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ABSTRACT 1 INTRODUCTION

Despite a long history of research and wide-spread applications to The past several years have seen a proliferation of encrypted com-
censorship resistant systems, practical steganographic systems ca-munication systems designed to withstand even sophisticated, nation-
pable of embedding messages into realistic communication distribu- state attackers], 2]. While these systems maintain the con"den-
tions, like text, do not exist. We identify two primary impediments tiality of plaintext messages, the data transmitted by these tools is
to deploying universal steganography: (1) prior work leaves the easily identi"able as encrypted communication. This makes these
dilcult problem of "nding samplers for non-trivial distributions protocols easy targets for repressive regimes that are interested
unaddressed, and (2) prior constructions have impractical minimum in limiting free communication B, 4]: for example, using network
entropy requirements. We investigate using generative models as censorship techniques such as those practiced by countries like
steganographic samplers, as they represent the best known tech- China [5B7]. Concrete attempts to suppress the encrypted commu-
nique for approximating human communication. Additionally, we  nication technologies used to evade censors are now underway. For
study methods to overcome the entropy requirement, including example, ChinaOs Great Firewall (GFW) not only prevents users
evaluating existing techniques and designing a new steganographic from accessing content deemed subversive, but it also actively de-
protocol, called Meteor. The resulting protocols are provably indis- tects and blocks encryption-based censorship circumvention tech-
tinguishable from honest model output and represent an important nologies such as Tor [8D10].

step towards practical steganographic communication for mundane In regimes where cleartext communication is expected, the mere
communication channels. We implement Meteor and evaluate it useof encryption may be viewed as an indication of malicious
on multiple computation environments with multiple generative  or subversive intent. To work around blocking and avoid suspi-

models. cion, users must make their communications look mundane. For
instance, Tor users in China have begun to leverage steganographic
CCS CONCEPTS techniques such as ScrambleSuit/obf$4] | SkypeMorph L2, Ste-

goTorus [L3, TapDance 14 15, and Format-Transforming Encryp-
tion [1§. These techniques embed messages into tralc that censors
consider acceptable.

While the current generation of steganographic tools is su!cient
to evade current censorship techniques, these tools are unlikely to
remain a sustainable solution in the future. While some tools pro-
vide strong cryptographic guaranteed? 17, 18, this is achievable
only because they encode messages into (pseudo-)random cover-
text channelsj.e, replacing a random or encrypted stream with a
; ) ) _ chosen pseudorandom ciphertext. Unfortunately, there is no guar-
Gabriel Kaptchuk and Tushar M. Jois, Matthew Green, Aviel D. Rubin. - o yie6 that such channels will continue to be available: a censor can
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considerall encryptiorto be subversive, and drop all packets not
explicitly recognizable as meaningful plaintext. Rigorous studies of
the capabilities of the current GFW focus on other techniqu&SEp
22, but there is anecdotal evidence that encryption suppression
has begun to occurZ3, including the blocking of some TLS 1.3
connections [24].

¥ Security and privacy ! Cryptography ; Network security ;
Pseudonymity, anonymity and untraceability

KEYWORDS

Steganography; Applied Cryptography; Generative Models; Cen-
sorship Resistance

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci“c permission
and/or a fee. Request permissions from permissions@acm.org.

ccs 021, November 15919, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484550

Steganography for Realistic Communication Channels. To
combat extreme censorship, there is a need for steganographic pro-
tocols that can producstegotex{the steganographic equivalent

of ciphertext) that closely mimics real, innocuous communication.



With such techniques, it would be impossible for a censorst channel can be measured and elciently computed: draw random
lectivelyrepress communications, as subversive messages could coins and use them to randomly select an output from the explicit
hide in benign communication. For instance, if dissidents could en- probability distribution. Natural communication channels N the
code secret messages into mundane appearing emails, web-forummost useful targets for practical steganography N are generally
posts, or other forms of Onormal® human communication, censor-too complex for such nasve sampling techniques. For example, it
ship would be impractical. The ideal tool for this task is universal is infeasible to perfectly measure the distribution of the English
steganography: schemes which are able to securely hide sensitive language, and the usage of English continues to evolve and change.
information in arbitrary covertext channelghe steganographic Without access to perfect samplers, we explore steganographic
term for communication channels). Even if the censor suspects samplers thafipproximatehe target channel. While this relaxation
something, the secret message cannot be found N nor is there any introduces the risk that an adversary can detect a steganographic
statistical evidence of its existence. message by distinguishing between the real channel and the ap-
A key challenge in this setting is to identify a generator of some  proximation,this is the best we can dden perfect samplers cannot
useful distribution where sampling will produce symbols that are  be constructed. In this work, we propose to ugenerative models
identical (or at least close) to ordinary content present in a com- as steganographic samplers, as these models are the best technique
munications channel. Given such a generator, numeraongersal for approximating complex distributions like text-based communi-
steganographic constructions have been proposed that can sam-cation. While these models are still far from perfect, the quality of
ple from this distribution to produce a stegotext [25D31]. Unfortu- generated content is impressive] 57 and continues to improve,
nately, identifying useful generators is challenging, particularly for  raising concerns about the disastrous societal impact of mis6&g [
complex distributions such as natural language text. To our knowl- Generative models operate by taking some context and model
edge, the only practical attempts to achieve practical steganography parameters and outputting an explicit probability distribution over
such natural communication channels have come from the natural the next token (for example, a character or a word) to follow that
language processing (NLP) communi§2P44. While the result- context. During typical use, the next token to add to the output is
ing text is quite convincing, these works largely rely on insecure  randomly sampled from this explicit distribution. This process is
steganographic constructions that fail to achieve formal de"ni- then repeated, updating the context with the previously selected
tions [45E60. In this work, we focus our attention on constructing tokens, until the output is of the desired length. Model creation,
provably secure steganography for the kinds of distributions that or training, processes vast amounts of data to set model param-
would be di'cult for a censor block without su#ering signi“cant eters and structure such that the resulting output distributions
social repercussions. To do so, we identify and overcome the barri- approximate the true distributions in the training data.
ers to using steganographic techniques as practical tools to combat ~ The use of generative models as steganographic samplers facili-
network censorship. tates the creation of stegotext that are provably indistinguishable
from honest model output, and thus good approximations of real
communication (although not indistinguishable from real communi-
cation). We show that the nature of generative models,a shared
(public) model and explicit probability distribution, can be lever-

existence of an elcientsamplerfunctionality that, on demand, aged to signi“cantly increase concrete elciency of steganographic

outputs atoken(sometimes referred to asdocumenjtthat could schemes. Our key insight is that a sender and receiver can keep

appear in the covertext channel. These tokens are then run through their models synchronized, and thus recover ts@meexplicit prob-

a hash function that maps the token to a small, "xed number of ability distribution from which each token is selected, a departure
bits. Using rejection sampling, an encoder can "nd a token that from traditional steganographic models. This allows the receiver
maps to some speci'c, desired bits, usually the "rst few bits of to make inferences about the random coins used by the sender

a pseudo-random ciphertext. By repeatedly using this technique, when sampllngeach token. !f the message is embedded into t_hls
a sender can encode an entire ciphertext into a series of tokens, F2hdomness (in an appropriately protected manner), the receiver
and a receiver can recover the message by hashing the tokens and €0 Use these inferences to extract the original message.
decrypting the resulting bits. Security of these approaches relies on
the (pseudo-)randomness of the ciphertext and carefully controlling
the bias introduced by rejection sampling.

There are two signi“cant barriers to using universal stegano-
graphic systems for censorship-resistant communication: (1) the
lack of appropriate samplers for real, desirable covertext channels,
like English text, and (2) the minimum entropy bounds required to
use existing techniques.

Overcoming Shortcomings of Existing Steganographic Tech-
niques. Steganographic schemes that are able to encode into any
communication channel have been the subject of signi“cant the-
oretical work, e.g, [25E81]. Generally, constructions rely on the

(2) Ssteganography for Channels with High Entropy Variablitg.
second barrier is the channehtropyrequirements of most existing
schemes. Speci“cally, most universal steganographic schemes are
only capable of encoding messages into covertext channels if that
channel maintains somminimum entropy no matter the context.
Real communication channels often encounter moments of low (or
even zero) entropy, where the remaining contents of the message
are fairly proscribed based on the prior context. For instance, if
(1) Generative Models as Steganographic Santptesting work a sentence generated by a model trained on encyclopedia entries
leaves samplers as an implementation detail. However, "nding a begins with OThe largest carnivore of the Cretaceous period was
suitable sampler is critical to a practical construction. Sampling the TyranosaurusO with overwhelming probability the next token
is straightforward for simple covertext channels for which the  will be ORexO, and any other token would be very unlikely. In many
instantaneous probability distribution over the next token inthe  existing steganographic proposals, if the hash of this next token



(i.e.Hash(ORex{does not match the next bits of the ciphertext, no
amount of rejection sampling will help the encoder "nd an appro-
priate token, forcing them to restart or abort. Thus, to ensure that
the probability of this failure condition is small, most classical con-
structions impose impractical entropy requirements. We investigate
overcoming this problem in two ways. First, we evaluate the practi-
cality of known techniques for public-key steganography, in which
an arbitrary communication channel is compiled into one with
sulcient entropy. Second, we leverage the structure of generative
models to create a new, symmetric key steganographic encoding
scheme called Meteor. Our key observation is that the best way
to adapt to variable entropy is to $uidly change the encoding rate
to be proportional to the instantaneous entropy. Together, these
could be used to build hybrid steganography, where the public-key
scheme is used to transmit a key for a symmetric key scheme.

