
SPECIAL SECTION

DISTRIBUTED PROGRAMMING IN ARGU!S

Argus-a programming language and system developed to support the
implementation and execution of distributed programs-provides
mechanisms that help programmers cope with the special problems that
arise in distributed programs, such as network partitions and crashes of
remote nodes.

BARBARA LISKOV

Argus--a programming language and system-was de-
veloped to support the implementation and execution
of distributed programs. Distribution gives rise to some
problems that do not exist in a centralized system, or
that exist in a less complex form. For example, a cen-
tralized system is either running or crashed, but a dis-
tributed system may be partly running and partly
crashed. The goal of Argus is to provide mechanisms
that make it easier for programmers to cope with these
problems.

A program in Argus runs on one or more nodes. Each
node is a computer with one or more processors and
one or more levels of memory; we assume that the
nodes .are heterogeneous, i.e., contain different kinds of
processors. Nodes can communicate with one another
only by exchanging messages over the network. We
make no assumptions about the network topology; for
example, the network might be a local area net, or it
might consist of a number of local area nets connected
by a long haul net. In such a network, it is usually
much faster for a node to access local information than
information residing in some other node.

Distributed programs must cope with failures of the
underlying hardware. Both the nodes and the network

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, and monitored by the Office of Naval
Research under Contract N00014-83-K-0125, and in part by the National
Science F’oundation under Grant DCR-8503662.

0 1966 ACM OOOl-0782/&3/0300-0300 $1.50

may fail. The only way nodes fail is by crashing; we
assume it is impossible for a failed node to continue
sending messages on the network. The network may
lose messages or delay their delivery or deliver them
out of order. It may also partition, so that some nodes
are unable to communicate with other nodes for some
period of time. In addition, the network may corrupt
messages, but we assume the corruption is detectable;
this assumption is satisfiable with arbitrarily high
probability by including redundant information in
messages.

Argus is intended to be used primarily for Iprograms
that maintain online data for long periods of time, e.g.,
file systems, mail systems, and inventory control sys-
tems. These programs have a number of requirements.
Online information must remain consistent in spite of
failures and also in spite of concurrent access. Programs
must provide some level of service even when compo-
nents fail; for example, a program may replicate infor-
mation at several nodes so that individual failures can
be masked. Programmers need to place information and
processing at a particular node, both to do replication
properly, and to improve performance, since informa-
tion is cheaper to access if it is nearby. Finally, pro-
grams may need to be reconfigured dynamically, by
adding and removing components, or by moving a com-
ponent from one node to another. To minimize the im-
pact of moving components, the method used. to access
information should be location independent. Argus was
designed to satisfy these requirements.

300 Communicntions of the ACM March 1988 Volume 31 Number 3

Special Section

A DISTRIBUTED BANK
Imagine a large bank with branches in geographically
distributed locations. Information about the bank’s ac-
counts is stored online. To ensure that information
about the accounts of a particular branch can be ac-
cessed locally, the online database of accounts is also
physically distributed, with information about the ac-
counts of each branch stored at a computer or com-
puters at that branch. Nevertheless, an important goal
of the system is to support remote interactions with
accounts. For example, a customer whose account is at
branch A can make a deposit or withdrawal at branch
B and have the amount be credited or debited to his
account properly. Also, customers can make withdraw-
als through cash vending machines located at numer-
ous geographical locations. Furthermore, employees at
the bank’s main office can access information at all
branches for auditing and other management purposes.

The configuration for the banking system is illus-
trated in Figure 1. Each clerk interacts with a front-end
program that runs on a minicomputer; a single mini
may run the front-end programs for many clerks. Cash
vending machines are connected to other programs at
the minicomputers. Other users of the system also
make use of programs running at the minicomputers.
For example, bank personnel can produce monthly
statements or run audits by interacting with such pro-
grams. The minicomputers are connected via a network
to the back-end computers where the account informa-
tion resides. Every mini can communicate with every
back end and vice versa.

Front ends

I I I I
I I

Sack ends

The front ends &+e minioomputers that inter&t with clerks
and other users, and control cash vending machines. The
back ends are pM%inframe+ sach stores information about
a&x&& for We branch and physically resides at that
branch. The front ends interact with the back ends to carry
out deposits and withdrawals.

FIGURE 1. Configuration of the Banking System

Each back end belongs to a particular branch of the
bank: It resides at that branch and maintains a branch
database containing information about accounts on site.
Information stored for an account includes the account
number, the name and address of the owner of the
account, the balance, and other information such as a
log of all transactions processed against the account.

