ∈N, zr1
1 , · · · , zrn

n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1
1 ,c)∧·· ·∧flowsTo(zrn

n ,π1(εi h)π2(εi h),c)

Then we know:

∃n ∈N, zr1
1 , · · · , zrn

n ∈ LVc . n ≥ 0∧flowsTo(π1(ε1)π2(ε1), zr1
1 ,c)∧·· ·∧flowsTo(zrn

n ,π1(εi h)π2(εi h),c))
∧flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)

This case is proved.

C.3 Inversion Lemmas and Helper Lemmas

The following are the inversion lemmas and helper lemmas used in the proof of Theorem C.2 above,
showing the correspondence properties between the trace based semantics and the program analysis
results.

Lemma C.1 (The One-Step Event Dependency Inversion). For every c ∈C,D ∈DB and two assign-
ment events ε1,ε2 ∈Easn, if DEPe(ε1,ε2, [ε1;ε2],c,D), then, flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c).

∀ε1,ε2 ∈Easn,c ∈C,D ∈DB . DEPe(ε1,ε2, [ε1;ε2],c,D)
=⇒ flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

Proof Summary:
1. case of (the labelled unique assignment command associated to the ε2 is executed but the value
assigned to the variable in this event is changed in second execution)
show x directly used by the assignment of the second event
2.(the labelled unique assignment command associated to the ε2 isn’t executed in second execution)
show x is directly used by the boolean expression for a conditional command and second event shows
in the body of that conditional command

Proof. By the Definition 10 for DEPe(ε1,ε2, [ε1;ε2],c,D), we know there are 2 cases:

case: 1
(the labelled unique assignment command associated to the ε2 is executed but the value assigned
to the variable in this event is changed in second execution).

Proof of the Basecase: Case 1. We have the following by the definition DEPe(ε1,ε2, [ε1;ε2],c,D) for
case 1:

∃τ0,τ1,τ′ ∈T,ε′1 ∈Easn,ε′2 ∈E,c1,c2 ∈C . Diff(ε1,ε′1)∧
 〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1;ε2]〉∧ 〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[ε′2]〉∧

Diff(ε2,ε′2)∧cnt(τ) π2(ε2) = cnt(τ′) π2(ε2)

(4)

48

Let τ0,τ1,τ′ ∈T,ε′2 ∈E,ε′1 ∈Easn,c1,c2 be the traces, events and commands satisfying the executions,
by Inversion Lemma C.7 on ε1, ε2, we have the following instance of the first execution in Eq. 4,

〈c,τ0〉→∗ 〈[x1 ← e1/query(ψ1)]π2(ε1);c1,τ1〉→assn/query 〈c1,τ1++[ε1]〉
→∗ 〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε1]〉→assn/query 〈c2,τ1++[ε1;ε2]〉

2 (5)

, where x1 =π1(ε1), l1 =π2(ε1), x2 =π1(ε2), l2 =π2(ε2), and e1/ψ1, e2/ψ2 are the expressions of the
assignment commands associated to the ε1 and ε2 from Lemma C.7.
By Diff(ε2,ε′2) and the command label consistency, we also have the instance of second execution in
Eq. 4 as follows:

〈c1,τ1++[ε′1]〉→∗ 〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1] ·τ′2〉→assn/query 〈c2,τ1++[ε′1] ·τ′2++[ε′2]〉 (6)

From Eq. 4, we also have
cnt(τ′)l2 = cnt([])l2 = 0 (7)

By Inversion Lemma C.10 and the execution in Eq. 5, we know:

c1 =c [skip]∗; [x2 ← e2/query(ψ2)]l2 ;c2
3

By substituting c1 in Eq. 6, the following subproof shows there is only 1 qualified instance of the
execution in Eq. 6.

Subproof. There are two possibilities by the law of excluded middle:
[x2 ← e2/query(ψ2)]l2 ∈c c2

or [x2 ← e2/query(ψ2)]l2 ∉c c2.

1. [x2 ← e2/query(ψ2)]l2 ∉c c2

In this case, we have the following execution instance: 4

〈c1,τ1++[ε′1]〉→skip∗
〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1]〉→assn/query 〈c2,τ0++τ1++[ε′1;ε′2]〉

2. [x2 ← e2/query(ψ2)]l2 ∈c c2

By Inversion Lemma C.9, we have a while conditional command (while [bw]l
w do cw) in c2,

where [x2 ← e2/query(ψ2)]l2 ∈c cw . Then, we have the following possible execution instances

〈c1,τ1++[ε′1]〉→skip∗
〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1]〉→assn/query 〈c2,τ1++[ε′1]++[ε′2]〉

〈c1,τ1++[ε′1]〉→skip∗ 〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1]〉→assn/query 〈c2,τ1++[ε′1]++[(x2, l2, v ′
2)]〉

→∗ 〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1]++[(x2, l2, v ′
2)]++τ3〉

→assn/query 〈c2,τ1++[ε′1]++[(x2, l2, v ′
2)]++τ3++[ε′2]〉

· · ·
, where each execution instance iterates the conditional command (while [bw]l

w do cw) in c2,
0,1 or more times.
For each execution instance, we have the corresponding instance of τ′ as follows:

2x ← e/query(ψ) denotes variable x is assigned by either an expression e or query query(ψ)
3([skip];)∗ denotes a sequence command only composed of [skip] commands.
4→skip∗

denotes the rule applied on every evaluation step of this execution is the skip rule.

49

τ′ = []
τ′ = [(x2, l2, v ′

2)]++τ3

· · ·
By Eq. 7 where cnt(τ′)l2 = 0, we know only the first execution instance with 0 iteration of
while command in c2 satisfies this restriction, i.e., τ′ = [].

In conclusion, we have the only qualified execution instance as follows where τ′ = [].

〈c1,τ1++[ε′1]〉→skip∗
〈[x2 ← e2/query(ψ2)]l2 ;c2,τ1++[ε′1]〉→assn/query 〈c2,τ1++[ε′1]++[ε′2]〉

�

Then we know by the environment definition, ρ obtains different values only for variable x1 from
trace τ1++[ε1] and τ1++[ε′1], i.e.,

∀zr ∈ LVc \ {x l1
1 },ρ(τ1++[ε1])(z) = ρ(τ1++[ε′1])(z)

By Inversion Lemma C.5 of arithmetic expression evaluation, we have

x1 ∈V AR(e2/ψ2)

Since ι(τ1++[ε1])x1 = l1, by Inversion Lemma C.8 we know x l1
1 ∈ RD(l2,c).

By flowsTo definition, we have:
flowsTo(x l1

1 , x l2
2 ,c)

i.e.,
flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

This case is proved. �

case: 2
(the labelled unique assignment command associated to the ε2 isn’t executed in second execu-
tion).
Proof Summary:
1. Let εb be the testing event, in the same way of case 1, we get: π1(ε1) ∈ V AR(π1(εb))∧π1(ε1)l1 ∈
RD(lb ,c)
2. By Lemma C.2, we know: ∀z ∈V AR(π1(εb)) . ∃i ∈N . flowsTo(zi ,π1(ε)π2(ε),c)
3. By flowsTo definition we have: flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

Proof of the Basecase: Case 2. We have the following by the definition DEPe(ε1,ε2, [ε1;ε2],c,D) of
case 2:

∃τ0,τ1,τ′,τ3,τ′3 ∈T,ε′1 ∈Easn,c1,c2 ∈C,εb ∈Etest .

Diff(ε1,ε′1)∧
(
〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1;εb]++τ3〉∧〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[(¬εb)]++τ′3〉∧

TLτ3 ∩TLτ′3 =;∧cnt(τ′) π2(εb) = cnt(τ) π2(εb)∧ε2 ∈e τ3 ∧ε2 6∈e τ′3
) (8)

Let τ0,τ1,τ′,τ3,τ′3 ∈ T,ε′2 ∈ E,ε′1 ∈ Easn,εb ,c1,c2 be the traces, events and commands satisfying the
executions, by Inversion Lemma C.7 on ε1, ε2, and εb , we have the following instance of the first

50

execution in Eq. 8,

〈c,τ0〉→∗ 〈[x1 ← e1/query(ψ1)]l1 ;c1,τ1〉→assn/quer y 〈c1,τ1++[ε1]〉
→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ1++[ε1]〉
→if-b / while-b 〈(ct ;c ′3/c f ;c ′3)/(c ′3/cw ; while [b]lb do cw ;c ′3),τ1++[ε1;εb]〉
→∗ 〈c3,τ1++[ε1;εb]++τ3〉

(9)

, where x1 =π1(ε1), l1 =π2(ε1), and if ([b]lb ,ct ,c f)/ while [b]lb do cw is the conditional command
of the assignment commands associated to the εb from Inversion Lemma C.7 of testing event.
By the command label consistency, we also have the instance of second execution in Eq. 8 as follows:

〈c,τ0〉→∗ 〈[x1 ← e1/query(ψ1)]l1 ;c1,τ1〉→assn/quer y 〈c1,τ1++[ε1]〉
→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ1++[ε1]++τ′〉
→if-b / while-b 〈(c f ;c ′3/ct ;c ′3)/(cw ; while [b]lb do cw ;c ′3/c ′3),τ1++[ε1]++τ′++[¬εb]〉
→∗ 〈c3,τ1++[ε1]++τ′++[¬εb]++τ′3〉

(10)

From Eq. 8, we also have cnt(τ′)lb = cnt([])lb = 0.
By the same proof steps from case 1 in Subproof C.3, we have

x1 ∈V AR(b)∧x l1
1 ∈ RD(lb ,c)

By Lemma C.2, we also know:

∀z ∈V AR(π1(εb)) . ∃i ∈N . flowsTo(zi ,π1(ε)π2(ε),c)

Then by flowsTo definition, we have flowsTo(x l1
1 , x l2

2 ,c) i.e.,

flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

This case is proved. �

Lemma C.2 (Control Dependency Inversion). For every c ∈ C, D ∈DB,τ ∈ T and two assignment
events ε1,ε2 ∈Easn, if they are in the second case of the Event May-Dependency relation from Defini-
tion. 10, DEPe(ε,ε,c,τ,D) as Eq. 11, then for all z ∈V AR(π1(εb)) there exists a label i ∈N such that
flowsTo(zi ,π1(ε)π2(ε),c)

,

∀D ∈DB,c ∈C,τ ∈T,ε1,ε2 ∈Easn .
∃τ0,τ1,τ′,τ3,τ′3 ∈T,ε′1 ∈Easn,c1,c2 ∈C,εb ∈Etest,τi h ∈T . τ= [ε1]++τi h++[ε2]

=⇒ 〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ++[εb]++τ3〉
∧〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′++[(¬εb)]++τ′3〉
∧TLτ3 ∩TLτ′3 =;∧cnt(τ′) π2(εb) = cnt(τ) π2(εb)∧ε2 ∈e τ3 ∧ε2 6∈e τ′3

=⇒ ∀z ∈V AR(π1(εb)) . ∃l ∈N . flowsTo(z l ,π1(ε2)π2(ε2),c)

(11)

Proof Summary:
Proving by using the Inversion Lemmas C.5, C.6, C.7, and C.8, and the Event May-Dependency
definition of the second case.

51

Proof. Take arbitrary D ∈DB,c ∈C,τ ∈T,ε1,ε2 ∈Easn, let τ0,τ1,τ′,τ3,τ′3 ∈T,ε′2 ∈E,ε′1 ∈Easn,εb ,c1,c2

be the traces, events and commands satisfying the executions, by Inversion Lemma C.7 on ε2, and εb ,
we have the following instance of the first execution in Eq. 11,

〈c,τ0〉→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ1++[ε1]++τ〉
→if-b / while-b 〈(ct ;c ′3/c f ;c ′3)/(cw ; while [b]lb do cw ;c ′3/[skip];c ′3),τ1++[ε1]++τ++[εb]〉
→∗ 〈[x2 ← e2/query(ψ2)]l2 ;c ′3b ,τ1++[ε1]++τ++[εb]++τ3a〉
→assn/query 〈c ′3b ,τ1++[ε1]++τ++[εb]++τ3a++[ε2]〉→∗ 〈c3,τ1++[ε1]++τ++[εb]++τ3a++[ε2]++τ3b〉

(12)
, where τ3 = τ3a++[ε2]++τ3b , x2 = π1(ε2), l2 = π2(ε2), and if ([b]lb ,ct ,c f)/ while [b]lb do cw is the
conditional command of the assignment commands associated to the εb from Inversion Lemma C.7 of
testing event.
The notation (ct ;c ′3/c f ;c ′3)/(cw ; while [b]lb do cw ;c ′3/[skip];c ′3) represents:
In case of if ([b]lb ,ct ,c f), if π3(εb) = true, we have the evaluation:

〈 if ([b]lb ,ct ,c f);c ′3,τ1++[ε1]++τ〉→if-b 〈ct ;c ′3τ1++[ε1]++τ++[εb]〉

The same for case of if ([b]lb ,ct ,c f) with π3(εb) = false, and case of while [b]lb do cw with
π3(εb) = true and π3(εb) = false.
By the command label consistency, we also have the instance of second execution as follows:

〈c,τ0〉→∗ 〈 if ([b]lb ,ct ,c f)/ while [b]lb do cw ;c ′3,τ1++[ε1]++τ′〉
→if-b / while-b 〈(c f ;c ′3/ct ;c ′3)/([skip];c ′3/cw ; while [b]lb do cw ;c ′3),τ1++[ε1]++τ′++[¬εb]〉
→∗ 〈c3,τ1++[ε1]++τ′++[¬εb]++τ′3〉

(13)
By the label consistency, and TLτ3 ∩TLτ′3 = ;, we know τ3 and τ′3 doesn’t contain any event of
evaluating the commands in c ′3. Otherwise, TLτ3 ∩TLτ′3 6= ;, which is a contradiction.
Since τ3 = τ3a++[ε2]++τ3b , we know ε2 doesn’t comes from evaluating of c ′3, i.e.,:
In the case of if ([b]lb ,ct ,c f), ε2 comes from the evaluation of ct or c f , i.e., [x2 ← e2/query(ψ2)]l2 ∈c

ct or c f ;
and in the case of while [b]lb do cw , ε2 comes from the evaluation of cw , i.e., [x2 ← e2/query(ψ2)
]l2 ∈c cw .
In both of the two cases, we know ∀z ∈V AR(π1(εb)) there is a label l ∈N for this variable, and by the
flowsTo definition, flowsTo(z l ,π1(ε2)π2(ε2),c).
This lemma is proved.

Lemma C.3 (The Multiple-Steps Event Dependency Inversion). For every D ∈DB,c ∈C,τ ∈T, and
two assignment events ε1,ε2 ∈Easn, if the trace tr ace has the form τ= [ε1]++τ′++[ε2] with τ′ ∈T, and
DEPe(ε1,ε2,τ,c,D) then flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c), or otherwise there exists ε ∈ τ′ such that(
DEPe(ε1,ε,τ[ε1 : ε],c,D)∧flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)

)
.

∀D ∈DB,c ∈C,τ ∈T . ∀ε1,ε2 ∈Easn . ∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2,τ,c,D)
=⇒ flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

∨∃ε ∈ τ′ .
(
DEPe(ε1,ε,τ[ε1 : ε],c,D)∧flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)

)
Proof Summary:

Proving by using Lemma C.4, Lemma C.2, and the Inversion Lemmas C.5, C.6, C.7, and C.8 and
showing a contradiction.

52

Proof. Taking arbitrary D ∈ DB,c ∈ C,τ ∈ T and two events ε1,ε2 ∈ Easn, where τ has the form
τ= [ε1]++τ′++[ε2] for some τ′ ∈T and DEPe(ε1,ε2,τ,c,D)
Assume

¬flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c) (1)
∧∀ε ∈ τ′ .

(¬DEPe(ε1,ε,τ[ε1 : ε],c,D)∨¬flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)
)

(2)

Then, by Lemma C.4 and (2), we know

flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

, which is contradict to (1).
This Lemma is proved.

Lemma C.4 (Independent Events Doesn’t Block flowsTo). For every D ∈ DB,c ∈ C,τ ∈ T, one
assignment events ε1 ∈ Easn, and another event ε2 ∈ E, if the trace τ has the form τ = [ε1]++τ′++[ε2]
with τ′ ∈T, and DEPe(ε1,ε2,τ,c,D), then the following two conclusions hold when ε2 is an assignment
event and a testing event respectively.

• If ε2 ∈Easn, then for every ε ∈ τ′, if it either doesn’t have the Event May-Dependency relation on
ε1, or π1(ε)π2(ε) doesn’t have the flowsTo relation with π1(ε2)π2(ε2), then the labelled variable
π1(ε1)π2(ε1) directly flows to the other one π1(ε2)π2(ε2), i.e., flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c).