Contributions. In this work we explore the use of modern gen-
erative models as samplers for provably secure steganographic
schemes. This provides the groundwork for steganography that
convincingly imitates natural, human communication once the
di#terences between generative models and true communication
become imperceptible. In doing so, we have the following contribu-
tions:

¥ Evaluation of Classical Public-Key Steganography in Prac-
tice. We evaluate the use of a classical public-key steganographic
scheme from $4). We investigate adapting this scheme to work
with generative models, and show that known techniques intro-
duce prohibitively high overhead.

¥ Meteor. We present Meteor, a new symmetric-key, stateful, prov-
ably secure, steganographic system that naturally adapts to highly
variable entropy. We provide formalization for the underlying
techniques so that they can be easily applied to new generative
models as they are developed.

¥ Implementation and Benchmarking. Additionally, we imple-
ment Meteor and evaluate its performance in multiple computing
environments, including on GPU, CPU, and mobile. We focus
primarily on English text as our target distribution, but also in-
vestigate protocol generation. To the best of our knowledge, our
work is the "rst to evaluate the feasibility of a provably secure,
universal steganographic using text-like covertext channels by
giving concrete timing measurements.

¥ Comparison with Informal Steganographic Work.  In addi-
tion to the constructive contributions above, we survey the inse-
cure steganographic techniques present in recent work from the
NLP community B244. We discuss modeling di#erences and
give intuition for why these protocols are not provably secure.

Limitations. We want to be clear about the limitations of our work.

¥ Our work does not address how well a machine learning model
can approximate an existing, OrealO communication channel. An-
swering this question will be crucial for deployment and is the
focus of signi“cant, machine learning research e#oBR1[ 57.
Regardless of the current state of generative models and how
well they imitate real communication, our work is valuable for
the following reasons:
(1) The ever-changing and poorly de"ned nature of real communi-
cation channels makes sampling an inherently hard problem;
channels of interest are impossible to perfectly measure and

characterize. This means the imperceptibility of steganography
for these channels will always be bounded by the accuracy
of the availableapproximatiortechniques. The best approxi-
mation tool available in the existing literature is generative
modeling 5, and thus we focus on integrating them into
steganographic systems.

(2) We prepare for a future in which encrypted and pseudorandom
communications are suppressed, breaking existing tools. As
such, the current inadequacies of generative models should not
be seen as a limitation of our work; the quality of generative
models has steadily improved and is likely to continue
improving. Once the techniques we develop are necessary in
practice, there is hope that generative models are sulciently
mature to produce convincingly real output.

(3) Finally, there already exist applications in which sending model
output is normal. For instance, arti"cial intelligence powered
by machine learning models regularly contribute to news ar-
ticles [56 57, create art 8 59, and create other digital con-
tent [60 61]. Theses channels can be used to facilitate crypto-
graphically secure steganographic communication using our
techniques today.

¥ In Meteor, we assume that the sender and receiver (along with the
censor) access the same generative model. While this requirement
might seem like a limitation, we reiterate that the security of
the scheme does not require that the model remain private. As
such, this model is similar to the common random string model
common in cryptography. Additionally, it is common practice to
share high quality models publiclyq1, 52 62, and these models
would outperform anything an individual could train. As such,
we believe that this assumption is reasonable and show it yields
signi“cant performance gains.

Deployment Scenario. Our work focuses on the following sce-
nario: Imagine a sendee(g.news website, compatriot) attempting

to communicate with a receivere(g.political dissident) in the pres-
ence of a censorre(g.state actor) with control over the communica-
tions network. We assume that the sender and receiver agree on any
necessary key information out of band and select an appropriate
(public) generative model. Although we focus on English text in this
work, the generative model could be for any natural communica-
tion channel. The sender and receiver then initiate communication
over an existing communication channel, using a steganographic
encoder parameterized by the generative model to select the tokens
they send over the channel. The censor attempts to determine if
the output of the generative model being exchanged between the
sender and receiver is subversive or mundane. We note that practi-
cal deployments of these techniques would likely incorporate best
practices to achieve forward secrecy, post compromise security, and
asynchronicity, possibly by using parts of the Signal protoct). [

Organization. In Section 2, we give background and assess re-
lated work on classical steganographic techniques from the cryp-
tographic community, how steganography is currently used in

practice, and generative models. In Section 3, we give formal def-
initions for steganography. In Section 4, we explore using exist-
ing technigues and steganographic schemes to build public-key
steganography for English text distributions. In Section 5, we give

a construction of a new, symmetric key steganographic system,



Algorithm 1: Public-Key Encoding Scheme from [54]

Input: Plaintext Messagk , Distribution D, Sampling
Bound", public-keypk
Output: Stegotext Message
$" PseudorandomPKEncryfpk,! )
LetSo|[all...IBp | " $
#" %
for &< |$| do
# " SampléD)
Th
while ((#)! $ and' <" do
# " SampléD)
)
#"
Output#

Figure 1: The public-key steganography scheme from [54].
PseudorandomPKEncry|# the encryption routine for a pseu-
dorandom, public-key encryption scheme. Samplerandomly
selects an token from the covertext space according to the
distribution D.

Meteor, and analyze its elciency and security. In Section 6, we
give implementation details for Meteor and evaluate the elciency
of using Meteor on di#erent systems. Finally, in Section 7 we dis-
cuss existing work from the NLP community and show why it is
insecure.

2 BACKGROUND AND RELATED WORK

Classical Steganography. Since SimmonsO "rst formalization of
steganographic communicatior2f, signi“cant e#ort has been de-
voted to theoretical steganography. Early work focused on achiev-
ing information-theoretic security 26 27, 63 64 before moving on

to cryptographic 830 and statistical 5P67] notions of steganog-
raphy. The are many symmetric-key construction27 28 6§,
public-key constructions29 30 69, 70, and even identity based
constructions [(1]. Relatively little on formal steganography has
been in the last 15 years, although there are recent works consider-
ing the boundaries of steganography, the related problem of
backdoor resistance [73] and keyless steganography [74].

In general, the steganographic schemes presented in the litera-
ture rely on rejection sampling to "nd randomly selected elements
of the covertext distribution that hash to desired bits. Given space
constrains, we cannot describe and compare to all prior work. For
a representative example, consider the public-key steganographic
scheme from 29 54 presented in Algorithm 1. First, the encoder
uses a pseudorandom, public-key encryption scheme to encrypt
the message. Then, one Hit at a time, the encoder uses rejection
sampling to "nd a toker# in the covertext distributionD such
that ((#) = $, where( is a perfectly unbiased function oveD .

We omit the formal description of the simple decoding algorithm,
in which the receiver simply compute§(#') for all & concatenates
the bits, and decrypts the result.

Security for such schemes is simple to see: each bit of the en-
crypted message is random, by the pseudorandomness of the ci-
pher, and each token in the stegotext is randomly sampled from
the true distribution, with no bias introduced by the hash function
(by de"nition). As such, the distribution of the stegotext matches
the covertext exactly. However, if no unbiased hash function exists,
as none do for in"nitely many distributions [54], a universal hash
function can be used instead, and the bias it introduces must be
carefully controlled.

These rejection sampling algorithms fail when the distribution
has very low entropy. In such cases, it is unlikely an unbiased hash
function will exist, so a universal hash function must be used. One
of two possible problems is likely to occur. (1) During sampling,
it is possible that the sampling bouridmay be exceeded without
"nding an acceptable token, after which the encoder simply ap-
pends a randomly sampled token. Importantly, the receigan not
detecthat this error has occurred, or indeed how many such errors
are contained in the message, and will just get a decryption error
during decoding. (2) If is set very high, it may be possible to "nd
a token that hashes to the correct value, at the cost of introducing
noticeable bias in the output distribution. As such, it is critical that
the distribution maintain some minimum amount of entropy. To
our knowledge, only two prior works 81, 54 build stateful stegano-
graphic techniques that avoid the minimum entropy requirement.
Focusing on asymptotic performance, both rely on error correcting
codes and have poor practical performance.

In the closest related work, the authors of§ theoretically
analyze the limitations of using Markov Models as steganographic
samplers. The prove that any sampler with limited history cannot
perfectly imitate the true covertext channel. Our work overcomes
this limitations by considering the output of the model the target
covertext distribution.

In our work we consider more powerful machine learning models
and allow the sender and receiver to share access to the same public
model. This is a departure from prior steganographic work, moti-
vated by the public availability of high quality model$], 52 62
and because this relaxation introduces signi“cant elciency gains.
As there has been, to our knowledge, no work testing the practi-
cal elciency of secure steganographic constructions for complex
channels, no other work considers this model.

Current Steganography in Practice. The main contemporary
use for steganography is to connect to ToBfL() without being
$agged by the plethora of surveillance mechanisms used by cen-
sors [19. Steganographic techniques include protocol obfuscation,
e.g, obfs4/ScrambleSuitLQl], domain fronting [7§, or mimicry,
e.g, SkypeMorph 12, FTEProxy L6, StegoTorus 13, Censor-
Proofer [17], and FreeWave§. Although these tools allow users
to circumvent censors today, they are quite brittle. For example, pro-
tocol obfuscation techniques are not cryptographically secure and
rely on censors defaulting openge, a message should be considered
innocuous when its protocol cannot be identi"ed. Protocol mimicry
techniques, encoding one protocol into another, are not always
cryptographic and often fail when protocols are under-speci“ed or
change without warning [77].