Example uses of the system are sketched in Figure 2,
which shows two procedures that run at the front ends.
The first is the audit procedure, which allows an ad-
ministrator to compute the total assets for some subset
of the branches; the identities of the branches of inter-

est are passed in as an array. Audit sends a request for
the current total to each branch of interest and sums
the results. This program is object-oriented in the sense
that the branch databases are objects that can be asked
to perform requests such as deposits and withdrawals;
the notation b.total means the request for the total
should be sent to branch b. The work of doing a with-
drawal, deposit, or computing a branch’s total, is ac-
tually performed at the branches themselves.

The transfer procedure is used by a clerk to carry out
a transfer of funds from one account, referred to as
from, to another account, the to account. This procedure
either terminates normally, meaning that the transfer
has been successful, or it signals an exception, insuffi-
cient-funds, if the balance of the from account is smaller
than the desired amount. The transfer is carried out by
withdrawing the desired amount from from and deposit-
ing it in to. First an attempt is made to withdraw the
desired amount from the from account. This request is
directed to from's branch. If there are sufficient funds in
from, then the desired amount is deposited in the to
account by directing a deposit request to the branch of
the to account. The function get-branch computes an
account’s branch given its account number. (We will
discuss the details of how such a computation might be
done later.)

There are a number of problems with the procedures
shown, two of which are the following:

1. Concurrent activities may interfere with one another.
For example, if a transfer runs concurrently with
an audit, the audit might record a total that in-
cludes the withdrawal but not the deposit.

2. Various failures are not taken into account. For exam-
ple, suppose the back end of the to account crashes
immediately after the withdrawal from the from ac-
count has been made. In this case we need to either
put the money back into the from account or wait to
complete the transfer until the to account’s back
end recovers.

ARGUS
Argus was designed to support programs like the bank-
ing system. To capture the object-oriented nature of
such programs, it provides a special kind of object
called a guardian, which implements a number of pro-
cedures that are run in response to remote requests. To
solve the problems of concurrency and failures we have
mentioned, Argus allows computations to run as atomic
transactions, or actions for short. We will describe guard-
ians and actions here; however more information can
be found in [ll, 12, 141. We will illustrate their uses by
showing how a portion of the banking system can be
implemented in Argus.

Guardians
An Argus guardian is a special kind of abstract object
whose purpose is to encapsulate a resource or re-
sources. It permits its resource to be accessed by means
of special procedures, called handlers, that can be called

March 1988 Volume 31 Number 3 Communications of the ACM 301

Special Section

audit = proc (branches: array[branch]) returns (int)
sum: int := 0
for b: branch in elements(branches) do

sum := sum + b.total()
end

return (sum)
end audit

transfer = proc (from, to: account-number, amt: int) signals (insufficient-funds)
f: branch := get-branch(from)
t: branch := get-branch(to)
f.withdraw(from, amt)

except when insufficient-funds: signal insufficient-funds end
t.deposit(to, amt)
end transfer

FIGURE 2. Two Front-end Procedures

from other guardians. For example, a guardian might
encapsulate some or all of the accounts at a branch,
and provide handlers to open and close accounts, and
to withdraw and deposit money in accounts. As an-
other example, a guardian might control a printing de-
vice, and provide a handler called en9 to allow files to
be enqueued for printing and a handler called check-
9ueue to check the state of the queue. A printer guard-
ian is illustrated in Figure 3.

se-- I”’ ---...
Guardian state

check *
/- ", i i r” ,e,I

‘\,
%^//~

/ .;
p e Local objects

-. --.. .*

A guardian contains within it data objects that store
the state of its resource. These objects are not accessi-
ble outside the guardian; the only way they can be
accessed or modified by another guardian is by calls of
their guardian’s handlers. Handler calls are performed
using a message-based communication mechanism. Ar-
guments are passed by value, which ensure:; that a
guardian’s objects cannot be accessed directly by any
other guardian. The Argus implementation takes care
of all details of constructing and sending messages.

Inside a guardian are one or more processes. Pro-
cesses can access all the guardian’s objects clirectly.
Some processes carry out handler calls; whenever a
handler call arrives at a guardian, a process is created
to run the call. In addition there may be background
processes that carry out tasks independently of particu-
lar handler calls. For example, the en9 handler of the
printer guardian might merely record information
about the request; a background process would carry
out the actual printing.