∀D ∈DB,c ∈C,τ ∈T . ∀ε1,ε2 ∈Easn . ∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2,τ,c,D)
=⇒ (∀ε ∈ τ′ . ¬DEPe(ε1,ε,τ[ε1 : ε],c,D)∨¬flowsTo(π1(ε)π2(ε),π1(ε2)π2(ε2),c)

)
=⇒ flowsTo(π1(ε1)π2(ε1),π1(ε2)π2(ε2),c)

• If ε2 ∈Etest, then for every ε ∈ τ′, if it either doesn’t have the Event May-Dependency relations
on ε1, or π1(ε) ∉V AR(π1(ε2)), then π1(ε1) ∈V AR(π1(ε2)), and π2(ε1) = ι(τ)

∀D ∈DB,c ∈C,τ ∈T . ∀ε1,∈Easn,ε2 ∈Etest . ∃τ′ ∈T . τ= [ε1]++τ′++[ε2] =⇒ DEPe(ε1,ε2,τ,c,D)
=⇒ (∀ε ∈ τ′ . ¬DEPe(ε1,ε,τ[ε1 : ε],c,D)∨π1(ε) ∉V AR(π1(ε2))

)
=⇒ π1(ε1) ∈V AR(π1(ε2))∧π2(ε1) = ι(τ)

Proof. Taking arbitrary D ∈DB,c ∈C, and an assignment events ε1 ∈Easn and another event ε2 ∈E.
Without loss of generalization, taking arbitrary trace has the form τ= [ε1; · · · ;ε2] for arbitrary τ2 ∈T,
then we know ∃τ′ ∈T . τ= [ε1]++τ′++[ε2], let τ2 be this τ′.

case: ε2 ∈Easn
By the definition of DEPe(ε1,ε2,τ,c,D), taking ε′1,ε′2 ∈Easn,τ′2 ∈T,c1,c2 ∈C as the events, traces and
commands satisfying the definition, we have following two executions:

〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ2++[ε2]〉
〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′2++[ε′2]〉

By inversion Lemma. C.7 on ε2 and ε′2 in the two executions and Diff(ε2,ε2), we have the following
two execution instances:

〈c1,τ1++[ε1]〉→∗ 〈[π1(ε2) ← e2/query(ψ2)]π2(ε2);c2,τ1++[ε1]++τ2〉→asn / query 〈c2,τ1++[ε1]++τ2++[ε2]〉

〈c1,τ1++[ε′1]〉→∗ 〈[π1(ε2) ← e2/query(ψ2)]π2(ε2);c2,τ1++[ε′1]++τ′2〉→asn / query 〈c2,τ1++[ε′1]++τ′2++[ε′2]〉

53

, where e2/ψ2 is the expression of the assignment command associated to the ε2 and ε′2 by the Inversion
Lemma. C.7.
Taking arbitrary εz ∈ τ2, we know ¬DEPe(ε1,ε,τ[ε1 : εz],c,D)∨π1(εz) ∉V AR(e2/ψ2).
In case of ¬DEPe(ε1,ε,τ[ε1 : εz],c,D), by Definition 10, we know εz ∈ τ′2 and

ρ(τ1++τ[ε1 : εz])π1(εz) = ρ(τ1++τ[ε′1 : εz])π1(εz)

In case of π1(εz) ∉V AR(e2/ψ2), by Inversion Lemma C.5 of arithmetic and query expression cases,
we know:

∀xi ∈ LV,τ,τ′ ∈T, v, v ′ .
(
∀z j ∈ LV/{π1(εz)π2(εz)} . ρ(τ)z = ρ(τ′)z

)
∧〈τ,e2/ψ2〉 ⇓a v∧〈τ′,e2〉 ⇓a v ′ =⇒ v = v ′

∀xi ∈ LV,τ,τ′ ∈T,α,α′ .
(
∀z j ∈ LV/{π1(εz)π2(εz)} . ρ(τ)z = ρ(τ′)z

)
∧〈τ,ψ2〉 ⇓q α∧〈τ′,ψ2〉 ⇓q α

′ =⇒ α=q α
′

for e2 or ψ2 respectively.
Let useτ2 a subset of the events in τ2, satisfying:

∀ε ∈Easn . ε ∈ useτ2 ⇐⇒ ε ∈ τ2 ∧π1(ε) ∈V AR(e2/ψ2)

Then we also know for every εz ∈ useτ2 , ¬DEPe(ε1,εz ,τ[ε1 : εz],c,D), i.e.,:

∀z l ∈ LV\
(
(LVτ2 \LVuseτ2

)∪ {π1(ε1)π2(ε1)}
)

. ρ(τ1++[ε1]++τ2)z = ρ(τ1++[ε′1]++τ′2)z (1)

and
∀z l ∈ LV\ (LVτ2 \LVuseτ2

),τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,e2〉 ⇓a v ∧〈τ′,e2〉 ⇓a v ′ =⇒ v = v ′ (2a);
∀z l ∈ LV \ (LVτ2 \LVuseτ2

),τ,τ′ ∈ T,α,α′ . ρ(τ)z = ρ(τ′)z ∧ 〈τ,ψ2〉 ⇓q α∧ 〈τ′,ψ2〉 ⇓q α′ =⇒ α =q

α′ (2q),
where LVτ2 and LVuseτ2

are the sets of labelled variables of every event in τ2 and useτ2 respectively .
Since Diff(ε2,ε′2), we also know:

〈τ1++[ε1]++τ2,e2〉 ⇓a π3(ε2)∧〈τ1++[ε′1]++τ′2,e2〉 ⇓a π3(ε′2)∧π3(ε2) 6=π3(ε′2)

We know ε1 is the only cause of the difference in εy and ε′y when evaluating [π1(ε2) ← e2/query(ψ2)

]π2(ε2).
By inversion Lemma. C.6 of arithmetic and query expression cases, given the two traces τ1++[ε′1]++τ′2
and τ1++[ε′1]++τ′2 satisfying this lemma by (1), (2a) and (2q), we know

π1(ε1) ∈V AR(e2/ψ2)∧π2(ε1) = ι(τ1++[ε1]++τ2)π1(ε1)

By flowsTo definition:
flowsTo(π1(ε1)π2(ε1),π1(εy)π2(εy),c)

This case is proved.

case: ε2 ∈Etest

By the definition of DEPe(ε1,ε2,τ,c,D), taking ε′1 ∈ Easn,τ′2 ∈ T,c1,c2 ∈ C and ε′2 ∈ Etest as the
events, traces and commands satisfying the definition, we have following two executions:

〈c,τ0〉→∗ 〈c1,τ1++[ε1]〉→∗ 〈c2,τ1++[ε1]++τ2++[ε2]〉
〈c1,τ1++[ε′1]〉→∗ 〈c2,τ1++[ε′1]++τ′2++[ε′2]〉

54

Taking arbitrary εz ∈ τ2, we know ¬DEPe(ε1,ε,τ[ε1 : εz],c,D)∨π1(εz) ∉V AR(e2/ψ2).
Then by the same proof in case: ε2 ∈ Easn, and applying the Inversion Lemma C.5 and C.6 of the
boolean expression case, we have:

π1(ε1) ∈V AR(π1(ε2))∧π2(ε1) = ι(τ)

This case is proved.

Lemma C.5 (Expression Inversion). For all xi ∈ LV, and τ,τ′ ∈ T, and an expression e if ∀z j ∈
LV/{xi } . ρ(τ)z = ρ(τ′)z, and if

• e is an arithmetic expression a, and 〈τ, a〉 ⇓a v and 〈τ′, a〉 ⇓a v ′ with v ′ 6= v , then x is in the free
variables of a and i is the latest label for x in τ, i.e., x ∈V AR(a) and i = ι(τ)x.

• e is a boolean expression b, and 〈τ,b〉 ⇓b v and 〈τ′,b〉 ⇓b v ′ with v ′ 6= v , then x is in the free
variables of b and i is the latest label for x in τ, i.e., x ∈V AR(b) and i = ι(τ)x.

• e is a query expression ψ, and 〈τ,ψ〉 ⇓q α and 〈τ′,ψ〉 ⇓q α
′ with α 6=q α

′, then x is in the free
variables of ψ and i is the latest label for x in τ, i.e., x ∈V AR(ψ) and i = ι(τ)x.

Proof Summary:
To show x ∈V AR(a), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if x ∉V AR(a).
To show i = ι(τ), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if j = ι(τ)x and i 6= j .

Proof. Take two arbitrary traces τ,τ′ ∈T, and an expression e satisfying ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z,
we have the following three cases.

case: e is an arithmetic expression a
We have 〈τ,b〉 ⇓b v and 〈τ′,b〉 ⇓b v ′ with v ′ 6= v from the lemma hypothesis.
To show x ∈V AR(ψ) and i = ι(τ)x:
Assuming x ∉V AR(a), since ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z, we know v = v ′, which is contradicted to
v ′ 6= v .
Then we know x ∈V AR(ψ).
Assuming j = ι(τ)x ∧ i 6= j , by ∀z j ∈ LV/{xi } . ρ(τ)z = ρ(τ′)z, we know ρ(τ)x = ρ(τ′)x, i.e.,
∀z j ∈ LV . ρ(τ)z = ρ(τ′)z.
Then by the determination of the evaluation, we know v = v ′, which is contradicted to v ′ 6= v .
Then we know i = ι(τ)x.

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression ψ

This case is proved trivially in the same way as the case of the arithmetic expression.

Lemma C.6 (Expression Inversion Generalization). For all subset of the labelled variables Diff⊂ LV,
and xi ∈ (LV\Diff), and an expression e, if

• e is an arithmetic expression a, and for all z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ such that ρ(τ)z = ρ(τ′)z,
and 〈τ, a〉 ⇓a v , and 〈τ′, a〉 ⇓a v ′ with v = v ′; and for all z j ∈ LV/(Diff∪ {xi }) there exist

55

τ,τ′ ∈ T, v, v ′ such that ρ(τ)z = ρ(τ′)z, and 〈τ, a〉 ⇓a v , and 〈τ′, a〉 ⇓a v ′ with v 6= v ′, then
x ∈V AR(a) and i = ι(τ)x.

∀Diff⊂ LV, xi ∈ (LV\Diff), a .
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v 6= v ′

=⇒ x ∈V AR(a)∧ i = ι(τ)x

• e is a boolean expression b, and for all z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ such that ρ(τ)z = ρ(τ′)z ∧
〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v = v ′; and for all z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈ T, v, v ′ . ρ(τ)z =
ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v 6= v ′ then x ∈V AR(b)∧ i = ι(τ)x

∀Diff⊂ LV, xi ∈ (LV\Diff),b .
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v = v ′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ,b〉 ⇓b v ∧〈τ′,b〉 ⇓b v ′∧ v 6= v ′

=⇒ x ∈V AR(b)∧ i = ι(τ)x

• e is a query expression ψ, and for all Diff ⊂ LV, xi ∈ (LV \Diff),ψ such that for all z j ∈
LV \ Diff,τ,τ′ ∈ T,α,α′ . ρ(τ)z = ρ(τ′)z ∧ 〈τ,ψ〉 ⇓q α∧ 〈τ′,ψ〉 ⇓q α′ ∧α =q α′; and for all
z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈ T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α

′∧α 6=q α
′,

then x ∈V AR(ψ)∧ i = ι(τ)x.

∀Diff⊂ LV, xi ∈ (LV\Diff),ψ .
∀z j ∈ LV\Diff,τ,τ′ ∈T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α

′∧α=q α
′

=⇒ ∀z j ∈ LV/(Diff∪ {xi }) . ∃τ,τ′ ∈T,α,α′ . ρ(τ)z = ρ(τ′)z ∧〈τ,ψ〉 ⇓q α∧〈τ′,ψ〉 ⇓q α
′∧α 6=q α

′

=⇒ x ∈V AR(ψ)∧ i = ι(τ)x

Proof Summary:
To show x ∈V AR(a), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if x ∉V AR(a).
To show i = ι(τ), by showing contradiction (∀τ,τ′ in second hypothesis v = v ′) if j = ι(τ)x and i 6= j .

Proof. Taking an arbitrary expression e, we have the following three cases.

case: e is an arithmetic expression a
Taking an arbitrary set of labelled variables Diff⊂ LV, xi ∈ (LV\Diff) satisfies:
∀z j ∈ LV\Diff,τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′ (1)
and ∀z j ∈ LV\ (Diff∪ {xi }) . ∃τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v 6= v ′ (2),
Let τ,τ′ ∈T, v, v ′ be the two traces and values satisfies hypothesis (2).
To show: x ∈V AR(a)∧ i = ι(τ)x:
Assuming x ∉V AR(a), we know from the Inversion Lemma C.5 of the arithmetic expression case,
∀z j ∈ LV\ {xi },τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′.
Then with the hypothesis (1), we know:
∀z j ∈ LV\ (Diff∪ {xi }),τ,τ′ ∈T, v, v ′ . ρ(τ)z = ρ(τ′)z ∧〈τ, a〉 ⇓a v ∧〈τ′, a〉 ⇓a v ′∧ v = v ′

This is contradicted to the hypothesis (2).
Then we know x ∈V AR(e).
Assuming j = ι(τ)x∧ i 6= j , by hypothesis (2) where ∀z j ∈ LV\(Diff∪{xi }) . ρ(τ)z = ρ(τ′)z, we know
ρ(τ)x = ρ(τ′)x, i.e.,
∀z j ∈ LV\ (Diff) . ρ(τ)z = ρ(τ′)z.
Then we have v ′ = v by hypothesis (1), which is contradicted to v ′ 6= v .
Then we know i = ι(τ)x.

56

case: e is a boolean expression b
This case is proved trivially in the same way as the case of the arithmetic expression.

case: e is a query expression ψ

This case is proved trivially in the same way as the case of the arithmetic expression.

Lemma C.7 (Event Inversion). For all c ∈ C,τ0 ∈ T,ε ∈ Esuch that 〈c,τ0〉 →∗ 〈skip,τ0++τ1〉, and
ε ∈e τ1, if

• ε ∈Easn, then either

– there exists τ′1 ∈T,c ′ ∈C,e such that

〈c,τ0〉→∗ 〈[x ← e]l ;c ′,τ0++τ′〉→assn 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

– or there exists τ′1 ∈T,c ′ ∈C,ψ such that

〈c,τ0〉→∗ 〈[x ← query(ψ)]l ;c ′,τ0++τ′1〉→quer y 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

• ε ∈Etest then either

– there exists τ′1 ∈T,c ′,ct ,c f ,c ′′ ∈C,b such that

〈c,τ0〉→∗ 〈 if ([b]l ,ct ,c f);c ′,τ0++τ′1〉→i f −b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

– or there exists τ′1 ∈T,c ′,cw ,c ′′ ∈C,b such that

〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→whi le−b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

Proof Summary: trivially by induction on c and enumerate all operational semantic rules.

Proof. Take arbitrary τ0 ∈T, by induction on c, we have following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ++[(x, l , v)]〉.
Then we know τ1 = [(x, l , v)] and there is only 1 event (x, l , v) ∈ τ1.
Then we have τ′1 = [] and c ′ = skip satisfying
〈c,τ0〉→∗ 〈[x ← e]l ;c ′,τ0++τ′〉→assn 〈c ′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉.
This case is proved.

case: c = [x ← query(ψ)]l

This case is proved trivially in the same way as case: c = [x ← e]l .

case: c = cs1;cs2

This case is proved trivially by the induction hypothesis on cs1 and cs2 separately, we have this case
proved.

case: while [b]l do c
If the rule applied to is while-t, we have:
〈 while [b]l do cw ,τ〉 −→ 〈cw ; while [b]l do cw ,τ++[(b, l ,true)]〉 ∗−→〈skip,τ++τ1〉,
(b, l ,true) ∈ εtest and (b, l ,true) ∈ τ1.
Let τ′ = [], c ′ = skip and c ′′ = cw ; while [b]l do cw , we know that they satisfy
〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→whi le−b 〈c ′′,τ0++τ′1++[ε]〉→∗ 〈skip,τ0++τ1〉

57

This case is proved.
If the rule applied to is while-f, we have
〈 while [b]l do cw ,τ〉 −→while-f 〈skip,τ++[((b, l ,false))]〉, (b, l ,true) ∈ εtest, and (b, l ,true) ∈ τ1.
Let τ′ = [], c ′ = skip and c ′′ = skip, we know that they satisfy
〈c,τ0〉→∗ 〈 while ([b]l ,cw);c ′,τ0++τ′1〉→while-f 〈c ′′,τ0++τ′1++[(b, l ,false)]〉→∗ 〈skip,τ0++τ1〉
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = [x ← query(ψ)]l .