Modern steganographic techniques that are cryptographically
secure include tools like SkypeMorpii?, CensorProofer 17,



and FreeWavel§, that tunnel information through Voice-Over-IP We note there is work focusing on di#erentiating machine-

(VolP) tralc, which is usually encrypted with a pseudorandom  generated text from human-generated te@3095. It has yet to be

cipher. Once encrypted communication has started, a sender can re- seen if these techniques will remain e#ective as machine learning

place the normal, VoIP encrypted stream with a di#erent encrypted algorithms continue to improve, setting the stage for an Oarms raceO

stream carrying the secret message. By the security of the cipher, between generative models and distinguishers [96].

a censor cannot detect that the contents of the encrypted chan-

nel have been replaced and the communication looks like normal, 3 DEFINITIONS

encrypted VoIP tralc. If access to encrypted or pseudorandom .

communication channels were suppressed, these tools would no 3.1 Symmetric Steganography

longer work. The new construction in this work is symmetric-key stenography,
There have been small-scale test§[at deploying cryptography so for completeness we include symmetric-key de"nitions. The

secure steganographic tagging via ISP level infrastructure changes, de"nitions for public-key steganography are a straightforward

as suggested in Telex [14] and TapDance [15]. These tags indicate adaptation of the de"nitions provided here and can be found 4.

that a message should be redirected to another server, but stop A symmetric steganographic schemg, is a triple of possibly

short of hiding full messages. These tags also critically rely on the probabilistic algorithms! p = (KeyGer, , Encodg, , Decods )

presence of (pseudo-)random “elds in innocuous protocol tralc. ~ parameterized by a covertext channel distributi@n.

Pract.ical work has been done in the "eld of format-trapsforming ¥ KeyGer, (1¥) takes arbitrary input with length) and generates
encryption (FTE), such agfE82. These approaches require senders  « the key material used for the other two functionalities.
to explicitly describe the desired covertext channel distribution, an Encode, (,!, H) is a (possibly probabilistic) algorithm that
error-prone process requiring signi“"cant manual e#ort and is in- takes a key' and a plaintext messade. Additionally, the al-
feasible for natural communication. None of these applications, gorithm can optionally take in a message histor, which is
however, provide any kind of formal steganographic guarantee. 5., ordered set of covertext messages= {*0,*1, ..., "|Hs1}.
Recently, there has also been work attempting to leverage machine presumably that have been sent over the chanficodereturns
learning techniques to generate steganographic imageq838¢, a stegotext message composed#o% D.
but none of these systems provide provable security. ¥ Decode (",#,H) is a (possibly probabilistic) algorithm that

) ) ) i takes as input a key and a stegotext messageand an op-
Generative Neural Networks. Generative modeling aims to cre- tional ordered set of covertext messagés Decodereturns a

ate_new data according tq sqme_distripution us_ing a model trained plaintext messagé on success or the empty stririgon failure.

on input data from that distribution. High quality language mod- ] ] ) ) ]

els [51, 52], are generative neural networks, which use neural net- We use the history notation that is used in a number of previous
work primitives. The model itself contains a large number of Oneu- WOrKS [28 29, but not universally adopted. The history input to
ronsO connected together in a weighted graph of OlayersO, whicHhe encode and decode functlon_s capture the notion that covertext
OactivateO as the input is propagated through the network. Unlike tra- Channels may be stateful. For instance, members of the ordered
ditional feed-forward neural networks used in classi"cation tasks, S€tH could be text messages previously exchanged between two
generative networks maintain internal state over several inputs to  Parties or the opening messages of a TCP handshake.

generate new text. Training these models typically ingests data in - Correctness. A steganographic protocol must be correce.except

an e#ort to set weights to neurons, such that the modelOs output with negligible probability an encoded message can be recovered
matches the input data distribution; in other words, the network  ysing the decode algorithm. Formally, for afty" KeyGerp, (1),
OlearnsO the relationships between neurons based on the input. The

"rst practical development in this "eld was the creation of long Pr[ Decodg (", Encodey (",!, H),H) =! 1 & 1$ negl)).
short-term memory (LSTM) networks8H. LSTM networks are

found in machine translation9Q 91, speech recognition, and lan-  security. We adopt a symmetric-key analog of the security de"ni-

guage modeling$. The transformer architectureq2, exemplied tions for a steganographic system secure against a chosen hidden-
by the GPT series of modelS, 52, is also becoming popular, with  text attacks in R9, similar to the real-or-random games used in
results that are increasingly convincing [53]. other cryptographic notions. Intuitively, a steganographic protocol

After training, the model can be put to work. Each iteration of | s secure if all ppt. adversaries are unable to distinguish with
the model proceeds as follows: the model takes as input its previous npon-negligible advantage if they have access to encoding oracle
state, or OcontextO. As the context propagates through the network, encode, (, 44)or a random sampling oracle p (44)that returns
a subset of neurons activate in each layer (based on previously 5 sample of the appropriate length. This ensures that an adver-
trained weights), up until the Ooutput layerO. The output layer has sary wishing to block encoded messages will be forced to block
one neuron for output token, and uses the activated neurons to  jnnocuous messages as well. We allow the adversary to not only
assign each token a weight between 0 and 1. The model uses its haye a sampling oracle to the distribution (as i2g), but also have

trained weights and the context input to generate a distribution of  the same distribution description given to the encoding algorithm.
possible tokens, each with a probability assigned. The model uses pjgre formally, we write,

random weighted sampling to select a token from this distribution,
returning the chosen token as output. Finally, the returned tokenis Delnition 1. We say that a steganographic scherng is secure
appended to the context and the next iteration begins. againstchosen hiddentext attack<or all ppt. adversariesA p,



"t KeyGerp (1),

# #
g 58 o 58) 1
Pr AEnco ®($83)_ 1 ¢ pr Aé’D(aa)_l 1< negl())

where+ p (44)is an oracle that randomly samples from the distri-
bution.

3.2 Ranged Randomness Recoverable Sampling
Scheme

To construct Meteor, we will need a very speci'c property that
many machine learning algorithms, like generative neural networks,
possess: namely, that the random coins used to sample from the
distribution can be recovered with access to a description of the
distribution. If it is possible tauniquelyrecover these random coins,
steganography is trivial: sample covertext elements using a pseu-
dorandom ciphertext as sampling randomness and recover this
ciphertext during decoding. However, generative machine learning
models do not achieve unique randomness recovery.

Meteor requires a sampling algorithm with a randomness recov-
ery algorithm that extracts thesetof all random values that would
yield the sample. Because this set could possibly be exponentially
large, we requiring that the set be made up of polynomial number
of continuous intervalsi.e.it has a polynomial space representa-
tion that can be elciently tested for membership. We call schemes

4 ADAPTING CLASSICAL
STEGANOGRAPHIC SCHEMES

Characterizing Real Distributions. In this section, we focus on
adapting classical steganographic techniques to English language
distributions using generative models, speci“cally the GPT52][
language model. As noted in Section 2, existing steganographic
schemes require a certain, minimum amount of entropy for each
sampling event. Any positive value, no matter how small, is suf-
"cient for a channel to be Oalways informative€) theoretically
permit the generation of stegotext. In practice, as we will see, an
always informative channel with trivial entropy will yield extraor-
dinarily long stegotext, a problem in practice.

Practical covertext channels, on the other hand, may not be
always-informative, let alone have non-trivial entropy. Figure 2a
depicts several representative runs of the entropy over time for a
sample of tokens from the GPT-2 model. Each data point re$ects the
amount of entropy in the model after samplirgcharacters from
the model. The entropy varies wildly between sampling events,
and there is no clear consistency state of entropy over several
tokens. Moreover, the entropy occasionally drops close to zero. As
such, existing steganographic techniques will fail; in our testing,
Algorithm 1 from [54 has a 100% failure rate when encoding a
16-byte message using GPT-2.

Adaptation 1: Entropy Bounding. A natural adaptation to peri-
ods of low entropy would be to not attempt to encode information
while the entropy in the channel is too low. Both the sender and
receiver have access to the distribution, meaning they can both

that have this propertyRanged Randomness Recoverable Samplingletect periods of low entropy and skip them. This means that only
Schemesr RRRSS. The formal interface for RRRSS schemes isOhigh-entropyO events are utilized for sampling, "xing a minimum

parameterized by an underlying distributioD , from which sam-
ples are to be drawn and has two ppt. algorithms. Additionaly, we
make the size of length of the randomness explicit by requiring all
random values to be selected froff, 1}%. The two algorithms are
de"ned below:

¥ Sampl% (H,,)! -.OnhistoryH and randomness % p, 1}%,
sample an output from its underlying distributionD

¥ Recove% (H,-) 'R .On historyH and sample, output the
setR = {, % D, 1}¥|Samplgy (H,,) =-}.

Note that our sampling scheme takes in a history, making it some-
what stateful. This allows for conditioning sampling on priors, a
key property we require to ensure that Meteor is sulciently $exi-
ble to adapt to new covertext distributions. For example, consider
character-by-character text generation: the probability of the next
character being OxO is signi“cantly altered if the prior character was
a 0eO ora OtO

The notion ofrandomness recovemgs been widely studied in
cryptography, primarily when buildingND $ CCA2secure public-
key cryptography,e.g.[97, 9§. These works de"ne notions like
unique randomness recovandrandomness recoveiy which the
recover algorithm run on some returns a single value such that
((",,) = - for an appropriate function( and key". Unlike the
de"nitions in prior work, we require a sample scheme over a some
distribution and the extraction of intervals.

entropy that is used in the steganographic protocol. In e#ect, this
entropy bounding creates a sort of channel-within-a-channel that
meets the always entropy requirement.

