OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers [Link]

Kuniaki Saito¹, Dongyun Kim¹, Kate Saenko^{1,2}

1: Boston University, 2: MIT-IBM Watson AI Lab

Semi-supervised Learning with outliers

• Towards more realistic semi-supervised learning

Standard Semi-supervised Learning Set-up

Semi-supervised Learning with outliers (Open-set SSL)

Bird

Same categories

Unlabeled Data

Bear

Outliers (Novel Class)

Goal and Requirements

- Correctly classify inliers
- Detect outliers

Separate inliers and outliers, computing SSL loss only for unlabeled inliers

- Semi-supervised learning
 - FixMatch [Sohn et.al., NeurIPS2020]
 - Pseudo-labeling

Risk of assigning pseudo-labels to outliers.

- Semi-supervised learning with outliers
 - MTC [Yu et.al., ECCV2020]
 - Thresholding is not robust to various number of outliers.
 - D3LS [Guo et.al., ICML2020]
 - No objective to ensure separation between inliers and outliers.

Goal and Requirements

- Correctly classify inliers
- Detect outliers

Separate inliers and outliers, computing SSL loss only for unlabeled inliers

1. Learning such representations

2. A threshold to pick inliers

- New Framework, OpenMatch, for Open-set SSL
 - Outlier Detector based on one-vs-all classification network.
 - Soft consistency regularization with outlier detector improves outlier detection.
 - FixMatch for pseudo-inliers.
- SOTA performance in Open-set SSL
 - Accuracy to classify inliers
 - Separation between inliers and outliers
- Effectiveness in novelty detection
 - Detect outliers unseen in unlabeled data

Outlier Detector with one-vs-all classification network

- One-vs-All Network [Saito et.al, Arxiv 2021]
 - Train K one-vs-all classifier
 - Treat one class as positive, others as negative
 - Outlier Detector providing a threshold

One-vs-All Classifiers

Open-set Soft Consistency Regularization

- Enhance smoothness over data augmentation.
- For better outlier detection.

Pseudo label vs Soft Consistency

Overall Training

No. of labeled samples per class

No. of labeled samples per class

No. of labeled samples per class

No. of labeled samples per class

Accuracy for inliers

		CIFAR10			CIFAR100		ImageINet-30
6/4			55 / 45		80 / 20		20 / 10
50	100	400	50	100	50	100	10 %
$\begin{array}{c} 35.7{\scriptstyle\pm1.1} \\ 43.2{\scriptstyle\pm1.2} \\ 20.3{\scriptstyle\pm0.9} \end{array}$	$\begin{array}{c} 30.5{\scriptstyle\pm0.7}\\ 29.8{\scriptstyle\pm0.6}\\ 13.7{\scriptstyle\pm0.9}\end{array}$	$20.0{\scriptstyle \pm 0.3}\\16.3{\scriptstyle \pm 0.5}\\9.0{\scriptstyle \pm 0.5}$	$\begin{array}{c} 37.0 {\pm} 0.8 \\ 35.4 {\pm} 0.7 \\ 33.5 {\pm} 1.2 \end{array}$	$\begin{array}{c} 27.3 {\pm} 0.5 \\ 27.3 {\pm} 0.8 \\ 27.9 {\pm} 0.5 \end{array}$	$\begin{array}{c} 43.6{\scriptstyle\pm0.5}\\ 41.2{\scriptstyle\pm0.7}\\ 40.1{\scriptstyle\pm0.8}\end{array}$	$\begin{array}{c} 34.7 {\scriptstyle \pm 0.4} \\ 34.1 {\scriptstyle \pm 0.4} \\ 33.6 {\scriptstyle \pm 0.3} \end{array}$	$20.9{\scriptstyle\pm1.0}\\12.9{\scriptstyle\pm0.4}\\13.6{\scriptstyle\pm0.7}$
$10.4{\scriptstyle \pm 0.9}$	7.1±0.5	5.9±0.5	$\textbf{27.7}{\scriptstyle \pm 0.4}$	$24.1{\scriptstyle \pm 0.6}$	$\textbf{33.4}{\scriptstyle \pm 0.2}$	$\textbf{29.5}{\scriptstyle \pm 0.3}$	10.4 ± 1.0
	AUR	OC to de	tect outl	iers			
CIFAR10			CIFA	R100	CIFAR100		ImageNet-30
6/4			55 / 45		80 / 20		20 / 10
50	100	400	50	100	50	100	10 %
63.9 ± 0.5 56.1 ± 0.6	64.7 ± 0.5 60.4 ± 0.4 98.2 ± 0.2	76.8 ± 0.4 71.8 ± 0.4	76.6±0.9 72.0±1.3	79.9 ± 0.9 75.8 ± 1.2 80.7 ± 4.6	70.3 ± 0.5 64.3 ± 1.0 79.4 ± 2.5	73.9 ± 0.9 66.1 ± 0.5 73.2 ± 2.5	80.3 ± 1.0 88.6 ± 0.5 93.8 ± 0.8
	50 35.7 ± 1.1 43.2 ± 1.2 20.3 ± 0.9 10.4 ± 0.9 50 63.9 ± 0.5 56.1 ± 0.6 96.6 ± 0.6	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccc} 6/4 & 55/45 & 80/20 \\ \hline 50 & 100 & 400 & 50 & 100 & 50 & 100 \\ \hline 35.7 \pm 1.1 & 30.5 \pm 0.7 & 20.0 \pm 0.3 \\ 43.2 \pm 1.2 & 29.8 \pm 0.6 & 16.3 \pm 0.5 & 37.0 \pm 0.8 & 27.3 \pm 0.5 \\ 43.2 \pm 1.2 & 29.8 \pm 0.6 & 16.3 \pm 0.5 & 35.4 \pm 0.7 & 27.3 \pm 0.8 \\ \hline 43.2 \pm 0.9 & 13.7 \pm 0.9 & 9.0 \pm 0.5 & 33.5 \pm 1.2 & 27.9 \pm 0.5 & 43.6 \pm 0.3 & 34.7 \pm 0.4 \\ \hline 40.1 \pm 0.8 & 33.6 \pm 0.3 & 33.5 \pm 1.2 & 27.9 \pm 0.5 & 33.4 \pm 0.2 & 29.5 \pm 0.3 \\ \hline 10.4 \pm 0.9 & 7.1 \pm 0.5 & 5.9 \pm 0.5 & 27.7 \pm 0.4 & 24.1 \pm 0.6 & 33.4 \pm 0.2 & 29.5 \pm 0.3 \\ \hline AUROC \text{ to detect outliers} & \hline \\ \hline CIFAR10 & CIFAR100 & CIFAR100 & CIFAR100 \\ \hline 6/4 & 55/45 & 80/20 & \\ \hline 50 & 100 & 400 & 50 & 100 & 50 & 100 \\ \hline 63.9 \pm 0.5 & 64.7 \pm 0.5 & 76.8 \pm 0.4 & 76.6 \pm 0.9 & 79.9 \pm 0.9 & 50.1 \pm 0.6 & 60.4 \pm 0.4 & 71.8 \pm 0.4 & 72.0 \pm 1.3 & 75.8 \pm 1.2 & 64.3 \pm 1.0 & 66.1 \pm 0.5 & 96.6 \pm 0.6 & 98.2 \pm 0.3 & 98.9 \pm 0.1 & 81.2 \pm 3.4 & 80.7 \pm 4.6 & 79.4 \pm 2.5 & 73.2 \pm 3.5 \\ \hline \end{array}$