Lemma C.8 (Reachable Varibale Inversion). For all c ∈ Cτ,τ′ ∈ T, if 〈c,τ〉 −→∗ 〈c ′,τ′〉, and for all
x l ∈ LVc such that ι(τ′)x = l , then x l ∈ RD(absinit(c),c).

∀c ∈C,τ,τ′ ∈T . 〈c,τ〉 −→∗ 〈c ′,τ′〉 =⇒ ∀x l ∈ LVc . ι(τ′)x = l =⇒ x l ∈ RD(absinit(c),c)

Proof Summary: If a variable with the label which is the latest one in the trace, Then by the
environment definition, the value associated to this labelled variable is read from the trace.
Then this labelled variable must be reachable at the point of entryc ′ , i.e., x l ∈ RD(absinit(c),c).

Proof. Take arbitrary c ∈ C,τ,τ′ ∈ T satisfying 〈c,τ〉 −→∗ 〈c ′,τ′〉, and an arbitrary x l ∈ LVc satisfying
ι(τ′)x = l .
By definition of ι, we know τ′ has the form τ′a++[(x, l , v)]++τ′b for some τ′a ,τ′b ∈T and v .
And the variable x doesn’t show up in all the events in τ′b .
Then, by the environment definition, we know: ρ(τ′)x = v , i.e., x l is reachable at the point of
absinit(c).
By the i n(l) operator define in Section 4.3.2, we know x l is in the i n(absinit(c) for prpgram c.
Since RD(absinit(c),c) is a stabilized closure of i n(l) for c, we know x l ∈ RD(absinit(c),c).
This lemma is proved.

Lemma C.9 (While Loop Inversion). For every τ,τ′ ∈T,c,c1,c2 ∈C if 〈c,τ〉→∗ 〈c1;c2,τ′〉 and c1 ∈c c2,
then there must exist a while command in c2 and c1 must shows up in the body of that while

command, i.e., ∃l ∈N,b ∈B,cw ∈C . (while [b]l do cw) ∈c c2 ∧ c1 ∈c cw .

∀τ,τ′ ∈T,c,c1,c2 ∈C .
〈c,τ〉→∗ 〈c1;c2,τ′〉 =⇒ c1 ∈c c2 =⇒ ∃l ∈N,b ∈B,cw ∈C . (while [b]l do cw) ∈c c2 ∧ c1 ∈c cw

Proof Summary: trivially by induction on c and enumerate all operational semantic rules.

Proof. Take arbitrary τ ∈T, by induction on c, we have following cases:

case: c = [x ← e]l

By the evaluation rule assn, we have 〈[x ← a]l ,τ〉 −→ 〈skip,τ++[(x, l , v)]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

case: c = [x ← query(ψ)]l

By the evaluation rule query, we have 〈[x ← query(ψ)]l ,τ〉 −→ 〈skip,τ++[(x, l ,α, v)]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

case: c = if ([b]l ,c1,c2)
By the evaluation rule query and if-f, and the label consistency, we know:
for all possible ct1 and ct2 such that ct has the form ct = ct1;ct2;
all possible c f 1 and c f 2 such that c f has the form c f = c f 1;c f 2,

58

ct1 ∉ ct1 and c f 1 ∉ c f 2.
Then this theorem is vacuously true.

case: c = cs1;cs2

By label consistency, we know for every c ′1 ∈c cs1, c ′1 ∉ cs2.
Then by the induction hypothesis on cs1 and cs2 separately, we have this case proved.

case: while [b]l do c
By rule while-t, we have:

〈 while [b]l do cw ,τ〉 −→ 〈cw ; while [b]l do cw ,skip),τ++[ε]〉

If cw is a sequence command, let c1 = cw1 be the any possible command in this sequence, for all
possible cw1 and cw2 such that cw has the form cw = cw1;cw2.
Then we have c2 = cw2; while [b]l do cw ,skip) and c1 ∈c c2.
And we also have the existence of l = lb ,b and cw , and while [b]l do cw ∈c c2 and c1 ∈ cw .
If cw isn’t a sequence command, let c1 = cw , then we have c2 = while [b]l do cw ,skip) and c1 ∈c c2.
And we also have the existence of l = lb ,b and cw , and while [b]l do cw ∈c c2 and c1 ∈ cw .
This case is proved.
By the evaluation rule while-f, we have 〈 while [b]l , do cw ,τ〉 −→ 〈[skip]l ,τ++[((b, l ,false))]〉.
Since there doesn’t exist c1,c2 ∈C satisfying skip= c1;c2, this theorem is vacuously true.

Lemma C.10 (Only skip Command doesn’t Produce Event). . For all trace τ ∈ T, and c,c ′ ∈ C,
〈c,τ〉→ 〈c ′,τ〉 if and only if c = [skip];c ′.

∀τ ∈T,c,c ′ ∈C . 〈c,τ〉→ 〈c ′,τ〉⇔ c = [skip];c ′

Proof. Proved trivially by induction on c and enumerate all operational semantic rules.

Lemma C.11. (Event Dependency Transitivity) For every D ∈ DB,c ∈ C,τ ∈ T, and ε1,ε2,ε3 ∈
Easn,τ12,τ23 ∈T, if DEPe(ε1,ε2,τ12,c,D) and DEPe(ε2,ε3,τ23,c,D), then DEPe(ε1,ε3,τ12++τ23,c,D).

∀D ∈DB,c ∈C,ε1,ε2,ε3 ∈Easn,τ12,τ23 ∈T . DEPe(ε1,ε2,τ12,c,D)∧DEPe(ε2,ε3,τ23,c,D)
=⇒ DEPe(ε1,ε3,τ12++τ23,c,D)

Lemma C.12 (Variable May-Dependency Transitivity). For every c ∈C, xi , y j , z l ∈ LVc , if DEPvar(xi , y j ,c)
and DEPvar(y j , z l ,c), then DEPvar(xi , z l ,c).

∀c ∈C, xi , y j , z l ∈ LVc . DEPvar(xi , y j ,c)∧DEPvar(y j , z l ,c) =⇒ DEPvar(xi , z l ,c)

59

D Soundness of The Weight Estimation

D.1 Proof of Lemma 4.1

Lemma (Soundness of the Abstract Events Computation). For every program c and an execution
trace τ ∈ T that is generated w.r.t. an initial trace τ0 ∈ T0(c), there is an abstract event

α

ε= (l ,_,_) ∈
abstrace(c) for every event ε ∈ τ having the label l , i.e., ε= (_, l ,_).

∀c ∈C,τ0 ∈T0(c),τ ∈T,ε= (_, l ,_) ∈E . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

Proof. Taking arbitrary τ0 ∈T, and an arbitrary event ε= (_, l ,_) ∈E, it is sufficient to show:

∀τ ∈T . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃ α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

By induction on program c, we have the following cases:

case: c = [x ← e]l ′

By the evaluation rule assn, we have 〈[x ← a]l ′ ,τ〉 −→ 〈skip,τ++[(x, l ′, v)]〉, for some v ∈ N and τ =
[(x, l ′, v)].
There are 2 cases, where l ′ = l and l ′ 6= l .
In case of l ′ 6= l , we know ε 6∈e τ, then this Lemma is vacuously true.
In case of l ′ = l , by the abstract Execution Trace computation, we know abstrace(c) = abstrace′([x :=
e]l ;

[
skip

]le) = {(l ,absexpr(e), le)}

Then we have
α

ε= (l ,absexpr(e), le) and
α

ε∈ abstrace(c).
This case is proved.

case: c = [x ← query(ψ)]l ′

This case is proved in the same way as case: c = [x ← e]l .

case: while [b]lw do c
If the rule applied to is while-t, we have
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ0++[(b, l ,true)]〉.
Let τw ∈T satisfying following execution:
〈cw ,τ0++[(b, lw ,true)]〉 ∗−→〈skip,τ0++[(b, lw ,true)]++τw 〉
Then we have the following execution:
〈 while [b]lw do cw ,τ〉 −→ 〈cw ; while [b]lw do cw ,τ0++[(b, lw ,true)]〉 ∗−→〈 while [b]lw do cw ,τ0++[(b, lw ,true)]++τw 〉 ∗−→
〈skip,τ0++[(b, lw ,true)]++τw ++τ1〉 for some τ1 ∈T and τ= [(b, lw ,true)]++τw ++τ1.
Then we have 3 cases: (1) ε=e (b, lw ,true), (2) ε ∈ τw or (3) ε ∈ τ1.
In case of (1). ε=e (b, lw ,true), since abstrace(c) = abstrace′(c;

[
skip

]le) = {(l ,>,init(cw))}∪
·· · , we have

α

ε= (l ,>,init(cw)) and this case is proved.
In case of (2). ε ∈ τw , by induction hypothesis on cw with the execution 〈cw ,τ0++[(b, lw ,true)]〉 ∗−→
〈skip,τ0++[(b, lw ,true)]++τw 〉 and trace τw , we know there is an abstract event of the form

α

ε
′=

(l ,_,_) ∈ abstrace(cw) where abstrace(cw) = abstrace′(cw ;
[
skip

]le).
Let

α

ε
′= (l ,dc, l ′) for some dc and l ′ such that

α

ε∈ abstrace(c).
By definition of abstrace′, we have abstrace′(cw ;

[
skip

]le) = abstrace′(cw)∪{(l ′,dc, le)|(l ′,dc) ∈
absfinal(cw)}.
There are 2 subcases: (2.1)

α

ε
′∈ abstrace′(cw) or (2.2)

α

ε
′∈ {(l ′,dc, le)|(l ′,dc) ∈ absfinal(cw)}.

60

sub-case: (2.1)
Since abstrace(c) = abstrace′(cw)∪{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}∪·· · , we know the abstract
event

α

ε
′∈ abstrace(c).

This case is proved.

sub-case: (2.2) α

ε
′∈ {(l ′,dc, le)|(l ′,dc) ∈ absfinal(cw)}

In this case, we know (l ,dc) ∈ absfinal(cw).
Since abstrace(c) = abstrace′(cw)∪{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}∪·· · , we know (l ,dc, lw) ∈
{(l ′,dc, lw)|(l ′,dc) ∈ absfinal(cw)}, i.e., the abstract event (l ,dc, lw) ∈ abstrace(c) and (l ,dc, lw)
has the form (l ,_,_).
This case is proved.
In case of (3). ε ∈ τ1, we know either ε= (b, lw ,_), or ε ∈ τ′w where τ′w ∈T is the trace of executing cw

in an iteration.
Then this case is proved by repeating the proof in case (1) and case (2).
If the rule applied to is while-f, we have
〈 while [b]lw do cw ,τ0〉 −→while-f 〈skip,τ0++[(b, lw ,false)]〉, In this case, we have τ= [(b, lw ,false)]
and ε= (b, lw ,false) (o.w., ε 6∈e τ and this lemma is vacuously true) with l = lw .
By the abstract execution trace computation, abstrace(c) = {(l ,>,init(cw))} ∪ ·· · , we have

α

ε=
(l ,>,init(cw)) and

α

ε∈ abstrace(c).
This case is proved.

case: if ([b]l ,ct ,c f)
This case is proved in the same way as case: c = while [b]l do c.

case: c = cs1;cs2

By the induction hypothesis on cs1 and cs2 separately, and the same step as case (2). of case: c =
while [b]l do c, we have this case proved.

D.2 Proof of Lemma 4.2

Lemma (Uniqueness of the Abstract Events Computation). For every program c and an execution
trace τ ∈ T that is generated w.r.t. an initial trace τ0 ∈ T0(c), there is a unique abstract event
α

ε= (l ,_,_) ∈ abstrace(c) for every assignment event ε ∈Easn in the execution trace having the label l ,
i.e., ε= (_, l ,_,_) and ε ∈ τ.

∀c ∈C,τ0 ∈T0(c),τ ∈T,ε= (_, l ,_) ∈Easn . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧ε ∈ τ
=⇒ ∃!

α

ε= (l ,_,_) ∈ (L×DC>×L) .
α

ε∈ abstrace(c)

Proof. This is proved trivially by induction on the program c.

D.3 Soundness of Weight Estimation, Theorem 4.1

Preliminary Theorem from paper [6].

Theorem D.1 (Soundness of the Transition Bound). For each program c and an edge
α

ε= (l ,_,_) ∈
absG(c), if l is the label of an assignment command, then its path-insensitive transition bound TB(

α

ε,c)
is a sound upper bound on the execution times of this assignment command in c.

∀c ∈C, l ∈ LV(c),τ0 ∈T0(c),τ ∈T, v ∈N . 〈c,τ0〉→∗ 〈skip,τ0++τ〉∧〈TB(
α

ε,c),τ0〉 ⇓a v ∧cnt(τ, l) ≤ v

61

Theorem D.2 (Soundness of the Weight Estimation). Given a program c with its program-based
dependency graph Gest = (Vest,Eest,West,Qest), we have:

∀(x l , w) ∈ West,τ,τ′ ∈T, v ∈N . 〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈τ, w〉 ⇓e v ∧cnt(τ′, l) ≤ v

Proof. Taking an arbitrary a program c with its program-based dependency graph Gest = (V,E,W,Q), and
an arbitrary pair of labeled variable and weights (x l , w) ∈ West, and arbitrary τ,τ′ ∈T, v ∈N satisfying
〈c,τ〉→∗ 〈skip,τ++τ′〉∧〈τ, w〉 ⇓e v

By Definition of West in Gest(c), we know w = absW(l) = max{TB(
α

ε)| αε= (l ,_,_)}.
By Lemma 4.1, there exists an abstract event in abstrace(c) of form (

α

ε) = (l ,_,_), corresponding to
the assignment command associated to labeled variable x l .
Let (

α

ε) = (l ,dc, l ′) ∈ abstrace(c) be this event for some dc and l ′ such that (
α

ε) = (l ,dc, l ′) ∈ abstrace(c),
by the last step of phase 2, we know West(x l), TB(

α

ε). Then, it is sufficient to show:

∀v ∈N . 〈TB(
α

ε),τ〉 ⇓e cnt(τ′, l) ≤ vTB(
α

ε)

By definition of TB(
α

ε):

locb(
α

ε) locb(
α

ε) ∈ SMBCST

Incr (locb(
α

ε))+∑
{TB(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))} locb(
α

ε) ∉ SMBCST

case: locb(
α

ε) ∈ SMBCST

Proved by the soundness of Local bound in Lemma D.1.

case: locb(
α

ε) ∉ SMBCST

To show:

max
{
cnt(τ′)l

∣∣ ∀τ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉}
≤ Incr (locb(

α

ε))+∑
{TB(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

Taking an arbitrary initial trace τ0 ∈ T, executing c with τ0, let τ be the trace after evaluation, i.e.,
〈c,τ0〉→∗ 〈skip,τ〉, it is sufficient to show:

cnt(τ′)l ≤ Incr (locb(
α

ε))+∑
{TB(

α

ε
′
)×max(Vinvar(a)+ c,0)|(αε′, a,c) ∈ re(locb(

α

ε))}

By the soundness of the (1) Transition Bound and (2) Variable Bound Invariant in [6] Theorem 1
(attached above in Theorem 4.1), This case is proved.

Lemma D.1 (Soundness of the Local Bound). Given a program c, we have:

∀ α

ε= (l ,dc, l ′) . max
{
cnt(τ′)l

∣∣ ∀τ ∈T . 〈c,τ〉→∗ 〈skip,τ++τ′〉}≤ locb(
α

ε)

Proof.

sub-case: l ∉ SCC (absG(c))
In this case, we know variable x l isn’t involved in the body of any while command.
Taking an arbitrary τ0 ∈T, let τ ∈T be of resulting trace of executing c with τ, i.e., 〈c,τ0〉→∗ 〈skip,τ〉,
we know the assignment command at line l associated with the abstract event

α

ε will be executed at
most once, i.e.,: cnt(τ)l ≤ 1
By locb definition, we know locb(

α

ε) = 1.
This case is proved.

62

sub-case: l ∈ SCC (absG(c))∧ α

ε∈ dec(x)
in this case, we know locb(

α

ε), x.

sub-case: l ∈ SCC (absG(c))∧ α

ε∉⋃
x∈V AR dec(x)∧ α

ε∉ SCC (absG(c)/dec(x))
in this case, we know locb(

α

ε), x.
In the two cases above, the soundness is discussed in [6] Section 4 of Paragraph Discussion on
Soundness in Page 25.