While this does increase the success rate (this method achieved
0DB10% failure rate in our tests), it also introduces a new problem:
signi“cant bias in the sampled tokens. Figure 2b is a histogram
showing the probability that the selected token from the distribu-
tion would be sampledife.the probability weight of the selected
tokens). In the "gure, entropy bounding for di#erent numbers of
tries are shown'(), along with a baseline sample. The baseline is
also OboundedO here: it represents the probabilities of normally-
sampled tokens when the distribution entropy was abave= 4.5.

As the "gure depicts, the entropy bounding method introduces
signi"cant bias by including a disproportionate number of tokens
in certain bins. This is because the hash function used is not un-
biased, so repeated rejection sampling from the same distribution
exacerbates the bias of the hash function. In short, there is still not
enougkentropy to hide the bias introduced by the hash function.
Thus, an adversary can distinguish between an encoded message
and an innocuous one by seeing if the selection probabilities of the
messages are di#erent.

Adaptation 2: Variable Length Samples. An alternative method

to handle low-entropy periods, as proposed &/, is to compile
the channel into one with sulcient entropy. If a channel is always

1in practice, we will be working with schemes for which there is a single set, continuous
set of random values that result in the same output.
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(a) Entropy of GPT-2 output distributions.
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(c) Binned probability of selecting the tokens
included in the !nal stegotext variable length
sampling. Although there is slight variation

in the distributions, there is no clear dif-
ference between the stegotext and the base-
line. Moreover, this method is proved secure
in [54].

Figure 2: Investigations into adapting classical steganographic technigues.

Table 1: Performance results for model load encoding using
the method of [54] and resampling, averaged over 30 runs.
The message being encoded is the Irst 16 bytes of Lorem
I[psum.

Samples Time StegotextLen. Qverhead

Parameters | (Tokens) (Sec) (KiB) (Length)
="=16 502.8 42.69 2.3 149.4x
=" =32 880.4 128.41 4.1 261.8x
=" =64 1645.0 361.28 75 482.1x
=" =128| 2994.6 765.40 13.6 870.7x

informative, meaning it always has sonmie> 0 entropy, this can
be done by sampling some "xed numb@elements together, such
that the resulting channel has at lea8t / entropy. By settingd
appropriately, the entropy in the compiled channel is guaranteed
to be high enough. However, in real communications channels, the
entropy in the channel may not always be non-zero. As such, a
nasve application of this approach will fall short.

We overcome this by sampling @ariable number of tokens
in each sampling event, such that the cumulative entropy of the
distributions from which the tokens come surpasses the minimum
requirement. More speci“cally, instead of sampling one token at a
time in thewhile loop of Algorithm 1, this method sampldstokens
until the sum of the entropy of the distributions from which those
tokens were sampled meets a minimum threshold. Intuitively,
this approach OcollectsO entropy before attempting to encode into
it, boosting success rate while avoiding the issues of low entropy.

Figure 2c shows a selection probabilities graph, with di#erent
values of. + compared against a baseline measurement of normal
sampling from the GPT-2 (note this baseline includes all sampled
tokens, unlike in Figure 2b). In the "gure, each set of runs of the
model set9 =", i.e., the entropy required to encode is equivalent

to the number of tries to encode. There are di#erences between the
probabilities, but here is no clear pattern D this variation can be
attributed to sampling error.$4 proved that for this approach to

be secure, + must be strictly larger tharog("); to achieve useful
security parameters,weneed =" ( 2' ), where) is the security
parameter.

While provably secure, variable length sampling results in un-
reasonably large stegotext and long encoding times. Table 1 shows
the length of stegotext and encoding times when encoding a 16
byte plaintext message using adaptation 2 on our Desktop/GPU
test environment using the GPT-2 model (refer to Section 6 for
hardware details). Each row corresponds to 30 runs of the model for
that set of parameters. As: (and thereby') increase, the length
of the stegotext also increases: the higher resampling entropy re-
quirement means that more tokens must be sampled, which takes
more time. We note that these results include GPU acceleration, so
there is little room for performance boosts from hardware.

5 METEOR: A MORE EFFICIENT
SYMMETRIC-KEY STEGANOGRAPHIC
SCHEME

We now design a symmetric-key steganographic scheme that is
more practical than the techniques above. A more e!cient symmetric-
key approach would allow for hybrid steganography, in which a
sender encodes a symmetric key using the public-key steganog-
raphy and then switches to a faster and more elcient encoding
scheme using this symmetric key. We note that while symmetric-
key approaches have been considered in the past{28 68, they
also rely on the entropy gathering techniques highlighted above.
Our approachOs intuition to accommodate high entropy variability is
to $uidly change the encoding rate with the instantaneous entropy
in the channel. As will become clear, Meteor does timgplicitly,

by having theexpectedumber of bits encoded be proportional to
the entropy.



5.1 Intuition

Suppose we have, for example, a generative mddietrained to
output English text word-by-word. Each iteration takes as input
all previously generated wordsl and outputs a probability dis-
tribution P for the next word, de"ned over all known wordg .
This is done by partitioning the probability space between 0 and
1 (represented at some "xed precision) into continuous intervals
1041, - - -, ( CoOrresponding to each valid word. For instance, if the
precision is 5 bits, g might be interval[0000000103}, ,1 might
be[0010110000, and so on. The algorithm then generates a uni-
form random value % P000011111], "nds the interval,- into
which, falls, and outputs the corresponding word. In the example,
if , = 01110then the word corresponding tp; would be chosen. In

practice, these values all have much higher precision, for example

, % D,1332 96 P1}32{ 01332

Meteor embeds messages into the random numbesed to
sample from the model, as illustrated in Figure 3. Consider the
information that a potential receiver with access to the model might

learn from a single output of the generative model. Because the

receiver has access M , they can recover the interval into which
, must have fallen. Note that @ might contain a huge N possibly
exponential N number of possible values that would all yield the

same sample, meaning the receiver cannot uniquely recover the

true value of, . However, because the intervals azentinuousall
such values may share a pre"x, e#ectively "xing the "rst few bits
of, in the view of the receiver. In this example above, all values
in ,1 are contained in the "rst half of the distribution space, so
the receiver can conclude the "rst bit of must have been a 0.
Similarly, if the word corresponding tgg had been chosen, the

“rst bits of , must have been 00. Another example can be seen in
Figure 3, in which the interval corresponding to the word OTheO

shares the pre™01, so a receiver can recover these bits. In this way,
if , is a function of the hidden message, the receiver can potentially
recover bits of information about the message with each output of

the model. Because the sender and receiver share the description

of the distribution, the sender can determine how many bits will

be recoverable, and then discard those bits before repeating the

process.
The key challenge in this setting is keeping the message hidden

from the adversarial censor with access to the same distribution.
Clearly, using the bits of the message as the randomness is inse-
cure, as a censor with the same model could extract the message.

Encrypting the message with a pseudorandom cipher, as in the
public-key solution above, is also insulcient because it is possible
that the encoder will be forced toeuse randomnedsor example,
consider a probability distribution in which the values of the inter-
val containing, have no shared pre"x, but 90% of the values in that
interval begin with a 0. Because no bits are transmitted and the
next iteration will use the same value of The censor now knows
that with 90% likelihood, in the second sampling event begins
with zero. Over enough trials, a censor could detect this bias and
distinguish between honestly sampled output and stegotext.

possible and then unmasks them with the corresponding XOR mask
to recover bits of the message. Conceptually, this can be seen as
repeatedly encrypting the message with a stream cipher, facilitating
bit-by-bit decryption. This novel encoding technique means the
number of bits that can be transmitted in each sampling event is not
"xed. In practice, this is a huge advantage, as the expected number
of bits transmitted is proportional to the entropy in the channel
without requiring any explicit signaling (see Section 5.2). Finally, it
is intuitively clear why this approach yields a secure scheme: (1)
each sampling event is performed with a value,ofhat appears
independent and random and (2) all bits that can be recovered are
obscured with a one-time pad.

5.2 Meteor

For notation, let) be a security parametet,be the empty string,
and # represent concatenation or appending to an ordered set,
as appropriate. We adopt Python-like array indexing, in which
$[2 : 3] includes the elements ¢ starting with 2 and ending with

3, exclusive. Finally, we use two subroutinégnPrefi¥(4)and
Prefixg‘(é) presented in Algorithm 2 and Algorithm 3, respectively.
The "rst gives the length of the longest shared bit pre"x of elements
in the set, and the second returns this bit pre"x explicitly.

Pseudorandom Generators. Our construction leverages a pseu-
dorandom generatoPRG[99. For a more formal treatment of the
security notions ofPRGs, see 10Q and the citations contained
therein. We adopt the notation used in statefeRGs. Speci“cally,
let the PRGhave the functionalitie?RGSetupandPRGNext The
setup algorithm generates the secret state material, which we will
denote’ )« for simplicity, and the next algorithm generatebpseu-
dorandom hits. We require that thBRGsatisfy at least the real-or-
random security games.

Construction. Meteor consists of three algorithms, parameterized
by a bit precisiord and a modeM that supports a RRRSS. We use
a generative modéll as our instantiation of the distributiorD

for an RRRSS as de"ned in Section 3. The key generation algorithm

KeyGer‘iI is presented in Algorithm 4, the encoding algorithm
Encod% is presented in Algorithm 5, and the decoding algorithm

Decod% is presented in Algorithm 6.

The precisiond %Z, 4 > 0 controls the maximum number of bits
that can be encoded in each iteratiohshould be the accuracy of the
underlying sampling scheme. Most models in our implementation
give probability distributions accurate to 32 bits, so we det 32
In our tests, it is incredibly unlikely that 32 bits will successfully be
encoded at once, meaning using a loweis likely acceptable.