Each guardian resides at a single node of i.he net-
work, although it can change its node of residence.
Several guardians can reside at the same node. A
guardian is resilient to failures of its node. Some of its
objects survive crashes; these are the stable objects,
and they are written periodically to stable storage de-
vices. With high probability, stable storage devices
avoid loss of information in spite of failures [9]. The
other objects in the guardian are volatile. For example,
in the printer guardian, information about queued re-
quests would be stored in stable objects so that requests
are not lost in a crash. However, detailed information
about the exact processing of the current request need
not be stable, since the request can be redone after a
crash.

A crash destroys all volatile objects of a guardian and
also all processes that were running at the time of the

FIGURE 3. The Printer Guardian crash. After the crash, the Argus system restores the

302 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

guardian’s code and recovers the stable objects from
stable storage. Then it creates a special recovery pro-
cess, which runs code defined by the guardian to ini-
tialize the volatile objects. When this process finishes,
the guardian is ready to accept new handler calls and
to run background processes. Since the volatile state
does not survive crashes, it should be used only to
record redundant information (e.g., an index into a
database) or information that can be discarded in a
crash (e.g., current printing information in the printer
spooler).

A guardian can create other guardians dynamically
and (the names of) guardians and handlers can be sent
as arguments of handler calls. The creator specifies the
node at which the new guardian is to reside; in this
way individual guardians can be placed at the most
advantageous locations. Handler calls are location inde-
pendent, so that one guardian can use another without
knowing its location.

A distributed program in Argus is composed of a
number of guardians residing at a number of nodes. For
example, in the banking system there might be a guard-
ian running at the back-end computer of each branch
to carry out requests on the accounts of that branch. In
addition, there would be a guardian for each input
agent. This guardian would use a background process
to listen for input, and then make handler calls to the
appropriate branch guardians. The branch guardians
would remember all crucial information about accounts
in stable objects, so that we can be sure the effect of a
withdrawal or deposit is not lost if the branch’s com-
puter crashes.

Guardians allow programs to be decomposed into
units of tightly coupled data and processing. However,
they do not solve the synchronization and failure prob-
lems mentioned earlier. These problems are addressed
by the second main mechanism in Argus, the atomic
action.

Actions
Argus permits a computation such as a transfer or an
audit to run as an atomic action [3]. Actions have pre-
cisely the properties that are needed to solve the con-
currency and failure problems. First, they are serializa-

ble: the effect of running a group of actions is the same
as if they were run sequentially in some order. Second,
they are total: an action either completes entirely or
it is guaranteed to have no visible effect. An action
that completes is said to commit; otherwise, the
action aborts.

Recovery is done by using versions. The state of an
unlocked object is stored in a base version. Modifica-
tions to an object are not done to the base version
directly. Instead a copy is made (in volatile memory),
and modifications are done to the copy. If the action
commits, the copy becomes the base version and is
written to stable storage if the object is stable. If the
action aborts, the copy is discarded.

Serializability solves the concurrency problem. If a
transfer action and an audit action are running concur-
rently, then the effect must be as if they ran sequen-
tially in some order. Either the audit will (effectively)
run after the transfer is finished or before it starts; in
either case it observes the proper total. It should be
noted that serializability permits concurrent execution,
but ensures that concurrent actions cannot interfere
with one another.

An example of an atomic array is shown in Figure 4.
Like all atomic objects, the array has a header with
components to record the current lock holders, a base
version, and, if there is an action holding a write lock, a
current version. Figure 4A shows the object in an initial,
unlocked state. Figure 4B shows what happens when
the object is accessed by action A. Since A is modifying
the object, a write lock is acquired on its behalf. This is
possible because no other action has a lock on the ob-
ject. The current version is created by copying the base
version, and A’s modification is made to the current
version. Now A may continue to use the object. Both
reading and writing are permitted since it already has a
write lock. In either case, it uses the current version, so
if it reads, it sees the changes it made previously. Fig-
ure 4C shows a further modification by A. Figure 4D
shows what happens if A commits; the current version

Totality solves the failure problem. Either the trans- ’ Thus. we are using strict two-phase locking [3].

fer completes entirely, in which case both the from and
to accounts contain the proper new balances, or it
aborts and has no effect, in which case the accounts
still have their old balances.