63

E Soundness of Adaptivity Computation Algorithm

Theorem E.1 (Soundness of AdaptSearch). For every program c, given its Program-Based Depen-
dency Graph Gest,

AdaptSearch(Gest) ≥ Aest(Gest).

proof Summary:
1. for every two vertices x, y with a walk kx,y from x to y on Gest,
2 if they are on the same SCC,
2.1 Then this walk must also be in this SCC. (By the property that each SCC are single direct connected,
otherwise they are the same SCC)
2.2 By Lemma E.1, lenq of this walk is bound by the longest walk of this SCC.
2.3 The output of AdaptSearch(Gest) is greater than longest walk of a single SCC.
3. if they are on different SCC.
3.1 Then this walk can be split into n,2 ≤ n sub-walks, and each sub-walk belongs to a different SCC.
(Also by the property of SCC)
3.2 By Lemma E.1, lenq of each sub-walk is bound by the longest walk of the SCC it belongs to.
3.3 By line: in algorithm, the output of AdaptSearch(Gest) is greater than sum up the lenq of longest
walk in every SCC that each sub-walk belongs to.
4. Then we have AdaptSearch(Gest(c)) ≥ Aest(c).

Proof. Taking arbitrary program c ∈C, let Gest(c) = (Vest,Eest,West,Qest) be its program based depen-
dency graph.
Taking an arbitrary walk kx,y ∈WK(Gest), with vertices sequence (x, s1, · · · , y), it is sufficient to show:

lenq(kx,y) = len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤AdaptSearch(Gest(c))

By line:3 of AdaptSearch(Gest) algorithm defined in Algorithm ??, let GSCC1, · · · ,GSCCn be all the strong
connected components on Gest with 0 ≤ n ≤ |V|, where each GSCCi = (Vi ,Ei ,Wi ,Qi),
By line:5-6 in Algorithm ??, let adaptscc[GSCCi] be the result of AdaptSearchscc(GSCCi) for each
GSCCi .
There are 2 cases:

case: x, y on the same SCC
Let GSCC be this SCC where vertices x and y on, by Lemma E.1, we know

lenq(kx,y) ≤ max{lenq(k)|k ∈WK(GSCC)} ≤AdaptSearchscc (GSCC)

By line:15 and line:18 in AdaptSearch(Gest) algorithm in Algorithm ??, let adapt be the output value,
we know AdaptSearch(Gest(c)) = adapt≥ adapttmp ≥ adaptscc(SSC).
i.e.,

lenq(kx,y) ≤AdaptSearch(Gest(c))

This case is proved.

case: x, y on different SSC
Let GSCCx ,GSCC1, · · · ,GSCCm ,GSCCy ,0 ≤ m be all the SCC this walk pass by, where each vertex in
(x, s1, · · · , sn , y) belongs to a single SCC number.
By the property of SCC, we know every 2 SCCs are single direct connected. Then we can divide this
walk into m +2 sub-walks:

64

kx = (x, s1, · · · , ssccx);
k1 = (ssccx , · · · , sscc1);
· · ·
ky = (ssccm , · · · , sy);
where kx ∈WK(GSCCx), · · · ,ky ∈WK(GSCCy).
By Lemma E.1, we know for each walk ki :

lenq(ki) ≤ max{lenq(ki)|ki ∈WK(GSCCi)} ≤AdaptSearchscc (GSCCi) = adaptscc[GSCCi]

Then we have:

lenq(kx,y) = lenq(kx)+lenq(k1)+·· ·+lenq(ky) ≤ adaptscc[GSCC1]+adaptscc[GSCC1]+·· ·+adaptscc[GSCCy] ≤ adapt

, where adapt is the output of AdaptSearch(Gest). This case is proved.

Lemma E.1 (Soundness of AdaptSearchscc). For every program c, given its Program-Based Depen-
dency Graph Gest, if GSCC is a strong connected sub-graph of Gest, then max{lenq(k)|k ∈WK(GSCC)} ≤
AdaptSearchscc (GSCC).

∀c ∈C,GSCC ∈G . GSCC ⊆graph Gest(c) =⇒ max{lenq(k)|k ∈WK(GSCC)} ≤AdaptSearchscc (GSCC)

ProofSummary:
(1) for each node x on SCC, by property of SCC, for every walk on SCC kx,x = (x, s1, · · · , x), with set
of unique vertex {v1, · · · , x} there are PATH(px,x) on GSCC.
(2) For every path p i

x,x = (x, v1, · · · , x) ∈PATH(px,x), flowcapacity(p i
x,x) is the maximum visiting

times for every v ∈ (x, v1, · · · , x), visit(s)(s1, · · · , x)) ≤ flowcapacity(p i
x,x);

(3) querynum(p i
x,x)∗flowcapacity(p i

x,x) ≥ len(s|s ∈ (s1, · · · , x)∧Q(s) = 1) = lenq(k),
(4) Then, the max

p i
x,x∈PATH(px,x)

≥ max{lenq(kx,x)|kx,x ∈WK(kx,x)}

(5) Then, max{querynum(p i
x,x)∗flowcapacity(p i

x,x)|x ∈ GSCC∧p i
x,x ∈PATH(px,x)} ≥ max{lenq(k i

x,x)|x ∈
GSCC∧k i

x,x ∈WK(kx,x)}
(6) We also know by the property of SCC, ∀x, y ∈ GSCC, let kx,y be arbitrary walk on GSCC, lenq(kx,y) ≤
max{lenq(k i

x,x)|k i
x,x ∈WK(kx,x)}.

(7) Then,max{lenq(k i
x,x)|x ∈ GSCC∧k i

x,x ∈WK(kx,x)} ≥ max{lenq(k i
x,y)|x, y ∈ GSCC∧k i

x,y ∈WK(kx,y)}

i.e., max{lenq(k i
x,x)|x ∈ GSCC∧k i

x,x ∈WK(kx,x)} ≥ max{lenq(k)|k ∈WK(GSCC)} = Aest(GSCC).
(8) We also know AdaptSearchscc (GSCC) = max{querynum(p i

x,x)∗ flowcapacity(p i
x,x)|x ∈ GSCC ∧

p i
x,x ∈PATH(px,x)} by the AdaptSearchscc algorithm.

Then we have AdaptSearchscc (GSCC) ≥ Aest(GSCC)

Proof. Taking arbitrary program c ∈C, let Gest(c) = (V,E,W,Q) be its program based dependency graph
and GSCC = (Vscc,Escc,Wscc,Qscc) be an arbitrary sub SCC graph of Gest.
There are 2 cases:

case: GSCC contains no edge and only 1 vertex v , i.e., |E| = 0∧|V| = 1
In this case there is no walk in this graph, i.e., WK(GSCC) =;.
The adaptivity is Q(v).
This case is proved.

65

case: GSCC contains at least 1 edge and at least 1 vertex v , i.e., 1 ≤ |E|∧1 ≤ |V|
Taking arbitrary walk kx,y ∈WK(GSCC), with vertices sequence (x, s1, · · · , y), it is sufficient to show:

lenq(kx,y) = len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤AdaptSearchscc (GSCC)

By AdaptSearchscc (GSCC) algorithm line 19, in the iteration where x is the starting vertex, we know
AdaptSearchscc (GSCC) = rscc = max(rscc,dfs(GSCC,x,visited)), then it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ dfs(GSCC,x,visited).

Let {v1, · · · , x} be the set of all the distinct vertices of kx,y ’s vertices sequence (x, s1, · · · , y), and
(v1, · · · , x) be a subsequence containing all the vertices in {x, v1, · · · , y}.
By the definition of walk, there is a path px,y from x to y with this vertices sequence: (x, v1, · · · , y).
By line:13 of the dfs(GSCC,x,visited) in Algorithm 2,
we know dfs(GSCC,x,visited) = r [x] and r [x] = max{flowcapacity(p)×querynum(p)|p ∈PATHx,x (GSCC)},
where PATHx,x (GSCC) is a subset of PATHx,x (GSCC), in which every path starts from x and goes back
to x.
By the property of strong connected graph, we know in this case PATHx,x (GSCC) 6= ; and there are 2
cases, x = y and x 6= y .

case: x = y
In this case, we know px,y ∈ p ∈PATHx,x (GSCC), then it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y)

By line:7 and line:13 in Algorithm 2, we know flowcapacity(px,y) is the maximum visiting times
for every v ∈ (x, v1, · · · , y),
we know for every s in the vertices sequence of walk kx,y , visit(s)(x, s1, · · · , y) ≤ flowcapacity(px,y)
Also by line:8 and line:13 in Algorithm 2, we know querynum(px,y) is the number of vertices with Q

equal to 1,
Then we know
len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y)
This case is proved.

case: x 6= y
we also have a path start from y and go back to x.
Let py,x be this path with vertices sequence (y, v ′

1, · · · , x), we have a path px,x , which is the path px,y

concatenated by path py,x with vertices sequence (x, v1, · · · , y, v ′
1, · · · , v ′

m , x), where m ≥ 0.
Then in this case, it is sufficient to show:

len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,x)×querynum(px,x)

Since flowcapacity(px,y +py,x) is the maximum visiting times for every v ∈ (x, v1, · · · , y, v ′
1, · · · , x),

By line:7 in Algorithm 2, we know flowcapacity(px,y) is the maximum visiting times for every
v ∈ (x, v1, · · · , y),
we know for every s in the vertices sequence of walk kx,y , visit(s)(x, s1, · · · , y) ≤ flowcapacity(px,y)
Also by line:8 in Algorithm 2, we know querynum(px,y) is the number of vertices with Q equal to 1,
Then we know
len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ flowcapacity(px,y)×querynum(px,y) = r [y]
By line:13, we also know r [x] = max(r [x],r [v ′

m] + flowcapacity(px,x) × querynum(px,x), and
r [y] ≤ r [w ′

m] then we know r [y] ≤ r [x], i.e., len(s|s ∈ (x, s1, · · · , y)∧Q(s) = 1) ≤ r [x]
This case is proved.

66

F Conditional Completeness of Adaptivity Computation Algorithm

Theorem F.1 (Conditional Completeness of AdaptSearch). For every program c, given its Program-
Based Dependency Graph Gest, if Gest(c) is acyclic directed, then

AdaptSearch(Gest) = Aest(Gest).

proof Summary:
1. for every two vertices x, y with a walk kx,y from x to y on Gest,
2 since Gest is acyclic directed, then this walk corresponds to a path px,y where every vertex is visited
exactly once.
3. the query length is sum of the query annotation.
From Algorithm 2, every vertex is a SCC with only one vertex and zeor edge, its adaptivity is exactly
its query annotation.
=> lenq(kx,y) = ∑

vi∈ssci

Adapt[scci]

This is proved.

Proof. Taking arbitrary program c ∈C, let Gest(c) = (Vest,Eest,West,Qest) be its program based depen-
dency graph.
Let the walk kmax ∈WK(Gest(c)) be the finite walk with the longest query length, and the vertices
sequence (s1, · · · , sn), it is sufficient to show:

lenq(kmax) = len(s|s ∈ (s1, · · · , sn)∧Qest(s) = 1) =AdaptSearch(Gest(c))

In order to show the completeness, it is sufficient to show two following items,
1. By line: 15, AdaptSearch(Gest(c)) can find a path pmax such that adaptpmax = lenq(kmax)
2. This px,y is the longest weighted path found by AdaptSearch(Gest(c)), and adaptpmax is returned as
the final output.
By the property of ACG, we know every si ∈ (s1, · · · , sn) shows up exactly once. Then we know this
walk is a path and

lenq(kmax) = ∑
si∈(s1,··· ,sn)

Qest(si)

By line: 13, through searching on all the vertices connected on Gest(c) from the starting node si , we
know that AdaptSearch(Gest(c)) finds this path pmax = (s1, · · · , sn).
Then, it is sufficient to show

adaptpmax =
∑

si∈(s1,··· ,sn)
Qest(si).

By line: 15, let GSCC1, · · · ,GSCCm be all the SCC, where each vertex in (s1, · · · , sn) belongs to, it is
sufficient to show: ∑

GSCCi∈(GSCC1,··· ,GSCCm)

adaptscc[GSCCi] = ∑
si∈(s1,··· ,sn)

Qest(si).

By line:3 in Algorithm ??, let GSCCi = (Vi ,Ei ,Wi ,Qi) for GSCCi ∈ (GSCC1, · · · ,GSCCm) be the SCC found by
the standard Algorithm.,
Then, by the property of ACG, we know every GSCCi is a single vertex vi without edge and Qi is the
query annotation of vi , i.e., Vi = {si } and Qi = {(si ,Qest(si))}.
So we know n = m.

67

Also by Algorithm 2 line: 4-5, we know adaptscc[GSCCi] = Qest(si).
Then we can conclude:∑

GSCCi∈(GSCC1,··· ,GSCCm)

adaptscc[GSCCi] = ∑
GSCCi∈(GSCC1,··· ,GSCCn)

Qest(si) = ∑
si∈(s1,··· ,sn)

Qest(si).

So we have (1). "the existence" proved. In order to show pmax is the longest path found and adaptpmax
is returned by AdaptSearch(Gest(c)), by line: 18, it is sufficient to show adapt= adaptpmax .
It is sufficient to show a contradiction if adapt 6= adaptpmax in following two cases:

case: adapt< adaptpmax
, it is easy to show the contradiction by line: 18 where adapt= max(adapt,adaptpmax) ≥ adaptpmax .

case: adapt> adaptpmax
, Let p ′

max be the path such that adapt= adaptp′max > adaptpmax with vertices sequence (s′1, · · · , s′n).
Then we know p ′

max corresponds to a walk k ′
max with the same vertices sequence.

Then by the same proof above, we know lenq(k ′
max) = ad aptp ′

max
and lenq(k ′

max) > lenq(kmax).
Then there is a contradiction that k ′

max is the walk with the longest query length rather than kmax .
Then, we have (2) proved.

68

G The Detail Evaluation Table
Table 2: Experimental results of AdaptFun implementation

Program c
True Value AdaptFun (I | II) performance

lines running time (second)
Ocaml Weight AdaptSearch

twoRounds(k)
A 2 2|2 8 0.0005 0.0017 | 0.0002 0.0003

query # k +1 k +1|k +1

multiRounds(k)
A k k|max(1,k) 10 0.0012 0.0017 | 0.0002 0.0002

query # k k|−
lRGD(k,r)

A k k|max(1,k) 10 0.0015 0.0072 | 0.0002 0.0002
query # 2k 2k|−

mROdd(k) A 1+k 2+max(1,2k)|− 10 0.0015 0.0061 | 0.0002 0.0002
query # 1+2k 1+3k|−

mRSingle(k) A 2 1+max(1,k)|− 9 0.0011 0.0075 | 0.0002 0.0002
query # 1+k 1+k|1+k

ifCD() A 3 3|3 5 0.0005 0.0003 | 0.0001 0.0001
query # 3 3|4

while(k) A 1+k/2 1+max(1,k/2)|− 7 0.0021 0.0015| 0.0001 0.0001
query # 1+k/2 1+k/2|−

whileM(k) A 1+k 2+max(1,2k)|− 9 0.0017 0.0062 | 0.0002 0.0001
query # 1+2k 1+3k|−

whileRV(k) A 1+2k 1+2k|1+max(1,2k) 9 0.0016 0.0056| 0.0002 0.0001
query # 2+3k 2+3k|−

whileVCD(k) A 1+2Q Qm +max(1,2Qm) | - 6 0.0016 0.0007 |0.0002 0.0001
query # 2+2Qm 2+2Qm | -

whileMPVCD(k) A 2+Qm 2+2Qm | - 9 0.0017 0.0043 | 0.0002 0.0001
query # 2+Qm 2+2Qm | -

nestWhileRC(k) A 1+3k 1+3k|2+3k +k2 11 0.019 0.2669 | 0.0002 0.0007
query # 1+3k 1+3k|1+k +k2

nestWhileVD(k) A 2+k2 3+k2|− 10 0.0018 0.0126 | 0.0002 0.0001
query # 1+k +k2 1+k +k2|−

nestWhileRV(k) A 1+k +k2 2+k +k2|− 10 0.0017 0.0186 | 0.0002 0.0001
query # 2+k +k2 2+k +k2|−

nestWhileMV(k) A 1+2k 1+max(1,2k)|− 10 0.0016 0.0071 | 0.0002 0.0001
query # 1+k +k2 1+k +k2|−

nestWhileMPRV(k)
A 1+k +k2 3+k +k2|− 10 0.019 0.0999 | 0.0002 0.0002

query # 2+k +k2 2+2k +k2|−
mRComplete(k) A k k|− 27 0.0026 85.9017 | 0.0003 0.0004

query # k k|−
mRCompose(k) A 2k 2k|− 46 0.0036 5104 | 0.0003 0.0013

query # 2k 2k|−
seqCompose(k) A 12 12 | - 502 0.0426 1.2743 | 0.0003 0.0223

query # 326 326|−
tRCompose(k)

A 2 ∗|2 42 0.0026 * | 0.0003 0.0005
query # 1+5k +2k2 ∗|1+5k +2k2

jumboS(k)
A max(20,8+k2) ∗|max(20,6+k +k2) 71 0.0035 *| 0.0003 0.0085

query # 37+k +k2 ∗|44+k +k2

jumbo(k)
A max(20,10+k +k2) ∗|max(20,12+k +k2) 502 0.0691 * | 0.0009 0.018

query # 270+22k +10k2 ∗|286+26k +10k2

big(k)
A 22+k +k ∗k ∗|28+k +k2 214 0.0175 * | 0.0004 0.002

query # 110+10k +4k2 ∗|121+11k +4k2

H The Programs and Codes of The Evaluated Examples in Table 2

H.1 The Programs for Examples from line:6 - 15 in Table.2

Example H.1 (The Complete Gradient Decent Optimization Algorithm). This example is the gradient
decent algorithm example is a generalization of the linear regression on a higher degree data relation.