Because the model used in sampling is a generative one, the
model maintains state on its previous inputs. Each distribution
generated by the model is dependent on the values sampled from
previous distributions. Additionally, the model requires an initial
state to begin the generative process. This state is abstracted by the

To avoid the reuse of randomness, Meteor generates a fresh Nistory parameterH passed to instances @ncodeand Decode

mask for, each time the sender samples an output. This is done
using aPRG keyed with state shared by the sender and receiver,
and applied using XOR. The receiver recovers as many bitsasf

This allows the distributions generated by each successful sampling
of a covertext toker# to remain synchronized between the two
parties. We assume that the entire histo is maintained between
the parties, including the initial state that primes the model.
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Figure 3: An overview of the encoding strategy for Meteor. In each iteration of Meteor, a new token (shown in green) is selected
from the probability distribution created by the generative model. Depending on the token selected, a few bits (shown in red)
can be recovered by the receiver. The stegotext above is real output from the GPT-2 model.

The encoding algorithm loops through three stages until the

query, and responds only if it is an entry in the table. Note that if

entire message has been successfully encoded: (1) generating and (4)implements a true random function, the encoding algorithm

applying the mask, (2) sampling a next output to append to the
covertext, and (3) updating the state of the algorithm based on the
output of the sampling event. In the "rst stage, the mask is computed
as the output of a pseudorandom generator and is applied with the
XOR operation. The resulting valuge s distributed uniformly in
[0,2%1), as each bit of is distributed uniformly in{0,1}. This
random value is then used in step (2) to sample the next output of
the sampling scheme. To determine the number of bits this sampling
event has successfully encoded, the encoding algorithm uses the
Recovef functionality of the RRRSS and callenPrefixon the
resulting (multi-)set. Finally, the algorithm then updates téebits
that will be used in the next iteration, and updates its other state
as appropriate.

The decoding algorithm performs these same three stages, but
with the order of the "rst two reversed. With knowledge of the
output of each sampling stagé, the "rst algorithm callsRecovef
and Prefixto recompute some (possibly zero) leading bits of the
Then, it calculates the mask that was used by the encoder for those
bits and removes the mask. The bits recovered in this way make up
the message.

Note that we do not discuss reseeding tRRG MostPRG have
a maximum number of bits that can be extracted before they are
no longer considered secure. Because fiGsecret information
is shared by the sender and receiver, they can perform a rekeying
or key ratcheting function as necessary.

Proof of Security. We sketch the proof of security, as the formali-
ties of this simple reduction are clear from the sketch. Consider an
adversaryA which has non-negligible advantage in the security
game considered in De"nition 1. We construct an adversa
with non-negligible advantage in th®RGreal-or-random game,
with oracle denoteds (4) To properly answer queries from , AO
runs the encoding algorithm in Algorithm 2 with an arbitrary in-
put message, but queries tl€4)to obtain the mask required for
sampling. Additionally,A0 keeps a table of all queries sent By
and the responses. Wheh queries the decoding algorithnA®
checks its table to see if the query matches a previous encoding

simply samples a random message from the distribution. Widen
terminates, outputting a big, AO outputs3 as well.

As the message is masked by the queri®sends to5(4) A
must be able to distinguish between a true-random output and the
xor of a message with a one-time pad. Because XOR preserves the
uniformly-random distribution of the pad, this is not possible with
non-negligible probability.

E#ciency. The asymptotic, expected throughout of Meteor is pro-
portional to the entropy in the communication channel. To see this,
note that the expected throughput for each sampling event can
be computed as »o,p 1"Exp(1"), whereP is the distribution in
the channel for the sampling event; is the probability of each
individual outcome, andExp(a)is the expected number of shared
pre"x bits for some continuous interval of size. Thus, ifExp(1+) is
proportional to$ log,(1+), Meteor is asymptotically optimal (recall
that entropy, the information-gweoretic boundary for information
transmission, is computed &~ o p 1" log(1+)). We show in Ap-
pendix A thatExp(1) & %($ log,(1+) $ 1) for 1+ ) % by carefully
observing the behavior of theenPrefixfunction when evaluated
on a "xed sized interval with a random starting point between

[0, 2%+,
6 EVALUATION OF METEOR

In this section we discuss our implementation of Meteor and eval-
uate its elciency using multiple models. We focus on evaluating
Meteor, not a hybrid steganography system using the public key
stegosystem in Section 4, because it is signi“"cantly more elcient.
Moreover, the elciency of a hybrid stegoanography system is de-
termined by the e!ciency of its constituent parts; the cost of such a
scheme is simply the cost of transmitting a key with the public key
scheme (see Section 4) plus the cost of transmitting the message
with Meteor. An interactive online demonstration of our system is
available at https://meteorfrom.space.

Implementation details. We implemented Meteor using the Py-
Torch deep learning frameworkl[0]. We realize thePRGfunction-
ality with HMAC_DRRB@eterministic random bit generator de"ned
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Algorithm 2: LenPrefi%

Input: Set of Bit StringR ={,1,,2, ... +}
Output: LengthO
0" 1
while 0< 4do
L if *&'%4{,...,4suchthat-[0:0 ! , [0:0 then
| Output0$ 1
Output0

0" 0+1

Algorithm 3: Prefix&

Algorithm 7: Sampl% for the GPT-2 model.

Input: Randomness % P, 1}%, History H
Output: Token67$8
T,P" Nexty (H)
#9: " 0
for &% 01,...|T|$1} do
#9I " #9L +P[&
if #9: >, then
| Output67$8' T[ &

Output67$8' T[|T|$ 1]

Input: Set of Bit StringR ={,1,,2, ... &}
Output: Bit String-
Output, 1[0 : LenPrefi&(R)]

Algorithm 4: KeyGerf;I

Input: 1#
Output: Key" 1y«
Output"y» " PRGSetup(1¥)

Algorithm 5: Encod%

Input: Key"+ , Plaintext Messagk , History H
Output: Stegotext Message
#" %,6 0
while 6 < |' |do

12-" " PRGNext("y+ )

, "1 [6:6+4]+12-"

# " Sampl% H,))

R" RecoveﬁI (H,#)

6" LenPrefi&(R)
| #" ##,6" 6+6-, H"H# #
Output#

Algorithm 6: Decod(%I

Input: Key"+ , Stegotext Messagg History H
Output: Plaintext Messagke
$" %
Parsetas{#o, #. . . .. # |1}
for &% 0,1,...,# $1} do
R" Recovef‘/I (H,#)
$ " Prefio&(R)
12-" " PRGNext("y+ )
$" $#EG +12-" [0:%]])
H"H# #
Output$

Figure 4: Algorithms for Meteor

in NIST SP 800-90 A Rev. 103. The implementation supports any
type of binary data, such as UTF-8-encoded strings or image "les,
as input.

Algorithm 8: Recove‘% for the GPT-2 model.

Input: History H, Sample
Output: Randomness s&

T,P" Nexty (H)
#0: " 0
for &% 0,1,...|T|$1} do
if T[& =-then
Output
L R"{ , %p1L&|#o: ), <#9:: +P[§}
#9I: " #9l +P[&
OutputR ",

Figure 5: RRRSS algorithms for GPT-2 model. T is an array
of possible next tokens and P is the probability associated
with each of these tokens.

To illustrate MeteorOs support for di#erent model types, we im-
plemented the algorithm with the weakened version of the GPT-2
language model released by OpenAl and two character-level recur-
rent neural networks (RNN) that we train. The GPT-2 mod&l]|
is a generative model of the English language. It parses language
into a vocabulary of words and generates words when given previ-
ous context. Meteor encodes stegotext into these generated words.
The character-level models generate ASCII characters in each it-
eration. These models output lower-quality English text, but are
more generalizable. Character-level models work with any data that
can be represented as text, including other languages and non-text
protocols, whereas word-level models are speci“c to the English
language models.

Our GPT-2 codebase builds upon that ¢f]. We note that the
next-generation GPT language model, GPT-3, has been published
by OpenAl BZ; however, at the time of this writing, the codebase
for the GPT-3 has not been released. The GPT-3 interface is the same
as the GPT-2, meaning integration will be automatic, increasing
stegotext quality while maintaining security guarantees. Example
stegotext generated with the GPT-2 model can be found in Appendix
C.