To implement serializability, we need to synchronize
the accesses made by actions to shared objects. To im-
plement totality, we need some way to recover the old
state of any objects modified by an action that aborts.
In Argus, synchronization and recovery are done
through special objects called atomic objects that, like
ordinary objects, provide a set of operations to access
and manipulate them. However, their operations syn-
chronize the using actions and permit the effects of
aborted actions to be undone. Argus provides a number
of built-in types of atomic objects, such as atomic ar-
rays and atomic records, which have the same kinds of
operations as ordinary arrays and records, but pro-
vide the additional support needed for atomicity. It
also provides a mechanism for users to define new
atomic data types that permit greater concurrency than
the built-in atomic types. This mechanism is discussed
in [ZO].

Synchronization for built-in atomic objects is done by
means of locks. Every operation on an atomic object is
classified as a reader or writer. An operation that modi-
fies the object is a writer; other operations are readers.
Readers automatically acquire a read lock on the object
before accessing it; writers automatically acquire a
write lock. These locks are held until the action com-
pletes, i.e., commits or aborts.’ As is usual, there can be
many concurrent holders of a read lock, but if an action
holds a write lock on some object, then no other con-
current action can hold locks on that object.

March 1988 Volume 31 Number 3 Communications of the ACM 303

Special Secfion

Lock Base Current Lock Base Current
A/W

3 5 35 32

(A) The Original State (B) A Performs x[2] := 2

Lock Base Current Lock Base Current
.A/W

35 42 4 2

(C) A Performs x[l] := 4 (D) A Commits

Atomic objects implement synchronization and recovery for
using actions. Locks are used for synchronization, and ver-
sions for recovery. Initially, atomic array x is unlocked and has
a single base version. Then action A acquires a write tack; et
this point the current version is created by copying the base
version. A’S modiication is done to the cutient version and
so is a subsequent modification. If A commits, the current
version is installed as the base version, and thelock is dis-
carded; if A aborts, the object reverts to its initial state.

FIGURE 4. Using Atomic Objects

replaces the base version and A’s lock is discarded. If A
aborts, its lock and version are discarded and the object
reverts to its state in Figure 4A.

Argus allows actions to be nested [Z, 171; thus an
action can have one or more subactions. Nested actions
are useful for the following two reasons:

1. They allow concurrency within an action. An action
can run many subactions in parallel. The sub-
actions will synchronize with one another using the
sa.me rules discussed earlier. For example, all calls
to get the totals of the branches in the audit proce-
dure be done in parallel.

2. They can be used to establish checkpoints within an
nction. If there are several ways to accomplish a
task, one can be attempted as a subaction, and, if
that aborts, another can be tried without having to
abort the entire computation.

Subactions require extensions to locking and version
management; the complete rules are summarized in
Figure 5. A subaction can acquire a read lock only if
all holders of write locks are ancestors (i.e., itself, its
parent, its parent’s parent, and so on). It can acquire a
write lock only if all holders of read or write locks are
ancestors, and in this case a new version is created for
its use the first time it acquires a write lock. When a
subaction aborts, its locks and versions are discarded
and it.s parent action can continue from the state at
which the subaction started. If a subaction commits, its
locks and versions are inherited by its parent. If the
parent aborts later, all modifications of the subaction
will be undone. The rules make sense because Argus
does not permit a parent to run concurrently with its
children, nor does it permit any concurrency within an
action except by creating subactions. For example, if a

parent could run concurrently with a child, then the
commit of the child could overwrite changes made by
the parent since the child was created. The rules are
implemented by maintaining a stack of versions, one
for each active action that is modifying the object.
When a subaction needs a new version, the version on
top of the stack is copied and the result pushed on
the stack.

Argus runs every handler call as a subaction; we re-
fer to this subaction as the cull action. This extra action
ensures that calls have a zero or one semantics: If the
call is successful and the called guardian returns a re-
ply, we guarantee that the call happened exactly once.
If it is not possible to complete the call, we a.bort the
call action, thus guaranteeing that the call (effectively)
did not happen at all. Running a call as a suhaction
ensures that calls have a clean semantics, which is a
non-trivial and desirable property in a distributed sys-
tem. In addition, remote calls are often a handy place
for checkpoints, since the inability to reach one guard-
ian can sometimes be compensated for by calling a
different guardian.

Also, Argus runs the processing of a handler call at
the called guardian as a subaction of the call action; we
refer to this subaction as the handler action. The handler
action gives a clean separation of the calling and called
guardians and ensures that each individual action runs
at just one guardian. It avoids anomalies such as an
action that commits at one guardian and aborts at an-
other. It allows the handler to commit or abort unilater-
ally, without concern about what the calling guardian
does, and similarly for the caller.