69

It uses gradient decent algorithm to minimize the mean square loss function for a two-degree relation
y = a1 ×x2

1 +a2 ×x2 + c on the dataset of two feature columns and one indicator column.

gradientDecent(step,rate,t,n),
[a1 ← 0]0;
[a2 ← 0]1;
[c ← 0]2;[

j ← step
]3;

while
[

j > 0
]4

do([
d a1 ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c))× (χ[0]))

]5
;[

d a2 ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c))× (χ[1]))
]6

;[
dc ← query(−2∗ (χ[2]− (χ[0]2 ×a1 +χ[1]×a2 + c)))

]5
;

[a1 ← a1 −rate∗d a1]7;
[a2 ← a2 −rate∗d a2]8;
[c ← c −rate∗dc]9;[

j ← j −1
]10

)
;

This approach can be generalized to the regression of a variety of relations in machine learning area.

Example H.2 (Sequence with Linear Query Dependency). This example algorithm contains only
sequence of four query commands. Each of them depends on a previous query. The longest dependency
depth, i.e., the adaptivity is expectation to be 4.

seq(),

[
x ←χ[0]

]0;
[

y ←χ[x +1]
]1;[

z ←χ[y +1]
]2;

[
w ←χ[z +1]

]3

Evaluation Result: Aest(seq()) = 4

Example H.3 (Sequence with Query Dependency between Related Variables). This example algorithm
contains a sequence of four query commands. Each of them depends on one or more of the previous
queries. The longest dependency depth, i.e., the adaptivity is expectation to be 4.

seqRV(),

[
x ←χ[0]

]0;
[

y ←χ[x +1]
]1;[

z ←χ[y +x]
]2;

[
w ←χ[z +1] ·χ[y]

]3

Evaluation Result: Aest(seqMultiVar()) = 4

Example H.4 (If with Data-Value Dependency Separated). This example algorithm contains a if

command and a query requests in each branch. Only the query in the first branch depend on the query
in the command 0, and the variable in the guard is not assigned by a query request. The longest
dependency depth, i.e., the adaptivity is expectation to be 3.

ifVD(k),

[
z ← query(χ[0])

]0; [x ← k/2]1;

if ([x < 0]2,
[

y ← query(χ[z])
]3,

[
y ← query(χ[0])

]4)

Evaluation Result: Aest(ifVD()) = 3

Example H.5 (If with Data-Control Dependency Overlapped). This example algorithm contains a
if command and a query requests in each branch. The variable in the guard is assigned by a query

70

request in command 1. The two queries in the branches depend on the second query in command 1
but not depend on the query in the command 0. Even though the variable x isn’t used in the query
expression in the query 3 and 4, there are still dependency relation because x is in the guard. The
longest dependency depth, i.e., the adaptivity is expectation to be 3.

ifCD(),

[
z ← query(χ[0])

]0;
[
x ← query(χ[z])

]1;

if ([x < 0]2,
[

y ← query(χ[0]+χ[1])
]3,

[
y ← query (χ[0])

]4)

Evaluation Result: Aest(ifCD()) = 3

Example H.6 (While with Nested Query Dependency). This example algorithm contains a simple
while loop. There is one query requests in the loop body at command 3. In each iteration, the query
request depend on the query result from previous iteration. The longest dependency depth, i.e., the
adaptivity is expectation to be k.

whileNested(k),

[
j ← k

]0;
[
a ← query(χ[0])

]1;

while
[

j > 0
]2

do([
x ← query(χ[a])

]3; [a ← x +a]4;
[

j ← j −1
]5

)
The Evaluation Result: Aest(whileRec(k)) = 1+k

Example H.7 (While with Multi-Path Query Dependency). This example algorithm contains a simple
while loop and a if command in the loop body. Each branch has a query request (in the commands
5 and 6) depend on the query at command 1 and the query at command 7. Among the k

2 iterations,
result from previous iteration. The longest dependency depth, i.e., the adaptivity is expectation to be
1+2∗bk

2 c.

whileM(k),

[
j ← k

]0;
[
x ← query(χ[0])

]1;

while
[

j > 0
]2

do([
j ← j −1

]3;

if (
[

j %2 == 0
]4,

[
y ←χ[x]

]5,
[
w ←χ[x]

]6);[
x ← query(χ(ln(y)))

]7
)

The Evaluation Result: Aest(whileM(k)) = 1+2∗bk
2 c

Example H.8 (While with Query Dependency through Related Variables). This example algorithm
contains a simple while loop and a sequence of three query requests in the loop body. In each
iteration, every query request depend on one or more query results from previous iteration. The longest
dependency depth, i.e., the adaptivity is expectation to be 1+2∗k.

whileRV(k),

[
j ← k

]0;
[
x ← query(χ[0])

]1;
[

y ← query(χ[1])
]2;

while
[

j > 0
]3

do([
j ← j −1

]4;
[
z ← query(χ(x + ln(y)))

]5;
[
x ← query(χ[z])

]6;
[

y ← query(χ[z])
]7

)
The Evaluation Result: Aest(whileRV(k)) = 1+2∗k

Example H.9 (While with Query Dependency trhough Control Flow and Data Flow). This example
algorithm contains a simple while loop and a sequence of three query requests in the loop body. The
variable in the guard is assigned by a query request in command 0. In each iteration, the query at

71

3 depends on either the query at line 1, and the query result at line 4 from the previous iteration. In
each iteration, the query at 4 depends on either the query at line 0 and the query at line 3 in the same
iteration. The longest dependency depth, i.e., the adaptivity is expectation to be 1+2∗k.

whileVCD(),

[
x ← query(χ[0])

]0;
[
z ← query(χ[0])

]1;
while [x > 0]2 do([

x ← query(χ(z))
]3;

[
z ← query(χ(x))

]4
)

The Evaluation Result: Aest(whileVCD(k)) = 1+2∗k

Example H.10 (While with Multiple Path Query Dependency Dependency). This example algorithm
contains a simple while loop and a if command in the loop body. Each branch has a query request
(in the commands 5 and 6) depend on either the query at command 1 or the query at command 7. The
longest dependency depth, i.e., the adaptivity is expectation to be 2+k.

whileMPVCD(k),

[
x ← query(k)

]0;
[

y ← 0
]1; while [x > 0]2 do(

if (
[

y > 0
]3,

[
y ← query(χ[12])

]4,
[
w ← query(χ[9])

]5);

[x ← x −1]6
)
;[

y ← query(χ(ln(y)))
]7

The Evaluation Result: Aest(whileMPVCD(k)) = 2+k

Example H.11 (Nested While with Nested Query Dependency). This example algorithm contains two
nested while loops. The query in the outer loop at line 5 depends on either the query at line 1 or the
query results at line 8 from the previous iteration of the inner loop. The longest dependency depth, i.e.,
the adaptivity is expectation to be 2+k2.

nestWhileVD(k),

[i ← k]0;
[
x ← query(χ[0])

]1;

while [i > 0]2 do
(
[i ← i −1]3;

[
j ← k

]4;
[

y ← query(χ(ln(x)))
]5;

while
[

j > 0
]6

do
([

j ← j −1
]7;

[
x ← query(χ(ln(x)))

]8
))

The Evaluation Result: Aest(nestWhileVD(k)) = 2+k2

Example H.12 (Nested While with Query Dependency through Related Variables). This example
algorithm contains two nested while loops, one query in the outer loop, and one query in the inner loop.
The query in the outer loop at line 8 depends on only the query result at line 7 from the last iteration of
the inner loop. However, the query at line 7 depends on either the query at line 1 the query results at
line 8 from the previous iteration. The longest dependency depth, i.e., the adaptivity is expectation to
be 1+2∗k.

nestWhileRV(k),

[i ← k]0;
[
x ← query(χ[0])

]1;

while [i > 0]2 do
(
[i ← i −1]3;

[
j ← k

]4;

while
[

j > 0
]5

do
([

j ← j −1
]6;

[
y ← query(χ(x)+χ(1))

]7
)
;[

x ← query(χ(ln(y)))
]8

)
The Evaluation Result: Aest(nestWhileRV(k)) = 1+2∗k

72

Example H.13 (Nested While with Nest Query Dependency and Related Variable Accross Outer and
Inner Loop). This example algorithm contains two nested while loops, one query in the outer loop,
and one query in the inner loop as well. The two queries depend on both the query results assigned to
themselves in previous iteration. The longest dependency depth, i.e., the adaptivity is expectation to be
1+k +k2.

nestWhileMR(k),

[i ← k]0;
[
x ← query(χ[0])

]1;
[

y ← query(χ[1])
]2; while [i > 0]3 do(

[i ← i −1]4;
[

j ← k
]5;

[
y ← query(χ(ln(x)+ y))

]6;

while
[

j > 0
]7

do
([

j ← j −1
]8;

[
x ← query(χ(ln(y))+χ[x])

]9
))

The Evaluation Result: Aest(nestWhileMR(k)) = 1+k +k2

Reachability Bound The Evaluation Result:
weight for Variable: j of label 6 is: 0 + 0 + 1 * k * k
weight for Variable: y of label 7 is: 0 + 0 + 1 * k * k
weight for Variable: j of label 4 is: 0 + 1 * k
weight for Variable: i of label 3 is: 0 + 1 * k
weight for Variable: x of label 8 is: 0 + 1 * k
weight for Variable: x of label 1 is: 1
weight for Variable: i of label 0 is: 1

Example H.14 (Nested While with MultiplePath and Nested Recursive Multiple Variable Data-Value
Dependency Across Outer and Inner Loop). We then show a more complex example with nested while
command and nested data-flow across the outer and inner while loop through multiple variables. This
example also contains the if command with data dependency occurred through the if guard. The longest
dependency depth, i.e., the adaptivity is expectation to be 1+k +k2.

nestWhileMPRV(k),

[i ← k]0;
[
x ← query(χ[0])

]1;
[

y ← query(χ[1])
]2;

while [i > 0]3 do
(
[i ← i −1]4;

[
j ← k

]5;

if ([x > 0]6,
[

y ← query(χ(ln(x)+ y))
]7,

[
y ← query(χ(x))

]8);

while
[

j > 0
]9

do
([

j ← j −1
]10;

[
x ← query(χ(ln(y))+χ[x])

]11
))

The Evaluation Result: Aest(nestWhileMPRV(k)) = 1+k +k2

Reachability Bound The Evaluation Result:
weight for Variable: j of label 10 is: 0 + 0 + 1 * k * k
weight for Variable: x of label 11 is: 0 + 0 + 1 * k * k
weight for Variable: y of label 7 is: 0 + 1 * k
weight for Variable: y of label 8 is: 0 + 1 * k
weight for Variable: j of label 5 is: 0 + 1 * k
weight for Variable: i of label 4 is: 0 + 1 * k
weight for Variable: y of label 2 is: 1
weight for Variable: x of label 1 is: 1
weight for Variable: i of label 0 is: 1

H.2 The Programs for Examples from line:16 - 20 in Table.2

Example H.15 (mRCompose). The composed multiple rounds program:

73

1 [j <- N] 0 ;
2 [l <- 0] 1 ;
3 [cs <- -1] 2 ;
4 [ns <- -1] 3 ;
5 while [< (0, j)] 4 do {
6 [j <- - (j, 1)] 5;
7 [cs <- + (cs, 0)] 6;
8 [ns <- + (ns, 0)] 7 };
9 [w <- k] 8;

10 while [< (0, w)] 9 do {
11 [w <- - (w, 1)] 10;
12 [p <- c] 11;
13 [q <- c] 12;
14 [a <- query (l)] 13 ;
15 [i <- N] 14;
16 while [< (0, i)] 15 do {
17 [i <- - (i, 1)] 16;
18 [csi <- + (csi, * (- (a, p), - (q, p)))] 17;
19 if [> (i , l)] 18
20 then { [nsi <- + (nsi, * (- (a, p), - (q, p)))] 19 }
21 else { [nsi <- nsi] 20 }
22 };
23 [i2 <- N] 21;
24 while [< (0, i2)] 22 do {
25 [i2 <- - (i2, 1)] 23;
26 if [> (nsi , l)] 24
27 then { [l <- + (l , i2)] 25 }
28 else { [l <- l] 26 }
29 }
30 };
31 [w <- k] 27;
32 while [< (0, w)] 28 do {
33 [w <- - (w, 1)] 29;
34 [p <- c] 30;
35 [q <- c] 31;
36 [a <- query (l)] 32 ;
37 [i <- N] 33;
38 while [< (0, i)] 34 do {
39 [i <- - (i, 1)] 35;
40 [csi <- + (csi, * (- (a, p), - (q, p)))] 36;
41 if [> (i , l)] 37
42 then { [nsi <- + (nsi, * (- (a, p), - (q, p)))] 38 }
43 else { [nsi <- nsi] 39 }
44 };
45 [i2 <- N] 40;
46 while [< (0, i2)] 41 do {
47 [i2 <- - (i2, 1)] 42;
48 if [> (nsi , l)] 43
49 then { [l <- + (l , i2)] 44 }
50 else { [l <- l] 45 }
51 }
52 }

Example H.16 (tRCompose). The composed two rounds program:

1 [i <- k] 0 ;
2 [l <- 0] 1 ;

74

3 while [> (i, 0)] 2 do {
4 [i <- - (i, 1)] 3 ;
5 [a <- query (- (k, i))] 4 ;
6 [l <- + (l, a)] 5
7 } ;
8 [y <- query (l)] 6;
9 [j <- k] 7 ;

10 [l <- 0] 8 ;
11 while [> (j, 0)] 9 do {
12 [j <- - (j, 1)] 10 ;
13 [a <- query (- (k, j))] 11 ;
14 [l <- + (l, a)] 12;
15 [i <- k] 13 ;
16 [l <- 0] 14 ;
17 while [> (i, 0)] 15 do {
18 [i <- - (i, 1)] 16 ;
19 [a <- query (- (k, i))] 17 ;
20 [l <- + (l, a)] 18
21 }
22 };
23 [i <- k] 19 ;
24 [l <- 0] 20 ;
25 while [> (i, 0)] 21 do {
26 [i <- - (i, 1)] 22 ;
27 [a <- query (- (k, i))] 23 ;
28 [l <- + (l, a)] 24
29 };
30 [i <- k] 25 ;
31 [l <- 0] 26 ;
32 while [> (i, 0)] 27 do {
33 [i <- - (i, 1)] 28 ;
34 [a <- query (- (k, i))] 29 ;
35 [l <- + (l, a)] 30
36 };
37 while [> (j, 0)] 31 do {
38 [j <- - (j, 1)] 32 ;
39 [a <- query (- (k, j))] 33 ;
40 [l <- + (l, a)] 34;
41 [i <- k] 35 ;
42 [l <- 0] 36 ;
43 while [> (i, 0)] 37 do {
44 [i <- - (i, 1)] 38 ;
45 [a <- query (- (k, i))] 39 ;
46 [l <- + (l, a)] 40
47 }
48 };
49 [y <- query (l)] 41

Example H.17 (seqCompose). The composed two rounds program:

1 [x <- query (0)] 0 ;
2 [y <- query (x)] 1 ;
3 [z <- query (y)] 2 ;
4 [a <- + (x, 0)] 3 ;
5 [b <- + (a, z)] 4 ;
6 [c <- + (a, b)] 5 ;
7 [w <- query (a)] 6 ;

75

8 [x <- query (b)] 7 ;
9 [y <- query (c)] 8 ;