Figure 5 shows how to instantiate thﬁampl% and Recove‘ﬁI
algorithms from Section 3 with the distribution represented as a gen-
erative modeM (in discussion of classical steganography, we used
D). Both algorithms usd&lexty, (H), which generates an array of
possible next token3 and an array of probabilities associated with

each tokerP using the modelOs internal structure. Tﬁempl%



Table 2: Performance measurements for Meteor on the GPT- o2

2 by device for a shorter context. Times are provided in sec- wd Wikipedia
onds. * HTML Headers

80 4

Device\ Load Encode Decode Overhead (time)

GPU 5.867  6.899 6.095 T
CPU 5234 41.221 40.334 4.6
Mobile | 1.830 473.58  457.57 495

60 A

40 4

Time to Encode and Decode

20 4
for generative networks accumulates the probabilities and selects
the "rst token for which the cumulative probability exceeds the 0] i i i i i i
randomness supplied. This is equivalent to multinomial sampling, 0 50 100 plaimelffLengm 200 250 300
and is the unmodi“ed method of sampling normally from the GPT-2
model. In the unmodi“ed (i.e., non-Meteor) case, the GPT-2 chooses

a true random value instead of aPRGas in MeteorRecove‘i’A

Figure 6: Comparison of plaintext length versus time to run
encoding and decoding for di"erent Meteor models. 5 =

inverts the process, returning the entire set of random values that 0.9745 (GPT-2), 0.9709 (Wikipedia), 0.9502 (HT TP Headers)
would yield the target sample. ' '

In addition to the GPT-2 variant, we trained two character-level
RNN models to test with Meteor, using the code aDg with lo- distribution, whereas the character-level models have, at most, 100
cally trained models. Each model uses long short term memory printable ASCII characters from which to sample; this pushes the
(LSTM) cells to store stat@f. The "rst model, named OWikipediaO, capacity of a single token to be much higher as a result. The stark
was trained on the Hutter Prize dataset(4, which consists of di#erence in capacity between the capacities of Wikipedia and
a subset of English Wikipedia articles. The data from this model HTTP Headers can be attributed to the di#erence in structure of
contains English text structured with Wiki markup. The output  the training data. The Wikipedia dataset, although structured, is
of this model is good, but its character-level nature makes its out- mostly English text. On the other hand, the HT TP Headers dataset is
puts less convincing human text than GPT-2 output. The second based on the HTTP protocol, which is rigid in structure N variation
model, named OHTTP HeadersO, consist of the headers for 530,128ly exists in "elds that can change, such as dates and URLSs.
HTTP GET requests from a 2014 ZMap scan of the internet IPv4 Encoding statistics. Our next suite of benchmarks measures the
space 105 104. This highly structured dataset would facilitate  relationship between the length of message and the time it takes
hiding messages amongst other HTTP requests. We note that the o produce a stegotext. We generated plaintexts randomly and
$exibility of character-level models allows us to generalize both  encoded them, incrementing the length of the message by one in
text-like channels and protocol-esque channeff[ Both mod- each run. The results are plotted in Figure 6, which shows a clear
els have three hidden layers. The Wikipedia model has a hidden |inear relationship between the two variables. It is also apparent
layer size 795 and was trained for 25,000 epochs. The HTTP head+rom the plot that the variance in encoding time increases as the
ers model has size 512 and was for 5,000 epochs, due to its morejength increases. This is because as tokens are selected, the model
structured nature. The two models were trained at a batch size of state can diverge; in some of these branches, the entropy may be
100 characters and learning rate 0.001. Example output from the very low, causing longer encoding times. This is ampli"ed in the
Wikipedia character-level model can be found in Appendix C. HTTP Headers model, as the baseline entropy is already very low.
Evaluation hardware. To measure performance across di#erent  peyristic optimizations. In addition to implementing Meteor, we
hardware types, we evaluate Meteor on 3 systemsD@jktop/GPU 550 evaluated two heuristic optimizations that could yield shorter
a Linux workstation with an Intel Core i7-6700 CPU, NVIDIA TI-  gtegotext. The "rst optimization is deterministically reordering
TAN X GPU, and 8 GiB of RAM, (Epptop/CPUa Linux 1aptop — the model®s output distribution intervals to maximize expected
with an Intel Core i7-4700MQ CPU, no discrete GPU, and 8 GiB of throughput. Because this deterministic process does not change the
RAM, and (3Mobile an iPhone X running iOS 13. The Desktop  relative sizes of the interval, it does not impact the distribution of
ran benchmarks on the GPU, while the Laptop machine ran on the - the stegotext. However, because the placement of the intervals is
CPU; as such, the Laptop is more representative of consumer hard-ysyally arbitrary, it is possible to move large intervals that would
ware. We evaluate Meteor on both the Desktop and Laptop using normally have no shared pre”x to a starting location where there is
each of the three models discussed above. Additionally, we evaluate g shared pre"x, potentially increasing throughput. A more thorough

reordering and native compression optimizations (see below). The gjiscussion of this technique can be found in Appendix B.

results are summarized in Table 3. We discuss mobile benchmarks  \yie evaluate this optimization for all three of our models (see
separately at the end of this section. Table 3). For the GPT-2 model, we see a marked (24.8%) increase in
Model performance. The capacity, or number of bits encoded capacity as well as a proportional reduction in stegotext length as a
per token, is much higher for the GPT-2 model examples than for result of reordering the model outputs. The reordering does induce
the Wikipedia and HTTP Headers models. Intuitively, the word- computational overhead, as the distribution over which the heuris-
level nature of GPT-2 means there is usually more entropy in each tic is performed is large (max 50,256 tokens). Reordering induces



a 0.5% overhead in the Laptop/CPU, where updating the model is
slow, and 69.0% overhead in the Desktop/GPU, where updating the
model is fast. For the lower entropy models, the reordering algo-
rithm we use is signi“cantly faster, but yields mixed results. We
believe these mixed results are an artifact of our choice of greedy
reordering algorithms, which may perform poorly with heavily
biased distributions.

The second optimization is to use the model itself as a compres-
sion function when encoding with an English language model, as
in [44). This technique leverages the fact that all known words in
the modelOs vocabulary are internally represented by a unique num-
ber, taking fewer bits than its normal ASCII representation. Before

secure under the de"nitions common in the cryptographic liter-
ature. Highlighting this weakness, there is a concurrent line of
work in the same conferences showing concrete attacks on these
schemese.g, [45D50].

The "rst wave of steganographic techniques in the NLP com-
munity leverages synonyms and grammatical reorganization for
encoding,e.qg, [3286 47. The key observation in this work is
that natural variation in linguistic patterns can be used to hide
information. For instance, if one of two synonyms can be used in
a sentence, each with probability .5, then the selection conveys
a bit of information. Similarly, comma usage or word order can
be used to encode small amounts of information. Because not all

encoding, the secret message can be tokenized and each token carpossible linguistic variations occur with equal likelihood, some of

be replaced by its unique identi"er. These identi"ers are then parsed
as bits and encoded as normal. When implemented with GPT-2,

these works adapt a Hu#man encoding scheme to facilitate variable
length encodinge.qg, [32 36. These approaches rely on linguistic

we see a 47.77% decrease in time spent on CPU, and an associateidiosyncrasies and are therefore not generalizable.

52.5% decrease in stegotext size. While powerful, this technique

More recently, researchers found ways to use the structure of

can only be used to encode English language messages into Engthese models to steganographically encode information, including

lish language models. Compressing the plaintext message using
traditional compressiond.g, GZip) would yield similar results.

Mobile benchmarks. Because Meteor is intended for censorship
resistance, it is natural to benchmark it on mobile devices, where
most sensitive communication happens. We implement Meteor on
iOS using the CoreML framework, utilizing an existing GPT-2 iOS
implementation as a basd.07. To our knowledge, our work repre-
sents the "rst evaluation of a neural network-based steganographic
system on a mobile device. Our implementation, in Swift, employs
an even smaller version of the GPT-2 model which "ts on mobile
devices as it uses smaller size context. An example of the output
from this experiment can be found in Appendix C.

Our results are summarized in Table 2. The Mobile benchmark in
the table was performed on the iPhone X Simulator, as we wished to
instrument and pro“le our tests. We separately con"rmed that sim-
ulator runtimes were similar to those of actual iPhone X hardware.
While Laptop/CPU igh.6 slower than Desktop/GP U, the Mobile
runtime is a massivé95 slower than the baseline case. While
deep learning is supported on mobile platforms like iOS, the inten-
sive, iterative computations required by Meteor and other neural
stegosystems are not performant on mobile systems. Nonetheless,
our proof-of-concept demonstrates that Meteor could be used in
a mobile context, and hardware improvement)g would allow
for secure communication between users even when available com-
munication platforms do not o#er end-to-end encryption, such as
WeChat.

7 COMPARISON TO NLP-BASED
STEGANOGRAPHY

Noting the appeal of hiding sensitive messages in natural text, re-
searchers in the "eld of natural language processing (NLP) have
recently initiated an independent study of steganography. Unfor-
tunately, this work does not carefully address the security impli-
cations of developing steganographic systems from NLP models.
Instead, the results employ a variety of ad-hoc techniques for em-
bedding secret messages into the output of sophisticated models.
The resulting papers, often published in top NLP conferences, lack
rigorous security analyses; indeed, existing work cannot be proven

LSTMs B7), Generative Adversarial Networks3f, Markov Mod-

els [39, and other forms of Deep Neural Networkd(, 41, 43 44.
Rather than give an exhaustive description of the encoding tech-
niques used in these works, we give a brief description of the most
important technigues.

Early constructions directly modi“ed the distributions. One such
construction 37 organized the distribution into Obins,O each rep-
resenting a short bitstring, and randomly selected an output from
the bins corresponding to the messag&uilding on this intuition,
other research41, 43 uses Hu#man coding to encode variable
numbers of bit in each iteration. More recent work has attempted
to use the message itself as the sampling method, a method known
as Oarithmetic coding@4. This method attempts to convert a
plaintext message into a deterministic stegotext based on its con-
tents, iteratively using bits from the message to sample into the
distribution. The "rst two constructions heavily modify the output
distribution, rendering stegotext easily detectable. The arithmetic
construction is also insecure, since it reuses randomness in multi-
ple sampling events, a problem similar to the one that Meteor is
designed to overcome.

The relaxed adversarial models considered in the NLP commu-
nity lead to signi“cantly less robust constructions. For instance,
the adversaries in the NLP literature do not have access to the
model 37, 41, 43 44, signi“cantly limiting the attacks they can
mount. Without this assumption, an adversary can clearly di#eren-
tiate between a stegotext and covertext by identifying biases in the
output distribution. The adversary compares the candidate output
to random samples from the model, easily distinguishing when a
stegosystem is being run and defeating the purpose entirely.