87.0±1.1 86.5±2.1

86.2±0.6 86.8±1.4

96.4±0.7

 $99.3{\scriptstyle\pm0.3}\quad99.7{\scriptstyle\pm0.2}\quad99.3{\scriptstyle\pm0.2}$

OpenMatch

Accuracy for inliers

Dataset	CIFAR10			CIFAR100		CIFAR100		ImageNet-30
No. of Known / Unknown	6/4		55 / 45		80 / 20		20 / 10	
No. of labeled samples	50	100	400	50	100	50	100	10 %
Labeled Only FixMatch [35] MTC [44]	$\begin{array}{c} 35.7{\scriptstyle\pm1.1} \\ 43.2{\scriptstyle\pm1.2} \\ 20.3{\scriptstyle\pm0.9} \end{array}$	$\begin{array}{c} 30.5{\scriptstyle\pm0.7}\\ 29.8{\scriptstyle\pm0.6}\\ 13.7{\scriptstyle\pm0.9}\end{array}$	$\begin{array}{c} 20.0{\pm}0.3\\ 16.3{\pm}0.5\\ 9.0{\pm}0.5\end{array}$	$\begin{array}{c} 37.0 {\pm} 0.8 \\ 35.4 {\pm} 0.7 \\ 33.5 {\pm} 1.2 \end{array}$	$27.3{\scriptstyle \pm 0.5}\\27.3{\scriptstyle \pm 0.8}\\27.9{\scriptstyle \pm 0.5}$	$\begin{array}{c} 43.6{\scriptstyle\pm0.5}\\ 41.2{\scriptstyle\pm0.7}\\ 40.1{\scriptstyle\pm0.8}\end{array}$	$\begin{array}{c} 34.7 {\pm} 0.4 \\ 34.1 {\pm} 0.4 \\ 33.6 {\pm} 0.3 \end{array}$	$20.9{\scriptstyle\pm1.0}\\12.9{\scriptstyle\pm0.4}\\13.6{\scriptstyle\pm0.7}$
OpenMatch	10.4±0.9	7.1 ± 0.5	5.9 ±0.5	27.7±0.4	$24.1{\scriptstyle \pm 0.6}$	33.4±0.2	29.5±0.3	10.4 ±1.0