10 [z <- query (z)] 9 ;
11 [w <- query (z)] 10 ;
12 [d <- + (x, w)] 11 ;
13 [e <- + (c, z)] 12 ;
14 [f <- + (a, b)] 13 ;
15 [x <- query (0)] 14 ;
16 [y <- query (x)] 15 ;
17 [z <- query (y)] 16 ;
18 [x <- query (z)] 17;
19 [g <- + (f, w)] 18 ;
20 [h <- + (c, x)] 19 ;
21 [i <- + (w, e)] 20 ;
22 [z <- query (x)] 21 ;
23 if [> (x , 0)] 22
24 then { [y <- query (0)] 23 }
25 else { [w <- query (0)] 24 };
26 [x <- - (y, w)] 25 ;
27 [j <- 5] 26 ;
28 [x <- query (chi : x :)] 27 ;
29 [y <- query (chi : x :)] 28 ;
30 [j <- - (j, 1)] 29 ;
31 if [< (j , 5)] 30
32 then { [y <- query (chi : x :)] 31 }
33 else { [w <- query (chi : x :)] 32 } ;
34 [x <- query (chi : y :)] 33;
35 [y <- query (x)] 34 ;
36 [z <- query (+ (x, y))] 35 ;
37 [w <- query (* (chi : y : , chi : z :))] 36;
38 [z <- query (w)] 37 ;
39 [g <- + (f, z)] 38 ;
40 [h <- + (c, x)] 39 ;
41 [i <- + (w, g)] 40 ;
42 [z <- query (x)] 41 ;
43 [e <- + (c, z)] 42 ;
44 [f <- + (a, i)] 43 ;
45 [x <- query (0)] 44 ;
46 [y <- query (x)] 45 ;
47 [z <- query (y)] 46 ;
48 [z <- query (z)] 47;
49 [x <- / (k, 2)] 48 ;
50 if [> (x , 0)] 49
51 then { [y <- query (z)] 50 }
52 else { [y <- query (0)] 51 } ;
53 [i <- k] 52 ;
54 [x <- query (y)] 53 ;
55 [y <- query (x)] 54 ;
56 [w <- - (w, 1)] 55 ;
57 [i <- - (i, 1)] 56 ;
58 [y <- query (+ (z, y))] 57 ;
59 [j <- k] 58 ;
60 [y <- query (chi : x :)] 59;
61 [j <- - (j, 1)] 60 ;
62 [x <- query (+ (x, y))] 61;
63 [j <- N] 62 ;
64 [l <- x] 63 ;

76

65 [cs <- -1] 64 ;
66 [ns <- -1] 65 ;
67 [y <- query (chi : x :)] 66 ;
68 [j <- - (j, 1)] 67;
69 [cs <- + (cs, 0)] 68 ;
70 [ns <- + (ns, 0)] 69 ;
71 [w <- k] 70;
72 [w <- - (w, 1)] 71 ;
73 [w <- - (w, 1)] 72 ;
74 [p <- c] 73;
75 [q <- c] 74;
76 [a <- query (l)] 75 ;
77 [i <- N] 76;
78 [w <- - (w, 1)] 77 ;
79 [i <- - (i, 1)] 78;
80 [csi <- + (csi, * (- (a, p), - (q, p)))] 79;
81 if [> (i , I)] 80
82 then { [nsi <- + (nsi, * (- (a, p), - (q, p)))] 81 }
83 else { [nsi <- nsi] 82 };
84 [i2 <- N] 83;
85 [y <- query (chi : x :)] 84 ;
86 [i2 <- - (i2, 1)] 85;
87 if [> (ns , I)] 86
88 then { [l <- + (l , i2)] 87 }
89 else { [l <- l] 88 };
90 [x <- query (cs)] 89 ;
91 [y <- query (x)] 90 ;
92 [z <- query (ns)] 91 ;
93 [w <- query (z)] 92 ;
94 [a <- x] 93 ;
95 [c <- z] 94 ;
96 [j <- k] 95 ;
97 [y <- query (chi : x :)] 96 ;
98 [da <- query (* (a , c))] 97 ;
99 [dc <- query (* (a , c))] 98 ;

100 [a <- - (a, da)] 99 ;
101 [c <- - (c, dc)] 100 ;
102 [j <- - (j, 1)] 101 ;
103 [x <- query (0)] 102 ;
104 [y <- query (cs)] 103 ;
105 [z <- query (c)] 104 ;
106 [w <- query (z)] 105 ;
107 [x <- query (0)] 106 ;
108 [y <- query (x)] 107 ;
109 [z <- query (y)] 108 ;
110 [w <- query (z)] 109 ;
111 [x <- query (0)] 110 ;
112 [y <- query (x)] 111 ;
113 [z <- query (+ (x, y))] 112 ;
114 [w <- query (* (chi : y : , chi : z :))] 113 ;
115 [z <- query (w)] 114 ;
116 [x <- query (e)] 115 ;
117 if [> (x , 0)] 116
118 then { [y <- query (0)] 117 }
119 else { [w <- query (0)] 118 } ;
120 [a <- x] 119 ;
121 [c <- z] 120 ;

77

122 [j <- k] 121 ;
123 [cs <- + (cs, 0)] 122 ;
124 [ns <- + (ns, 0)] 123 ;
125 [i <- k] 124 ;
126 [x <- query (0)] 125 ;
127 [y <- query (cs)] 126 ;
128 [w <- - (w, 1)] 127 ;
129 [i <- - (i, 1)] 128 ;
130 [j <- k] 129 ;
131 if [> (x , 0)] 130
132 then { [y <- query (+ (chi : x : , chi : y :))] 131 }
133 else { [y <- query (chi : x :)] 132 } ;
134 [y <- query (chi : x :)] 133 ;
135 [j <- - (j, 1)] 134 ;
136 [x <- query (+ (x, y))] 135;
137 [x <- query (z)] 136 ;
138 [y <- query (cs)] 137 ;
139 [z <- query (c)] 138 ;
140 [w <- query (z)] 139 ;
141 [y <- query (x)] 140 ;
142 [z <- query (+ (x, y))] 141 ;
143 [w <- query (* (chi : y : , chi : z :))] 142 ;
144 [z <- query (0)] 143 ;
145 if [> (x , 0)] 144
146 then { [y <- query (x)] 145 }
147 else { [w <- query (z)] 146 } ;
148 [y <- query (cs)] 147 ;
149 [z <- query (c)] 148 ;
150 [w <- query (z)] 149 ;
151 [x <- query (w)] 150 ;
152 [y <- query (x)] 151 ;
153 [z <- query (y)] 152 ;
154 [w <- query (z)] 153 ;
155 [x <- query (0)] 154 ;
156 [y <- query (x)] 155 ;
157 [z <- query (+ (x, y))] 156 ;
158 [w <- query (* (chi : y : , chi : z :))] 157 ;
159 [z <- query (0)] 158 ;
160 [x <- query (w)] 159 ;
161 [i <- k] 160 ;
162 [x <- query (chi : cs :)] 161 ;
163 [w <- - (w, 1)] 162 ;
164 [i <- - (i, 1)] 163 ;
165 [j <- k] 164 ;
166 [y <- query (chi : x :)] 165 ;
167 [y <- query (chi : x :)] 166;
168 [j <- - (j, 1)] 167 ;
169 [x <- query (chi : x :)] 168;
170 [x <- query (cs)] 169 ;
171 [y <- query (x)] 170 ;
172 [z <- query (ns)] 171 ;
173 [w <- query (z)] 172 ;
174 [a <- x] 173 ;
175 [c <- z] 174 ;
176 [j <- k] 175 ;
177 [y <- query (chi : x :)] 176 ;
178 [da <- query (* (a , c))] 177 ;

78

179 [dc <- query (* (a , c))] 178 ;
180 [a <- - (a, da)] 179 ;
181 [c <- - (c, dc)] 180 ;
182 [j <- - (j, 1)] 181 ;
183 [x <- query (0)] 182 ;
184 [y <- query (cs)] 183 ;
185 [z <- query (c)] 184 ;
186 [w <- query (z)] 185 ;
187 [x <- query (0)] 186 ;
188 [y <- query (x)] 187 ;
189 [z <- query (y)] 188 ;
190 [w <- query (z)] 189 ;
191 [x <- query (0)] 190 ;
192 [y <- query (x)] 191 ;
193 [z <- query (+ (x, y))] 192 ;
194 [w <- query (* (chi : y : , chi : z :))] 193 ;
195 [b <- + (a, z)] 194 ;
196 [c <- + (a, b)] 195 ;
197 [w <- query (a)] 196 ;
198 [x <- query (b)] 197 ;
199 [y <- query (c)] 198 ;
200 [z <- query (z)] 199 ;
201 [w <- query (z)] 200 ;
202 [j <- - (w, 1)] 201 ;
203 [x <- query (0)] 202 ;
204 [y <- query (cs)] 203 ;
205 [z <- query (c)] 204 ;
206 [w <- query (z)] 205 ;
207 [x <- query (0)] 206 ;
208 [y <- query (x)] 207 ;
209 [z <- query (y)] 208 ;
210 [w <- query (z)] 209 ;
211 [x <- query (0)] 210 ;
212 [d <- + (x, w)] 211 ;
213 [e <- + (c, z)] 212 ;
214 [f <- + (a, b)] 213 ;
215 [x <- query (w)] 214 ;
216 [y <- query (x)] 215 ;
217 [z <- query (y)] 216 ;
218 [x <- query (z)] 217;
219 [g <- + (f, w)] 218 ;
220 [h <- + (c, x)] 219 ;
221 [i <- + (w, e)] 220 ;
222 [z <- query (x)] 221 ;
223 [cs <- + (cs, 0)] 222 ;
224 [ns <- + (ns, 0)] 223 ;
225 [i <- k] 224 ;
226 [x <- query (z)] 225 ;
227 [y <- query (cs)] 226 ;
228 [w <- - (w, 1)] 227 ;
229 [i <- - (i, 1)] 228 ;
230 [j <- k] 229 ;
231 if [> (x , 0)] 230
232 then { [y <- query (+ (chi : x : , chi : y :))] 231 }
233 else { [y <- query (chi : x :)] 232 } ;
234 [y <- query (chi : x :)] 233;
235 [j <- - (j, 1)] 234 ;

79

236 [x <- query (+ (x, y))] 235;
237 [x <- query (z)] 236 ;
238 [y <- query (cs)] 237 ;
239 [z <- query (c)] 238 ;
240 [w <- query (z)] 239 ;
241 [y <- query (x)] 240 ;
242 [z <- query (+ (x, y))] 241 ;
243 [w <- query (* (chi : y : , chi : z :))] 242 ;
244 [z <- query (0)] 243 ;
245 if [> (x , 0)] 244
246 then { [y <- query (x)] 245 }
247 else { [w <- query (z)] 246 } ;
248 [y <- query (cs)] 247 ;
249 [z <- query (c)] 248 ;
250 [w <- query (z)] 249 ;
251 [x <- query (w)] 250 ;
252 [y <- query (x)] 251 ;
253 [z <- query (w)] 252 ;
254 [w <- query (z)] 253 ;
255 [x <- query (0)] 254 ;
256 [y <- query (x)] 255 ;
257 [z <- query (+ (x, y))] 256 ;
258 [w <- query (* (chi : y : , chi : z :))] 257 ;
259 [z <- query (0)] 258 ;
260 [x <- query (w)] 259 ;
261 [i <- k] 260 ;
262 [x <- query (chi : cs :)] 261 ;
263 [w <- - (w, 1)] 262 ;
264 [i <- - (i, 1)] 263 ;
265 [j <- k] 264 ;
266 [y <- query (chi : x :)] 265 ;
267 [w <- - (w, 1)] 266;
268 [j <- - (j, 1)] 267 ;
269 [x <- query (chi : x :)] 268;
270 [x <- query (cs)] 269 ;
271 [y <- query (x)] 270 ;
272 [z <- query (ns)] 271 ;
273 [w <- query (z)] 272 ;
274 [a <- x] 273 ;
275 [c <- z] 274 ;
276 [j <- k] 275 ;
277 [y <- query (chi : x :)] 276 ;
278 [da <- query (* (a , c))] 277 ;
279 [dc <- query (* (a , c))] 278 ;
280 [a <- - (a, da)] 279 ;
281 [c <- - (c, dc)] 280 ;
282 [j <- - (j, 1)] 281 ;
283 [x <- query (a)] 282 ;
284 [y <- query (cs)] 283 ;
285 [z <- query (c)] 284 ;
286 [w <- query (z)] 285 ;
287 [x <- query (w)] 286 ;
288 [y <- query (x)] 287 ;
289 [z <- query (y)] 288 ;
290 [w <- query (z)] 289 ;
291 [x <- query (0)] 290 ;
292 [y <- query (x)] 291 ;

80

293 [z <- query (+ (x, y))] 292 ;
294 [w <- query (* (chi : y : , chi : z :))] 293 ;
295 [z <- query (0)] 294 ;
296 [x <- query (w)] 295 ;
297 if [> (x , 0)] 296
298 then { [y <- query (0)] 297 }
299 else { [w <- query (0)] 298 } ;
300 [a <- x] 299 ;
301 [c <- z] 300 ;
302 [j <- k] 301 ;
303 [cs <- + (cs, 0)] 302 ;
304 [ns <- + (ns, 0)] 303 ;
305 [i <- k] 304 ;
306 [x <- query (0)] 305 ;
307 [y <- query (cs)] 306 ;
308 [w <- - (w, 1)] 307 ;
309 [i <- - (i, 1)] 308 ;
310 [j <- k] 309 ;
311 if [> (x , 0)] 310
312 then { [y <- query (+ (chi : x : , chi : y :))] 311 }
313 else { [y <- query (chi : x :)] 312 } ;
314 [y <- query (chi : x :)] 313;
315 [j <- - (j, 1)] 314 ;
316 [x <- query (+ (x, y))] 315;
317 [x <- query (c)] 316 ;
318 [y <- query (cs)] 317 ;
319 [z <- query (c)] 318 ;
320 [w <- query (z)] 319 ;
321 [y <- query (x)] 320 ;
322 [z <- query (+ (x, y))] 321 ;
323 [w <- query (* (chi : y : , chi : z :))] 322 ;
324 [z <- query (0)] 323 ;
325 if [> (x , 0)] 324
326 then { [y <- query (w)] 325 }
327 else { [w <- query (z)] 326 } ;
328 [y <- query (cs)] 327 ;
329 [z <- query (c)] 328 ;
330 [w <- query (z)] 329 ;
331 [x <- query (0)] 330 ;
332 [y <- query (x)] 331 ;
333 [z <- query (y)] 332 ;
334 [w <- query (z)] 333 ;
335 [x <- query (y)] 334 ;
336 [y <- query (x)] 335 ;
337 [z <- query (+ (x, y))] 336 ;
338 [w <- query (* (chi : y : , chi : z :))] 337 ;
339 [z <- query (0)] 338 ;
340 [x <- query (w)] 339 ;
341 [i <- k] 340 ;
342 [x <- query (chi : cs :)] 341 ;
343 [w <- - (w, 1)] 342 ;
344 [i <- - (i, 1)] 343 ;
345 [j <- k] 344 ;
346 [y <- query (chi : x :)] 345 ;
347 [y <- query (chi : x :)] 346;
348 [j <- - (j, 1)] 347 ;
349 [x <- query (chi : x :)] 348;

81

350 [x <- query (cs)] 349 ;
351 [y <- query (x)] 350 ;
352 [z <- query (ns)] 351 ;
353 [w <- query (z)] 352 ;
354 [a <- x] 353 ;
355 [c <- z] 354 ;
356 [j <- k] 355 ;
357 [y <- query (chi : x :)] 356 ;
358 [da <- query (* (a , c))] 357 ;
359 [dc <- query (* (a , c))] 358 ;
360 [a <- - (a, da)] 359 ;
361 [c <- - (c, dc)] 360 ;
362 [j <- - (j, 1)] 361 ;
363 [x <- query (0)] 362 ;
364 [y <- query (cs)] 363 ;
365 [z <- query (c)] 364 ;
366 [w <- query (z)] 365 ;
367 [x <- query (0)] 366 ;
368 [y <- query (x)] 367 ;
369 [z <- query (y)] 368 ;
370 [w <- query (z)] 369 ;
371 [x <- query (0)] 370 ;
372 [y <- query (x)] 371 ;
373 [z <- query (+ (x, y))] 372 ;
374 [w <- query (* (chi : y : , chi : z :))] 373 ;
375 [z <- query (0)] 374 ;
376 [x <- query (w)] 375 ;
377 if [> (x , 0)] 376
378 then { [y <- query (x)] 377 }
379 else { [w <- query (0)] 378 } ;
380 [a <- x] 379 ;
381 [c <- z] 380 ;
382 [j <- k] 381 ;
383 [cs <- + (cs, 0)] 382 ;
384 [ns <- + (ns, 0)] 383 ;
385 [i <- k] 384 ;
386 [x <- query (0)] 385 ;
387 [y <- query (cs)] 386 ;
388 [w <- - (w, 1)] 387 ;
389 [i <- - (i, 1)] 388 ;
390 [j <- k] 389 ;
391 if [> (x , 0)] 390
392 then { [y <- query (+ (chi : x : , chi : y :))] 391 }
393 else { [y <- query (chi : x :)] 392 } ;
394 [y <- query (chi : x :)] 393;
395 [j <- - (j, 1)] 394 ;
396 [x <- query (+ (x, y))] 395;
397 [x <- query (0)] 396 ;
398 [y <- query (cs)] 397 ;
399 [z <- query (c)] 398 ;
400 [w <- query (z)] 399 ;
401 [y <- query (x)] 400 ;
402 [z <- query (+ (x, y))] 401 ;
403 [w <- query (* (chi : y : , chi : z :))] 402 ;
404 [z <- query (0)] 403 ;
405 if [> (x , 0)] 404
406 then { [y <- query (w)] 405 }