The NLP threat model folds in the face of an advanced, persis-
tent adversary who can always ex'ltrate the model through other
means. Moreover, recent advanced in adversarial machine learning
have demonstrated how even the OsecretO parameters of a black-
box model can be extracted by seeing enough outpt@9111,
unlike that of encryption keys or pseudorandom functions. This
pervasive requirement that the model remains private informa-
tion is therefore unreasonable. Unable to achieve cryptographic

2A similar, but secure, partition based approach is investigated in [27]



Table 3: Model statistics for encoding a 160-byte plaintext. Timing results re$ect model load, encoding, and decoding combined.

Desktop/GPU Laptop/CPU Stegotext Length Overhead Capacity
Mode (sec) (sec) (bytes) (length)  (bits/token)
GPT-2 18.089 82.214 1976 1236 3.09
GPT-2 (Reorder) 30.570 82.638 1391 8.69 4.11
GPT-2 (Compress) 11.070 42.942 938 3.39 3.39
Wikipedia 19.791 46.583 2002 1251 0.64
Wikipedia (Reorder) 15.515 39.450 1547 9.67 0.83
HTTP Headers 49.380 103.280 6144 384 0.21
HTTP Headers (Reorder) 57.864 127.759 7237 4523 0.18

Table 4: Comparative distribution statistics for samples
from neural steganography algorithms in prior NLP work,
with random sampling as a baseline. ON/AQ indicates that a
metric is not relevant for an algorithm.

Algorithm \Perplexity KL-Divergence Capacity Entropy Secure?
Meteor (this) 21.60 0.045 3.09 6.30 !
Arithmetic [44] 29.22 0.082 4.82 6.66

Hu#man [41, 43] 8.85 0.851 231 N/A

Bins [37] 50.82 2.594 3.00 N/A

Random Sample| 13.82 0.040 N/A 5.36 N/A

security, these constructions evaluate their work by measuring
the statistical di#erence between the output produced by the en-
coding scheme and real text. Highlighting the weaknesses of these
schemes, numerous attack papers have been publishgd459650.

We also note that the security properties of Meteor do not ham-
per the capacity metric signi“cantly. Arithmetic output has a higher
capacity, but we note that the insecurity of this system makes this
additional capacity moot; modifying the parameters to Hu#man
or bins could have yielded the same capacity with the same secu-
rity vulnerabilities. Table 4 also includes perplexity and entropy
statistics, that show Meteor is competitive in performance with the
insecure primitives proposed previously.

8 CONCLUSION

In this work we present an analysis of the practical limitations of
using cryptographically secure steganography on real, useful distri-
butions, identifying the need for samplers and impractical entropy
requirements as key impediments. We show that adapting existing
public key techniques is possible, but produces stegotext that are
extremely inelcient. We then present Meteor, a novel symmetric

These attacks use machine learning techniques to detect the pres-key steganographic system that dramatically outperforms public
ence of encoded messages generated with some of the works listed key techniques by $uidly adapting to changes in entropy. We eval-

previously. Ad-hoc and non-cryptographic security is insulcient
to provide security against powerful and determined adversaries,
especially nation-state adversaries.

Comparative Analysis. We assess Meteor against the following
previous solutions: (1) bins3[], (2) Hu#man coding41], and (3)
arithmetic coding 4. We compare standard NLP language statis-
tics for these with a regular, random sample from the model, and

uate Meteor, implementing it on GPU, CPU, and mobile, showing
that it is an important "rst step for universal, censorship-resistant
steganography. Finally, we compare Meteor to existing insecure
steganographic techniques from the NLP literature, showing it has
comparable performance while actually achieving cryptographic
security.

provide our results in Table 4. Note that we mark entropy as ON/AO ACKNOWLEDGEMENTS

for Hu#man and bins because these methods use a binning algo-

rithm which prevents us from calculating entropy meaningfully.
The random sample is a control distribution, and is not encoding
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outcome ofP. Similarly, the expected throughput of Meteor can
be computed as o, p 1"Exp(1), where Exp(a)is the expected
number of shared pre"x bits for some continuous interval of size
1-. Thus, the remaining task is to compute a concrete bound on
Exp(4)

We will make the simplifying assumption that the start of an
interval 1+ is placed randomly betweef0, 2%*1). Note that interval
&will never start after2%*1 $ 1+ in practice, so we the number of
pre"x bits in this case to be 0, so this simpli"cation will lead to
an expected throughput strictly less than the true value. Addition-
ally, the starting locations for each interval are not independent in
practice, as they each depend &n -. However, this independence
assumption also leads to equal or lower expected throughput, as
the starting point for larger intervals will actually be more biased
towards the middle of the distribution, wherExp(a)will be lower,
and smaller distributions will be biased to start near the edges of
the distribution, whereExp(&)will be higher.

By way of example, consider an interv&such thatl' = ;11 $/,
for some small (see Figure 7). Bstarts betweer{0,/), thenitis
contained completely before the pre'@lbegins, and thus would
transmit 2 bits. The followingl" starting points all transmit only 1
bit, as the only shared pre"x for the interval would b@ If &starts
between[ 251, ( +/)2%*1), the entire interval shares the pre"x
01, so 2 bits can be transmitted. {5 +/)2%*1, 12%*1), there is
no shared pre"x, as some of the samples that would land in that
interval start with aOand others start withl. The analysis continues
in this way for the remainder of the starting points.

More generally, the expected throughput of an interval with
sizel is the average of these di#erent sets of starting points with
di#erent legth shargd pre“xed, weighted by size. More explicitly,
let; (1) = $logy(1) , then

,1>12

Exp(l) & 1) 12

0
SO s )+ 1$f§l)$1('2v)
The "rst part of the expression corresponds to the starting points
where the interval has the most shared biésgthe points in Figure 7
where the throughput is 2. There ar@ () of these sets, each of
which has sizg2%" () $1), the di#erence betweeh and the nearest
power of two less than 2. The sum corresponds to the when the
interval transmits fewer bitse.gthe points in Figure 7 where the
throughput is 1 or 0. Each of these terms counts & starting
points where the number of bits transmitted Is

Note thatExp(1) & %($ log,(1) $ 1) for small enoughl. To see
this, note that, (1) & $log,(1) $ 1, because of the rounding. Then,
just consider the "rst term

(0¥ $1)270) & ($logy(1) $ 1) (1$ 12810%()81)
= 2($10g,(1) $ 1)

While this bound is not tight, itglustrates thaExp(1) asymptot-
ically acts likelog,(1), meaning$ " |P L"EXP(1"), grows propor-
tionally to the entropy inP, $  »g,|p 1" logy(1+). Thus, the ex-
pected throughput of Meteor is asymptotically optimal.
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Figure 7: Bits of throughput by starting location for an in-
terval &with size 1+ = 7 $/, for some small /. The expected
throughput can be computed as the average of this function,
e Expl) & Q38O +Q(E$HD+@(ND =336

B HEURISTIC OPTIMIZATIONS

In evaluating Meteor, we also implement two heuristic optimiza-
tions that could lead to better performance without compromising
security. Note that while they increases tlexpectethroughput

of scheme, it is not guaranteed to do so. Making any change to the
output selected in a given sampling event might unintentionally
push the model down a lower entropy branch of the covertext space,
yielding more sampling iterations overall. The "rst optimization

is performing a deterministic reordering operation of the model
distribution, reduces the number of calls to the generative model
by 20%-25%, and in some cases results in more elcient encoding
and decoding times. The second optimization is an adaptation from
the NLP literature that uses the generative modelOs internal word
representation to compress English language messages.

Before proceeding to the optimizations themselves, recall the
intuition provided for Meteor in Section 5. In each iteration of
the encoding algorithm, the sender extracts a probability distribu-
tion P from the generative modeP is subdivided into a series of
continuous intervals o, ,1, . . . { , the size of which determines the
probability that the model would select the corresponding token is
the next output. Meteor then generates a random sampling value
, =12-" +1 and determines the interval into which, falls. The
number of bits encoded is computed bBsnPrefix, ).

Optimization 1: Reordering the Distribution.  We note that
while we cannot manipulatd,-| without compromising the se-
curity of scheme, we are able to impalcenPrefix,) by permuting
the order of,,,1,...,( . Itis clear there exists some such permu-
tation that maximizes the expected throughput of Meteor, although
"nding this permutation proves to be di'cult.

The distribution P is generally output by the model in some
sorted or lexicographic order. This might yield to some orderings
of ,» that are incredibly unfavorable thenPrefiXa) Consider an
illustrative example in Figure 8a. If an interval contains values on
either side of the middle of the distribution, thebenPrefix, ) = 0.
When a large interval does so, as in cases (1) and (3), this severely
decreases the expected number of bits that the distribution can
encode. While this example is clearly contrived, it illustrates the
impact correctly ordering® can have on the expected throughput
b in this example an increase of over 50%. Importantly, we can use
any reorganization procedure on the distribution provided (1) the
same resulting permutation can be computed by both the sender
and the receiver and (2) the size ©ofremains the same for all.
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(a) The impact of reorganizing a distribution. (b) An overview of our reorganization algorithm.

Figure 8: (a))o has 3%of the total probability density, while )1 and )2 have 48%and 49%respectively. Because 2%6 < 03< 2%5)) can encode
5 bits of information when located at the beginning or end of the distribution. In orderings (1) and (2), one of the larger intervals crosses

the 50%ine, meaning LenPrefiXa)= 0. When the smallest interval is placed in the middle, the total expected throughput of the distribution
rises. (b) To reorder this distribution we create 22 = 4 buckets, because the entropy is 1.16. In (1), we place the largest interval )1 into bucket 0,
over$owing its value through most of bucket 1. Note that )1 could have been placed in bucket 2; in general, we break ties by taking the earlier
bucket. In (2), )2 can be placed either in bucket 1, over$owing into the following buckets, or placed in bucket 2, over$owing into bucket 3. To
maximize LenPrefiX)2), we place it in bucket 2. Finally, in (3), we note that )o will not !t in bucket 3, so it must be placed in bucket 1, pushing

)2 to make space.