AUROC to detect outliers

Dataset	CIFAR10			CIFAR100		CIFAR100		ImageNet-30
No. of Known / Unknown	6/4		55 / 45		80 / 20		20 / 10	
No. of labeled samples	50	100	400	50	100	50	100	10 %
Labeled Only FixMatch [35] MTC [44]	$\begin{array}{c} 63.9{\scriptstyle\pm0.5}\\ 56.1{\scriptstyle\pm0.6}\\ 96.6{\scriptstyle\pm0.6}\end{array}$	$\begin{array}{c} 64.7{\scriptstyle\pm0.5}\\ 60.4{\scriptstyle\pm0.4}\\ 98.2{\scriptstyle\pm0.3}\end{array}$	$76.8{\scriptstyle\pm0.4}\atop71.8{\scriptstyle\pm0.4}\\98.9{\scriptstyle\pm0.1}$	$76.6{\scriptstyle\pm0.9}\\72.0{\scriptstyle\pm1.3}\\81.2{\scriptstyle\pm3.4}$	$79.9{\scriptstyle\pm0.9}\\75.8{\scriptstyle\pm1.2}\\80.7{\scriptstyle\pm4.6}$	$70.3{\scriptstyle\pm0.5}\atop_{{\scriptstyle64.3\pm1.0}}\\79.4{\scriptstyle\pm2.5}$	$\begin{array}{c} 73.9 {\scriptstyle \pm 0.9} \\ 66.1 {\scriptstyle \pm 0.5} \\ 73.2 {\scriptstyle \pm 3.5} \end{array}$	$\begin{array}{c} 80.3{\scriptstyle\pm1.0}\\ 88.6{\scriptstyle\pm0.5}\\ 93.8{\scriptstyle\pm0.8}\end{array}$
OpenMatch	99.3±0.3	99.7±0.2	99.3±0.2	87.0±1.1	$86.5{\scriptstyle\pm2.1}$	86.2±0.6	86.8±1.4	96.4±0.7

OpenMatch is effective in various settings w.r.t both accuracy and AUROC.

Ablation Study for Our Consistency Regularization

- AUROC
- SOCR = Soft Open-set Consistency Regularization

Dataset	CIFAR10		CIFA	R100	ImageNet-30
No. Known / Unknown	6,	6/4		/ 20	20 / 10
No. Labeled samples	50	400	50	100	10 %
without SOCR with SOCR	$\begin{array}{c} 60.5{\scriptstyle\pm2.8}\\ \textbf{81.3}{\scriptstyle\pm2.9}\end{array}$	$\begin{array}{c} 75.8{\scriptstyle\pm0.8}\\ \textbf{96.8}{\scriptstyle\pm0.6}\end{array}$	$\begin{array}{c} \textbf{70.4}{\scriptstyle\pm0.1} \\ \textbf{78.9}{\scriptstyle\pm0.1} \end{array}$	$\begin{array}{c} 73.2{\scriptstyle\pm0.2}\\ \textbf{85.0}{\scriptstyle\pm0.8}\end{array}$	81.3 ± 0.4 89.3 ± 0.3

OpenMatch is effective in various settings w.r.t both accuracy and AUROC.

Ablation Study for FixMatch, SOCR

• FixMatch for pseudo-inliers can improve outlier detection

Red: Inliers, Blue: Outliers

OSSL model detects "unseen" outliers?

- Evaluate a model on outliers unseen in unlabeled data
- Train on cifar10, evaluate AUROC
- Supervised model is trained on all labeled inliers in training data

		Unseen Out-liers						
Method	CIFAR10	SVHN	LSUN	ImageNet	CIFAR100	MEAN		
Labeled Only FixMatch [35] MTC [44] OpenMatch	$\begin{array}{c} 64.7 \pm 1.0 \\ 60.4 \pm 0.4 \\ 98.2 \pm 0.3 \\ \textbf{99.7 \pm 0.1} \end{array}$	$\begin{array}{c} 83.6{\pm}1.0\\79.9{\pm}1.0\\87.6{\pm}0.5\\\textbf{93.0{\pm}0.4}\end{array}$	$\begin{array}{c} 78.9 \pm 0.9 \\ 67.7 \pm 2.0 \\ 82.8 \pm 0.6 \\ \textbf{92.7} \pm \textbf{0.3} \end{array}$	$\begin{array}{c} 80.5{\scriptstyle\pm0.8}\\ 76.9{\scriptstyle\pm1.1}\\ 96.5{\scriptstyle\pm0.1}\\ \textbf{98.7}{\scriptstyle\pm0.1}\end{array}$	$\begin{array}{c} 80.4{\scriptstyle\pm0.5}\\ 71.3{\scriptstyle\pm1.1}\\ 90.0{\scriptstyle\pm0.3}\\ \textbf{95.8}{\scriptstyle\pm0.4}\end{array}$	$\begin{array}{c} 80.8 \pm 0.8 \\ 73.9 \pm 1.3 \\ 89.2 \pm 0.4 \\ \textbf{95.0 \pm 0.3} \end{array} \hspace{0.15cm} 5.8 \end{array}$		
Supervised	$89.4{\scriptstyle \pm 1.0}$	$95.6{\scriptstyle \pm 0.5}$	$89.5{\scriptstyle \pm 0.7}$	90.8 ± 0.4	90.4 ± 1.0	$91.6{\scriptstyle \pm 0.6}$		

Conclusion

- OpenMatch for Open-set Semi-supervised Learning
- Soft Open-set Consistency Regularization for outlier detection
- SOTA performance in OSSL
- Useful to detect outliers "unseen" in unlabeled data