82

407 else { [w <- query (z)] 406 } ;
408 [y <- query (cs)] 407 ;
409 [z <- query (c)] 408 ;
410 [w <- query (z)] 409 ;
411 [x <- query (0)] 410 ;
412 if [> (w , 0)] 411
413 then { [y <- w] 412 }
414 else { [w <- query (z)] 413 } ;
415 [x <- query (w)] 414 ;
416 [y <- query (x)] 415 ;
417 [z <- query (y)] 416 ;
418 [x <- query (z)] 417;
419 [g <- + (f, w)] 418 ;
420 [h <- + (c, x)] 419 ;
421 [i <- + (w, e)] 420 ;
422 [z <- query (x)] 421 ;
423 [cs <- + (cs, 0)] 422 ;
424 [ns <- + (ns, 0)] 423 ;
425 [i <- k] 424 ;
426 [x <- query (z)] 425 ;
427 [y <- query (cs)] 426 ;
428 [w <- - (w, 1)] 427 ;
429 [i <- - (i, 1)] 428 ;
430 [j <- k] 429 ;
431 if [> (x , 0)] 430
432 then { [y <- query (+ (chi : x : , chi : y :))] 431 }
433 else { [y <- query (chi : x :)] 432 } ;
434 [y <- query (chi : x :)] 433;
435 [j <- - (j, 1)] 434 ;
436 [x <- query (+ (x, y))] 435 ;
437 [x <- query (z)] 436 ;
438 [y <- query (cs)] 437 ;
439 [z <- query (c)] 438 ;
440 [w <- query (z)] 439 ;
441 [y <- query (w)] 440 ;
442 [z <- query (+ (x, y))] 441 ;
443 [w <- query (* (chi : y : , chi : z :))] 442 ;
444 [z <- query (0)] 443 ;
445 if [> (x , 0)] 444
446 then { [y <- query (x)] 445 }
447 else { [w <- query (z)] 446 } ;
448 [y <- query (cs)] 447 ;
449 [z <- query (c)] 448 ;
450 [w <- query (z)] 449 ;
451 [x <- query (w)] 450 ;
452 [y <- query (x)] 451 ;
453 [z <- query (w)] 452 ;
454 [w <- query (z)] 453 ;
455 [x <- query (0)] 454 ;
456 [y <- query (x)] 455 ;
457 [z <- query (+ (x, y))] 456 ;
458 [w <- query (* (chi : y : , chi : z :))] 457 ;
459 [z <- query (0)] 458 ;
460 [x <- query (w)] 459 ;
461 [i <- k] 460 ;
462 [x <- query (chi : cs :)] 461 ;
463 [i <- - (i, 1)] 462;

83

464 [i <- - (i, 1)] 463 ;
465 [j <- k] 464 ;
466 [y <- query (chi : x :)] 465 ;
467 [j <- - (j, 1)] 466;
468 [j <- - (j, 1)] 467 ;
469 [x <- query (chi : x :)] 468;
470 [x <- query (cs)] 469 ;
471 [y <- query (x)] 470 ;
472 [z <- query (ns)] 471 ;
473 [w <- query (z)] 472 ;
474 [a <- x] 473 ;
475 [c <- z] 474 ;
476 [j <- k] 475 ;
477 [da <- query (* (a , c))] 476;
478 [da <- query (* (a , c))] 477 ;
479 [dc <- query (* (a , c))] 478 ;
480 [a <- - (a, da)] 479 ;
481 [c <- - (c, dc)] 480 ;
482 [j <- - (j, 1)] 481 ;
483 [x <- query (a)] 482 ;
484 [y <- query (cs)] 483 ;
485 [z <- query (c)] 484 ;
486 [w <- query (z)] 485 ;
487 [x <- query (w)] 486 ;
488 [y <- query (x)] 487 ;
489 [z <- query (y)] 488 ;
490 [w <- query (z)] 489 ;
491 [x <- query (0)] 490 ;
492 [y <- query (x)] 491 ;
493 [z <- query (+ (x, y))] 492 ;
494 [w <- query (* (chi : y : , chi : z :))] 493 ;
495 [z <- query (0)] 494 ;
496 [x <- query (w)] 495 ;
497 if [> (x , 0)] 496
498 then { [y <- query (0)] 497 }
499 else { [w <- query (0)] 498 } ;
500 [a <- x] 499 ;
501 [c <- z] 500 ;
502 [r <- query (c)] 501

Example H.18 (jumboS). The composed program with nested loops.

1 [x <- query (0)] 0 ;
2 [y <- query (x)] 1 ;
3 [z <- query (y)] 2 ;
4 [a <- + (x, 0)] 3 ;
5 [b <- + (a, z)] 4 ;
6 [c <- + (a, b)] 5 ;
7 [w <- query (a)] 6 ;
8 [x <- query (b)] 7 ;
9 [y <- query (c)] 8 ;

10 [z <- query (z)] 9 ;
11 [w <- query (z)] 10 ;
12 [d <- + (x, w)] 11 ;
13 [e <- + (c, z)] 12 ;
14 [f <- + (a, b)] 13 ;
15 [x <- query (0)] 14 ;

84

16 [y <- query (x)] 15 ;
17 [z <- query (y)] 16 ;
18 [x <- query (z)] 17;
19 [g <- + (f, w)] 18 ;
20 [h <- + (c, x)] 19 ;
21 [i <- + (w, e)] 20 ;
22 [z <- query (x)] 21 ;
23 if [> (x , 0)] 22
24 then { [y <- query (0)] 23 }
25 else { [w <- query (0)] 24 };
26 [x <- - (y, w)] 25 ;
27 [j <- 5] 26 ;
28 [x <- query (chi : x :)] 27 ;
29 while [> (j, 0)] 28 do {
30 [j <- - (j, 1)] 29 ;
31 if [< (j , 5)] 30
32 then { [y <- query (chi : x :)] 31 }
33 else { [w <- query (chi : x :)] 32 } ;
34 [x <- query (chi : y :)] 33
35 };
36 [y <- query (x)] 34 ;
37 [z <- query (+ (x, y))] 35 ;
38 [w <- query (* (chi : y : , chi : z :))] 36;
39 [z <- query (w)] 37 ;
40 [g <- + (f, z)] 38 ;
41 [h <- + (c, x)] 39 ;
42 [i <- + (w, g)] 40 ;
43 [z <- query (x)] 41 ;
44 [e <- + (c, z)] 42 ;
45 [f <- + (a, i)] 43 ;
46 [x <- query (0)] 44 ;
47 [y <- query (x)] 45 ;
48 [z <- query (y)] 46 ;
49 [z <- query (z)] 47;
50 [x <- / (k, 2)] 48 ;
51 if [> (x , 0)] 49
52 then { [y <- query (z)] 50 }
53 else { [y <- query (0)] 51 } ;
54 [i <- k] 52 ;
55 [x <- query (y)] 53 ;
56 [y <- query (x)] 54 ;
57 while [> (i , 0)] 55 do {
58 [i <- - (i, 1)] 56 ;
59 [y <- query (+ (z, y))] 57 ;
60 [j <- k] 58 ;
61 while [> (j , 0)] 59 do
62 { [j <- - (j, 1)] 60 ;
63 [x <- query (+ (x, y))] 61 }
64 } ;
65 [j <- N] 62 ;
66 [l <- x] 63 ;
67 [cs <- -1] 64 ;
68 [ns <- -1] 65 ;
69 while [< (0, j)] 66 do {
70 [j <- - (j, 1)] 67;
71 [cs <- + (cs, 0)] 68 ;
72 [ns <- + (ns, 0)] 69 };

85

73 [w <- k] 70

Example H.19 (jumbo). The composed program with multiple paths nested loops.

1 [x <- query (0)] 0 ;
2 [y <- query (x)] 1 ;
3 [z <- query (y)] 2 ;
4 [a <- + (x, 0)] 3 ;
5 [b <- + (a, z)] 4 ;
6 [c <- + (a, b)] 5 ;
7 [w <- query (a)] 6 ;
8 [x <- query (b)] 7 ;
9 [y <- query (c)] 8 ;

10 [z <- query (z)] 9 ;
11 [w <- query (z)] 10 ;
12 [d <- + (x, w)] 11 ;
13 [e <- + (c, z)] 12 ;
14 [f <- + (a, b)] 13 ;
15 [x <- query (0)] 14 ;
16 [y <- query (x)] 15 ;
17 [z <- query (y)] 16 ;
18 [x <- query (z)] 17;
19 [g <- + (f, w)] 18 ;
20 [h <- + (c, x)] 19 ;
21 [i <- + (w, e)] 20 ;
22 [z <- query (x)] 21 ;
23 if [> (x , 0)] 22
24 then { [y <- query (0)] 23 }
25 else { [w <- query (0)] 24 };
26 [x <- - (y, w)] 25 ;
27 [j <- 5] 26 ;
28 [x <- query (chi : x :)] 27 ;
29 while [> (j, 0)] 28 do {
30 [j <- - (j, 1)] 29 ;
31 if [< (j , 5)] 30
32 then { [y <- query (chi : x :)] 31 }
33 else { [w <- query (chi : x :)] 32 } ;
34 [x <- query (chi : y :)] 33
35 };
36 [y <- query (x)] 34 ;
37 [z <- query (+ (x, y))] 35 ;
38 [w <- query (* (chi : y : , chi : z :))] 36;
39 [z <- query (w)] 37 ;
40 [g <- + (f, z)] 38 ;
41 [h <- + (c, x)] 39 ;
42 [i <- + (w, g)] 40 ;
43 [z <- query (x)] 41 ;
44 [e <- + (c, z)] 42 ;
45 [f <- + (a, i)] 43 ;
46 [x <- query (0)] 44 ;
47 [y <- query (x)] 45 ;
48 [z <- query (y)] 46 ;
49 [z <- query (z)] 47;
50 [x <- / (k, 2)] 48 ;
51 if [> (x , 0)] 49
52 then { [y <- query (z)] 50 }
53 else { [y <- query (0)] 51 } ;

86

54 [i <- k] 52 ;
55 [x <- query (y)] 53 ;
56 [y <- query (x)] 54 ;
57 while [> (i , 0)] 55 do {
58 [i <- - (i, 1)] 56 ;
59 [y <- query (+ (z, y))] 57 ;
60 [j <- k] 58 ;
61 while [> (j , 0)] 59 do
62 { [j <- - (j, 1)] 60 ;
63 [x <- query (+ (x, y))] 61 }
64 } ;
65 [j <- N] 62 ;
66 [l <- x] 63 ;
67 [cs <- -1] 64 ;
68 [ns <- -1] 65 ;
69 while [< (0, j)] 66 do {
70 [j <- - (j, 1)] 67;
71 [cs <- + (cs, 0)] 68 ;
72 [ns <- + (ns, 0)] 69 };
73 [w <- k] 70;
74 while [< (0, w)] 71 do {
75 [w <- - (w, 1)] 72 ;
76 [p <- c] 73;
77 [q <- c] 74;
78 [a <- query (l)] 75 ;
79 [i <- N] 76;
80 while [< (0, i)] 77 do {
81 [i <- - (i, 1)] 78;
82 [csi <- + (csi, * (- (a, p), - (q, p)))] 79;
83 if [> (i , I)] 80
84 then { [nsi <- + (nsi, * (- (a, p), - (q, p)))] 81 }
85 else { [nsi <- nsi] 82 }
86 };
87 [i2 <- N] 83;
88 while [< (0, i2)] 84 do {
89 [i2 <- - (i2, 1)] 85;
90 if [> (ns , I)] 86
91 then { [l <- + (l , i2)] 87 }
92 else { [l <- l] 88 }
93 }
94 };
95 [x <- query (cs)] 89 ;
96 [y <- query (x)] 90 ;
97 [z <- query (ns)] 91 ;
98 [w <- query (z)] 92 ;
99 [a <- x] 93 ;

100 [c <- z] 94 ;
101 [j <- k] 95 ;
102 while [< (0, j)] 96 do {
103 [da <- query (* (a , c))] 97 ;
104 [dc <- query (* (a , c))] 98 ;
105 [a <- - (a, da)] 99 ;
106 [c <- - (c, dc)] 100 ;
107 [j <- - (j, 1)] 101
108 };
109 [x <- query (0)] 102 ;
110 [y <- query (cs)] 103 ;

87

111 [z <- query (c)] 104 ;
112 [w <- query (z)] 105 ;
113 [x <- query (0)] 106 ;
114 [y <- query (x)] 107 ;
115 [z <- query (y)] 108 ;
116 [w <- query (z)] 109 ;
117 [x <- query (0)] 110 ;
118 [y <- query (x)] 111 ;
119 [z <- query (+ (x, y))] 112 ;
120 [w <- query (* (chi : y : , chi : z :))] 113 ;
121 [z <- query (w)] 114 ;
122 [x <- query (e)] 115 ;
123 if [> (x , 0)] 116
124 then { [y <- query (0)] 117 }
125 else { [w <- query (0)] 118 } ;
126 [a <- x] 119 ;
127 [c <- z] 120 ;
128 [j <- k] 121 ;
129 [cs <- + (cs, 0)] 122 ;
130 [ns <- + (ns, 0)] 123 ;
131 [i <- k] 124 ;
132 [x <- query (0)] 125 ;
133 [y <- query (cs)] 126 ;
134 while [> (i , 0)] 127 do {
135 [i <- - (i, 1)] 128 ;
136 [j <- k] 129 ;
137 if [> (x , 0)] 130
138 then { [y <- query (+ (chi : x : , chi : y :))] 131 }
139 else { [y <- query (chi : x :)] 132 } ;
140 while [> (j , 0)] 133 do
141 { [j <- - (j, 1)] 134 ;
142 [x <- query (+ (x, y))] 135 }
143 };
144 [x <- query (z)] 136 ;
145 [y <- query (cs)] 137 ;
146 [z <- query (c)] 138 ;
147 [w <- query (z)] 139 ;
148 [y <- query (x)] 140 ;
149 [z <- query (+ (x, y))] 141 ;
150 [w <- query (* (chi : y : , chi : z :))] 142 ;
151 [z <- query (0)] 143 ;
152 if [> (x , 0)] 144
153 then { [y <- query (x)] 145 }
154 else { [w <- query (z)] 146 } ;
155 [y <- query (cs)] 147 ;
156 [z <- query (c)] 148 ;
157 [w <- query (z)] 149 ;
158 [x <- query (w)] 150 ;
159 [y <- query (x)] 151 ;
160 [z <- query (y)] 152 ;
161 [w <- query (z)] 153 ;
162 [x <- query (0)] 154 ;
163 [y <- query (x)] 155 ;
164 [z <- query (+ (x, y))] 156 ;
165 [w <- query (* (chi : y : , chi : z :))] 157 ;
166 [z <- query (0)] 158 ;
167 [x <- query (w)] 159 ;

88

168 [i <- k] 160 ;
169 [x <- query (chi : cs :)] 161 ;
170 while [> (i , 0)] 162 do {
171 [i <- - (i, 1)] 163 ;
172 [j <- k] 164 ;
173 [y <- query (chi : x :)] 165 ;
174 while [> (j , 0)] 166 do
175 { [j <- - (j, 1)] 167 ;
176 [x <- query (chi : x :)] 168 }
177 };
178 [x <- query (cs)] 169 ;
179 [y <- query (x)] 170 ;
180 [z <- query (ns)] 171 ;
181 [w <- query (z)] 172 ;
182 [a <- x] 173 ;
183 [c <- z] 174 ;
184 [j <- k] 175 ;
185 while [< (0, j)] 176 do {
186 [da <- query (* (a , c))] 177 ;
187 [dc <- query (* (a , c))] 178 ;
188 [a <- - (a, da)] 179 ;
189 [c <- - (c, dc)] 180 ;
190 [j <- - (j, 1)] 181
191 };
192 [x <- query (0)] 182 ;
193 [y <- query (cs)] 183 ;
194 [z <- query (c)] 184 ;
195 [w <- query (z)] 185 ;
196 [x <- query (0)] 186 ;
197 [y <- query (x)] 187 ;
198 [z <- query (y)] 188 ;
199 [w <- query (z)] 189 ;
200 [x <- query (0)] 190 ;
201 [y <- query (x)] 191 ;
202 [z <- query (+ (x, y))] 192 ;
203 [w <- query (* (chi : y : , chi : z :))] 193 ;
204 [b <- + (a, z)] 194 ;
205 [c <- + (a, b)] 195 ;
206 [w <- query (a)] 196 ;
207 [x <- query (b)] 197 ;
208 [y <- query (c)] 198 ;
209 [z <- query (z)] 199 ;
210 [w <- query (z)] 200 ;
211 [j <- - (w, 1)] 201 ;
212 [x <- query (0)] 202 ;
213 [y <- query (cs)] 203 ;
214 [z <- query (c)] 204 ;
215 [w <- query (z)] 205 ;
216 [x <- query (0)] 206 ;
217 [y <- query (x)] 207 ;
218 [z <- query (y)] 208 ;
219 [w <- query (z)] 209 ;
220 [x <- query (0)] 210 ;
221 [d <- + (x, w)] 211 ;
222 [e <- + (c, z)] 212 ;
223 [f <- + (a, b)] 213 ;
224 [x <- query (w)] 214 ;