Finding the optimal permutation oP proves to be a dilcult The runtime of this algorithm is+ (27 (P)-1 ), where! is the
task. Intuitively, each interval, must be placed as a continuous  number of intervals; in our experiments, (P). is typically less
block somewhere between 0 and 1 such that it does not overlap with than 7, so this is close t® (! ), which is unsurprising given its
other intervals. We take inspiration from approximation algorithms  similarities to bin-sorting. Wherb is very large, however, this
and design a greedy algorithm with pretty good performance, and algorithm is prohibitively expensive. In those cases, we use this
we leave formal analysis and bounds proving of this algorithm algorithm to place the ObigO intervals, and then simply place the
for future work. A simple algorithm would be to "nd a Ostarting  smaller intervals into the "rst bucket with space. As we discuss in
pointO to place each interval, starting with the largest, that maxi- @6, reordering the distributions increases capacity by 20%-25%.
mizesLenPrefix, ). However, there ar&€® possible starting points,
meaning a linear search will be prohibitiyely expensive. Instead C  MODEL OUTPUTS
we generate” (P)- buckets with capacityz_..!%, where. (P) is This appendix contains stegotext outputs as generated by Meteor
the entropy in the distribution. These buckets represent potential using several di#erent model types. The plaintext associated with
Ostarting pointsO that eachcan be placed. Note that the entropy  all of these outputs is the "rst 160 bytes of Lorem Ipsum. Figure
represents an upper bound on the possible value of the expected 10 shows a truncated output for a stegotext generated using the

throuhput <(P) and if each interval - could perfectly "t into one Wikipedia model, which seems to have generated some kind of
of these binsg(P) =. (P). Wiki-markup contents page. Figures 11 and 12 are GPT-2 outputs
Starting with the largest -, we "nd the bin that will maximize for di#erent contexts provided as input. Each output reads like a

LenPrefix,~) when,- is appended to that bucket. As buckets be- news article or book chapter. Representative output for the HTML
come full, they are no longer options for placement. Note that headers model has been omitted due to space constraints. Finally,
may exceed the remaining capacity of a bucket, or even the total Figure 9 is a screenshot of Meteor running on the iPhone Simula-
capacity of a bucket. When this is the case, we Oover$owO the retor, generating stream-of-consciousness news text. Note that the
mainder into the following buckets. Occasionally, this over$owing —context is shorter on the iPhone, as it can hold less state.
remainder may cause a chain reaction, requiring other, already

placed intervals be OpushedO to make space. We give a simple ex-

ample of our reorganization algorithm in Figure 8b, using the same

distribution given in Figure 8a. Step (3) gives an example of over-

$ow that causes one of these chain reactions. Once each interval

has been placed into a bin, the "nal ordering can be recovered by

appending the contents of the bins.



>3 Shuffle initial text

Washington received his initial
military training and command with
the Virginia Regiment during the
French and Indian War.

"As a service man, | must offer my
best efforts," Pettit said in a written
statement aired on CNN's "State of
the Union."

Read More? Christopher Bobwillier
broke his leg while brushing his teeth
using high-sensitivity clay. On Get
Stronger, Bell issues education report
looking beyond the bell and
acknowledges that indeed literacy
rates are on the rise. — Kate Partners
(@bonanzaplunger) October 29, 2017

Others in the community are just as
angry with Bell. They argued on the
Good News Radio program on
Tuesday that oftentimes if a parent or

iPhone X —13.2.2

Figure 9: iPhone X screenshot of Meteor encoding of the !rst 160 bytes of Lorem Ipsum as generated by the GPT-2 model.
Generated text is highlighted, and context is unhighlighted.



Haired the latter expand of the legal instance of the Imperial State of the American foal bridge, it is

n  suspective that he was also notable to ensure that they produced a consolidate [[electricity]] , the actual
n psychological cabinet [[Greece]] was the same time. It was born in many in the second [[tuak]] and [[timber]]
n at the idea of [[computer account|computer science]] , which provides sales might therefore be in popular

v writings such as the European Investigation.

==Video games=

* [[Brown Town]]

* [[Sagan in the United States|Commonwealth of Western Technology]]

* [[Template International Society of Europe]]

* [[Commonwealth of Russia]]

[Commerce coverage in Sweden]]

[List of Constitution by Westman of the United Kingdom|British Politics]]
[List of California Court in 1981]]

[International Party of Diabetos Integrated Policy]]

[United Kingdom]]

*
*
*
*

*

e —

===0verseas Roman Empie=

* [[Communist Council of Ireland]]

* [[Confucian States of the South Edition]]

* [[Conservative Party of the United Kingdom]]

[[Category:American states]]
[[Category:Conferences of India]]

Figure 10: Snippet of Meteor encoding of the !rst 160 bytes of Lorem Ipsum as generated by the Wikipedia model. The output
was truncated to 't.

Context

The Alvarez hypothesis posits that the mass extinction of the dinosaurs and many other living things during the Cretaceous-Paleogene extinction event
was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne
and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub, Mexico.
The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who "rst suggested it in 1980. Shortly afterwards, and
independently, the same was suggested by Dutch paleontologist Jan Smit.

Stegotext

The picture in The Pale | HCR scientists® discussion now spans three dimensions. The "rst importance of the Yucatan Peninsula is demonstrated with the
following conclusion: the Pliocene Earth has lost about seven times as much vegetation as the Jurassic in regular parts of the globe, from northern India to
Siberia. Even since 1976, the continent has received or is already experiencing the worst mass extinction in recorded history since there were a million
years last left from the extinction of Antarctic ice and the rapid spread of hydrocarbon-rich water as the Earth entered the Cretaceous Period. In turn, the
world®s oceans have been breathtakingly transformed and as a result the surrounding environments are especially vulnerable. The reason is obvious: there
was no geological record of the presence of the Yucatan Peninsula in the Late Miocene epoch, which is the line that runs from the southern edge of South
America to Siberia. The commander-in-chief of the Yucatan Peninsula, Frederick Nystrom, has determined that the area is to stay as barren as possible. As
a result, individuals living on lake beds and on coastal areas have witnessed the loss of about 90 percent of their habitat. The Yucatan Peninsula consists of
four zones, with two di#erent habitats separated, each of which has experienced inseam damage. In one zone, along the northern shore of Lake Shemal, the
retreating Tarahumara Ocean has been melted into a deep, sea$oor called Nova Ravine, which south-east of the Yucatan Peninsula $ows into Lake Isthmus,
where there is an abundance of turtle life. A second beach, which lies at the far end of the peninsula, has been spewed down by a sea wall supporting
MadagascarOs Great Ocean Earthquake, 9,000 feet in magnitude and caused large numbers of deaths. The third zone, along the coast of Cancun and in
Asuncion, is less severely a#ected. An estimated 16 percent of the continent is protected from the destruction of oceanic winds and $oods. All three zones
are in a state of catastrophic destruction. According to the de"nition provided by the National Commission on the extinction of the dinosaurs (Infection

and Immunization in the Ind

Figure 11: The ODinosaurO context and associated Meteor encoding of the Irst 160 bytes of Lorem Ipsum as generated by GPT-2.
This is the context used in Figure 3.



Context
Washington received his initial military training and command with the Virginia Regiment during the French and Indian War. He was later elected to

the Virginia House of Burgesses and was named a delegate to the Continental Congress, where he was appointed Commanding General of the nationOs
Continental Army. Washington led American forces, allied with France, in the defeat of the British at Yorktown. Once victory for the United States was in
hand in 1783, Washington resigned his commission.

Stegotext

Washington was martyred in the battle of Cullman in 1788. Although down 19 men, yet his mission accomplished. He ended his life in 1896. When he died
of disease, three of the men responsible said that Washington had been moved and was seen at the funeral placing him in his fatherOs arms. Another said
that Washington treated his wounds with "a study of a personal sense of injustice." (A 16th century German historian calls Washington a liar because of
this website.) He was also a friend of Dr. Henry H. Jackson, who was notable as George WashingtonOs physician and a collaborator, and recognizes him
by name in the any books about him. The last surviving manuscript is from 1888 and contains a frank and truthful account of the QuakersO plight. One
story states that while "ghting in Whitesburg, Washington succumbed to pneumonia. He was 38 years old and according to a manuscript he got out the
following year reports he grew old and fell in love. He also mentions a meeting with a woman who broke into his home and "rst went with him into a bath

and gave him food and sleep. Three days later the woman left the room expecting him to eat her lunch and on that day he left home at 9:30 am in despair.
He had not been to his bedside. On seeing this, he said a voice in him called out, "Your name is Jack. What is the girl?" Hamilton said the superior told him,
"She was a layover in a bed and seven[Pg 209] feet below the bed where the general slept in very feminine attire. Nobody had time to look into her face.
What was she to tell you about the general?"

A

WashingtonOs Olcial Address to Congress with Americans May 17th, 1781

"I am the one to announce completely that | am a true Christian and an eloquent philosopher. | am not constrained

Figure 12: The OWashingtonO context and associated Meteor encoding of the Irst 160 bytes of Lorem Ipsum as generated by
GPT-2. This is the encoding used throughout the benchmarks in Section 6.