89

225 [y <- query (x)] 215 ;
226 [z <- query (y)] 216 ;
227 [x <- query (z)] 217;
228 [g <- + (f, w)] 218 ;
229 [h <- + (c, x)] 219 ;
230 [i <- + (w, e)] 220 ;
231 [z <- query (x)] 221 ;
232 [cs <- + (cs, 0)] 222 ;
233 [ns <- + (ns, 0)] 223 ;
234 [i <- k] 224 ;
235 [x <- query (z)] 225 ;
236 [y <- query (cs)] 226 ;
237 while [> (i , 0)] 227 do {
238 [i <- - (i, 1)] 228 ;
239 [j <- k] 229 ;
240 if [> (x , 0)] 230
241 then { [y <- query (+ (chi : x : , chi : y :))] 231 }
242 else { [y <- query (chi : x :)] 232 } ;
243 while [> (j , 0)] 233 do
244 { [j <- - (j, 1)] 234 ;
245 [x <- query (+ (x, y))] 235 }
246 };
247 [x <- query (z)] 236 ;
248 [y <- query (cs)] 237 ;
249 [z <- query (c)] 238 ;
250 [w <- query (z)] 239 ;
251 [y <- query (x)] 240 ;
252 [z <- query (+ (x, y))] 241 ;
253 [w <- query (* (chi : y : , chi : z :))] 242 ;
254 [z <- query (0)] 243 ;
255 if [> (x , 0)] 244
256 then { [y <- query (x)] 245 }
257 else { [w <- query (z)] 246 } ;
258 [y <- query (cs)] 247 ;
259 [z <- query (c)] 248 ;
260 [w <- query (z)] 249 ;
261 [x <- query (w)] 250 ;
262 [y <- query (x)] 251 ;
263 [z <- query (w)] 252 ;
264 [w <- query (z)] 253 ;
265 [x <- query (0)] 254 ;
266 [y <- query (x)] 255 ;
267 [z <- query (+ (x, y))] 256 ;
268 [w <- query (* (chi : y : , chi : z :))] 257 ;
269 [z <- query (0)] 258 ;
270 [x <- query (w)] 259 ;
271 [i <- k] 260 ;
272 [x <- query (chi : cs :)] 261 ;
273 while [> (i , 0)] 262 do {
274 [i <- - (i, 1)] 263 ;
275 [j <- k] 264 ;
276 [y <- query (chi : x :)] 265 ;
277 while [> (j , 0)] 266 do
278 { [j <- - (j, 1)] 267 ;
279 [x <- query (chi : x :)] 268 }
280 };
281 [x <- query (cs)] 269 ;

90

282 [y <- query (x)] 270 ;
283 [z <- query (ns)] 271 ;
284 [w <- query (z)] 272 ;
285 [a <- x] 273 ;
286 [c <- z] 274 ;
287 [j <- k] 275 ;
288 while [< (0, j)] 276 do {
289 [da <- query (* (a , c))] 277 ;
290 [dc <- query (* (a , c))] 278 ;
291 [a <- - (a, da)] 279 ;
292 [c <- - (c, dc)] 280 ;
293 [j <- - (j, 1)] 281
294 };
295 [x <- query (a)] 282 ;
296 [y <- query (cs)] 283 ;
297 [z <- query (c)] 284 ;
298 [w <- query (z)] 285 ;
299 [x <- query (w)] 286 ;
300 [y <- query (x)] 287 ;
301 [z <- query (y)] 288 ;
302 [w <- query (z)] 289 ;
303 [x <- query (0)] 290 ;
304 [y <- query (x)] 291 ;
305 [z <- query (+ (x, y))] 292 ;
306 [w <- query (* (chi : y : , chi : z :))] 293 ;
307 [z <- query (0)] 294 ;
308 [x <- query (w)] 295 ;
309 if [> (x , 0)] 296
310 then { [y <- query (0)] 297 }
311 else { [w <- query (0)] 298 } ;
312 [a <- x] 299 ;
313 [c <- z] 300 ;
314 [j <- k] 301 ;
315 [cs <- + (cs, 0)] 302 ;
316 [ns <- + (ns, 0)] 303 ;
317 [i <- k] 304 ;
318 [x <- query (0)] 305 ;
319 [y <- query (cs)] 306 ;
320 while [> (i , 0)] 307 do {
321 [i <- - (i, 1)] 308 ;
322 [j <- k] 309 ;
323 if [> (x , 0)] 310
324 then { [y <- query (+ (chi : x : , chi : y :))] 311 }
325 else { [y <- query (chi : x :)] 312 } ;
326 while [> (j , 0)] 313 do
327 { [j <- - (j, 1)] 314 ;
328 [x <- query (+ (x, y))] 315 }
329 };
330 [x <- query (c)] 316 ;
331 [y <- query (cs)] 317 ;
332 [z <- query (c)] 318 ;
333 [w <- query (z)] 319 ;
334 [y <- query (x)] 320 ;
335 [z <- query (+ (x, y))] 321 ;
336 [w <- query (* (chi : y : , chi : z :))] 322 ;
337 [z <- query (0)] 323 ;
338 if [> (x , 0)] 324

91

339 then { [y <- query (w)] 325 }
340 else { [w <- query (z)] 326 } ;
341 [y <- query (cs)] 327 ;
342 [z <- query (c)] 328 ;
343 [w <- query (z)] 329 ;
344 [x <- query (0)] 330 ;
345 [y <- query (x)] 331 ;
346 [z <- query (y)] 332 ;
347 [w <- query (z)] 333 ;
348 [x <- query (y)] 334 ;
349 [y <- query (x)] 335 ;
350 [z <- query (+ (x, y))] 336 ;
351 [w <- query (* (chi : y : , chi : z :))] 337 ;
352 [z <- query (0)] 338 ;
353 [x <- query (w)] 339 ;
354 [i <- k] 340 ;
355 [x <- query (chi : cs :)] 341 ;
356 while [> (i , 0)] 342 do {
357 [i <- - (i, 1)] 343 ;
358 [j <- k] 344 ;
359 [y <- query (chi : x :)] 345 ;
360 while [> (j , 0)] 346 do
361 { [j <- - (j, 1)] 347 ;
362 [x <- query (chi : x :)] 348 }
363 };
364 [x <- query (cs)] 349 ;
365 [y <- query (x)] 350 ;
366 [z <- query (ns)] 351 ;
367 [w <- query (z)] 352 ;
368 [a <- x] 353 ;
369 [c <- z] 354 ;
370 [j <- k] 355 ;
371 while [< (0, j)] 356 do {
372 [da <- query (* (a , c))] 357 ;
373 [dc <- query (* (a , c))] 358 ;
374 [a <- - (a, da)] 359 ;
375 [c <- - (c, dc)] 360 ;
376 [j <- - (j, 1)] 361
377 };
378 [x <- query (0)] 362 ;
379 [y <- query (cs)] 363 ;
380 [z <- query (c)] 364 ;
381 [w <- query (z)] 365 ;
382 [x <- query (0)] 366 ;
383 [y <- query (x)] 367 ;
384 [z <- query (y)] 368 ;
385 [w <- query (z)] 369 ;
386 [x <- query (0)] 370 ;
387 [y <- query (x)] 371 ;
388 [z <- query (+ (x, y))] 372 ;
389 [w <- query (* (chi : y : , chi : z :))] 373 ;
390 [z <- query (0)] 374 ;
391 [x <- query (w)] 375 ;
392 if [> (x , 0)] 376
393 then { [y <- query (x)] 377 }
394 else { [w <- query (0)] 378 } ;
395 [a <- x] 379 ;

92

396 [c <- z] 380 ;
397 [j <- k] 381 ;
398 [cs <- + (cs, 0)] 382 ;
399 [ns <- + (ns, 0)] 383 ;
400 [i <- k] 384 ;
401 [x <- query (0)] 385 ;
402 [y <- query (cs)] 386 ;
403 while [> (i , 0)] 387 do {
404 [i <- - (i, 1)] 388 ;
405 [j <- k] 389 ;
406 if [> (x , 0)] 390
407 then { [y <- query (+ (chi : x : , chi : y :))] 391 }
408 else { [y <- query (chi : x :)] 392 } ;
409 while [> (j , 0)] 393 do
410 { [j <- - (j, 1)] 394 ;
411 [x <- query (+ (x, y))] 395 }
412 };
413 [x <- query (0)] 396 ;
414 [y <- query (cs)] 397 ;
415 [z <- query (c)] 398 ;
416 [w <- query (z)] 399 ;
417 [y <- query (x)] 400 ;
418 [z <- query (+ (x, y))] 401 ;
419 [w <- query (* (chi : y : , chi : z :))] 402 ;
420 [z <- query (0)] 403 ;
421 if [> (x , 0)] 404
422 then { [y <- query (w)] 405 }
423 else { [w <- query (z)] 406 } ;
424 [y <- query (cs)] 407 ;
425 [z <- query (c)] 408 ;
426 [w <- query (z)] 409 ;
427 [x <- query (0)] 410 ;
428 if [> (w , 0)] 411
429 then { [y <- w] 412 }
430 else { [w <- query (z)] 413 } ;
431 [x <- query (w)] 414 ;
432 [y <- query (x)] 415 ;
433 [z <- query (y)] 416 ;
434 [x <- query (z)] 417;
435 [g <- + (f, w)] 418 ;
436 [h <- + (c, x)] 419 ;
437 [i <- + (w, e)] 420 ;
438 [z <- query (x)] 421 ;
439 [cs <- + (cs, 0)] 422 ;
440 [ns <- + (ns, 0)] 423 ;
441 [i <- k] 424 ;
442 [x <- query (z)] 425 ;
443 [y <- query (cs)] 426 ;
444 while [> (i , 0)] 427 do {
445 [i <- - (i, 1)] 428 ;
446 [j <- k] 429 ;
447 if [> (x , 0)] 430
448 then { [y <- query (+ (chi : x : , chi : y :))] 431 }
449 else { [y <- query (chi : x :)] 432 } ;
450 while [> (j , 0)] 433 do
451 { [j <- - (j, 1)] 434 ;
452 [x <- query (+ (x, y))] 435 }

93

453 };
454 [x <- query (z)] 436 ;
455 [y <- query (cs)] 437 ;
456 [z <- query (c)] 438 ;
457 [w <- query (z)] 439 ;
458 [y <- query (w)] 440 ;
459 [z <- query (+ (x, y))] 441 ;
460 [w <- query (* (chi : y : , chi : z :))] 442 ;
461 [z <- query (0)] 443 ;
462 if [> (x , 0)] 444
463 then { [y <- query (x)] 445 }
464 else { [w <- query (z)] 446 } ;
465 [y <- query (cs)] 447 ;
466 [z <- query (c)] 448 ;
467 [w <- query (z)] 449 ;
468 [x <- query (w)] 450 ;
469 [y <- query (x)] 451 ;
470 [z <- query (w)] 452 ;
471 [w <- query (z)] 453 ;
472 [x <- query (0)] 454 ;
473 [y <- query (x)] 455 ;
474 [z <- query (+ (x, y))] 456 ;
475 [w <- query (* (chi : y : , chi : z :))] 457 ;
476 [z <- query (0)] 458 ;
477 [x <- query (w)] 459 ;
478 [i <- k] 460 ;
479 [x <- query (chi : cs :)] 461 ;
480 while [> (i , 0)] 462 do {
481 [i <- - (i, 1)] 463 ;
482 [j <- k] 464 ;
483 [y <- query (chi : x :)] 465 ;
484 while [> (j , 0)] 466 do
485 { [j <- - (j, 1)] 467 ;
486 [x <- query (chi : x :)] 468 }
487 };
488 [x <- query (cs)] 469 ;
489 [y <- query (x)] 470 ;
490 [z <- query (ns)] 471 ;
491 [w <- query (z)] 472 ;
492 [a <- x] 473 ;
493 [c <- z] 474 ;
494 [j <- k] 475 ;
495 while [< (0, j)] 476 do {
496 [da <- query (* (a , c))] 477 ;
497 [dc <- query (* (a , c))] 478 ;
498 [a <- - (a, da)] 479 ;
499 [c <- - (c, dc)] 480 ;
500 [j <- - (j, 1)] 481
501 };
502 [x <- query (a)] 482 ;
503 [y <- query (cs)] 483 ;
504 [z <- query (c)] 484 ;
505 [w <- query (z)] 485 ;
506 [x <- query (w)] 486 ;
507 [y <- query (x)] 487 ;
508 [z <- query (y)] 488 ;
509 [w <- query (z)] 489 ;

94

510 [x <- query (0)] 490 ;
511 [y <- query (x)] 491 ;
512 [z <- query (+ (x, y))] 492 ;
513 [w <- query (* (chi : y : , chi : z :))] 493 ;
514 [z <- query (0)] 494 ;
515 [x <- query (w)] 495 ;
516 if [> (x , 0)] 496
517 then { [y <- query (0)] 497 }
518 else { [w <- query (0)] 498 } ;
519 [a <- x] 499 ;
520 [c <- z] 500 ;
521 [r <- query (c)] 501

References

[1] Patrick Cousot. Abstract semantic dependency. In Bor-Yuh Evan Chang, editor, Static Analysis
- 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings,
volume 11822 of Lecture Notes in Computer Science, pages 389–410. Springer, 2019.

[2] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth.
Generalization in adaptive data analysis and holdout reuse. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 2350–2358, 2015.

[3] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Benjamin G. Zorn and
Alexander Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010,
pages 292–304. ACM, 2010.

[4] Ryan Rogers, Aaron Roth, Adam D. Smith, Nathan Srebro, Om Thakkar, and Blake E. Woodworth.
Guaranteed validity for empirical approaches to adaptive data analysis. In Silvia Chiappa and
Roberto Calandra, editors, The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of
Proceedings of Machine Learning Research, pages 2830–2840. PMLR, 2020.

[5] Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In Armin Biere and Roderick Bloem, editors, Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of
Lecture Notes in Computer Science, pages 745–761. Springer, 2014.

[6] Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound analysis of
imperative programs using difference constraints. Journal of automated reasoning, 59(1):3–45,
2017.

[7] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis of imperative
programs with the size-change abstraction. In Eran Yahav, editor, Static Analysis - 18th Interna-
tional Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings, volume 6887 of
Lecture Notes in Computer Science, pages 280–297. Springer, 2011.

95

	Labeled While Language
	Labeled Language
	Trace-based Operational Semantics for Labeled While Language

	Event and Trace
	Event
	Trace

	Dependency and Adapativity
	Semantics-based Dependency Graph
	May-Dependency
	Trace-based Adaptivity
	The Walk Through Example

	The Adaptivity Analysis Algorithm - AdaptFun
	A guide to AdaptFun
	Vertex and Query Annotation Estimations
	Edge and Weight Estimation
	Abstract Transition Graph
	Edge Estimation
	Weight Estimation

	Graph Construction
	Adaptivity Upper Bound Computation

	Examples and Experimental Results
	Examples
	Implementation Results
	More Discussions on The Evaluated Examples
	More on The Two Rounds Adaptive Data Analysis
	mRComplete
	lRGD

	Appendices
	Proofs of Lemmas for the Language Model
	Proof of Lemma 1.1
	Proof of Lemma 2.1
	Proof of Lemma 2.0.1

	Proof of Theorem 4.2
	Soundness of Edge Estimation
	Main Theorem
	Soundness of flowsTo w.r.t. the Event
	Inversion Lemmas and Helper Lemmas

	Soundness of The Weight Estimation
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Soundness of Weight Estimation, Theorem 4.1

	Soundness of Adaptivity Computation Algorithm
	Conditional Completeness of Adaptivity Computation Algorithm
	The Detail Evaluation Table
	The Programs and Codes of The Evaluated Examples in Table 2
	The Programs for Examples from line:6 - 15 in Table.2
	The Programs for Examples from line:16 - 20 in Table.2