A computation in Argus starts as a topaction, an ac-
tion that has no parent, at some guardian. The compu-
tation spreads to other guardians by means of handler
calls. Execution of a handler call may cause some ob-
jects at the handler’s guardian to be modified, and may
in turn lead to further calls. Modifications made by
these calls will be lost if a modified object’s guardian

Acquiring a read lock. All holders of write locks on x must be
ancestors of S.

Acquiring ~1 write lock. All holders of read and write locks on
x must be ancestors of S. If this is the first time A. has
acquired a write lock on x, push a copy of the object on top
of the version stack.

Commit. S’s parent acquires S’s lock on x. If S holds a write
lock on x, then S’s version (which is on top of the version
stack) becomes S’s parent’s version.

Abort. S’s lock and version (if any) are discarded.

Here ‘ancestor” is transitive so that an action S is an ancestor
of itself. Subactions can read and overwrite modifications
made by ancestors, but not by unrelated actions. If a sub-
action commits, its parent inherits its locks and versions;
if it aborts, its locks and versions are discarded.

FIGURE 5. Locking and Version Management Rules for Subaction
S on Object x

304 Communications of the ACM March 1988 Volume .?l Number 3

Special Section

crashes subsequently. When the topaction commits, it
is essential that the modifications made to stable ob-
jects be written to stable storage. If this is impossible,
the topaction must abort. For example, this property is
needed to guarantee that a transfer would modify both
(or neither) of the from and to accounts. We ensure that
committing is atomic by using the two-phase commit
algorithm [3] as discussed further in the section on
Implementation of Action. Two-phase commit is car-
ried out only when topactions commit.

THE BANKING SYSTEM IN ARGUS
Figure 6 shows the definition of the guardian that runs
at the back end at a branch. (Argus is an extension of
the CLU language [15], and most of its syntax and se-
mantics is taken from CLU.) The guardian definition
begins with a header explaining the type of guardian
being defined (branch in this case), and the names of the
operations. There are two kinds of operations. Creators
are used to create new guardians of the type, while
handlers are the operations provided by the guardians
once they are created. For some types of guardians it is
useful to have several creators, but the branch guardian
has a single creator named create. Once a branch guard-
ian has been created, there are five handlers that can
be used to communicate with it, open, close, deposit,
withdraw, and total.

The first definitions to appear inside a guardian defi-
nition are type definitions and declarations of the vari-
ables that make up the guardian’s state. In this case, the
entire state of the guardian is stable, since all the vari-
ables making up the state are declared to be stable. The
state consists of three objects: a hash table providing
access to accounts, the unique code for this branch,
and the seed used to generate unique names for new
accounts.

Since deposits and withdrawals are likely to happen
frequently, we want them to be fast. There are several
issues to consider here. First, locating the account of
interest must be fast. Second, concurrent deposits and
withdrawals are quite likely, so we want to allow them
when possible. Finally, we want to minimize the
amount of writing to stable storage needed to record
the results of the various operations.

The representation used in the branch guardian
achieves these goals. To find the account, we use the
hash table, ht, which maps from integers (obtained from
hashing the account number) to buckets. The name
htable is used as an abbreviation for ht’s type (atomic-
array[bucket]). A bucket is an atomic array, each of
whose elements contains information about an account
that hashes to that bucket. (The name bucket is used as
an abbreviation for this type.) The information stored is
the account number and the object that records the
information about the account itself. An account num-
ber is an atomic record with two components; the first
component records the code for its branch, while the
second is an integer that is unique for its branch. The
only information stored for an account is its balance; in
a real implementation, of course, much more informa-

tion would be stored. The seed is stored as an atomic-
record with a single integer component to ensure
proper synchronization of concurrent opens. It should
be noted that all the data structures used are atomic
objects, which means that actions using the branch
guardian will be synchronized properly and that their
effects will be undone if they abort. Read and write
locks on atomic objects are mostly acquired automati-
cally when operations are invoked; e.g., the last state-
ment of open acquires a read lock on ht (since it reads it
to obtain the bucket of the new account) and a write
lock on the bucket, since it modifies it to add the new
account.

Since there is no volatile state for this guardian, there
is no need for any code to run during crash recovery.
Furthermore, the guardian has no background code; it
does all its work as part of carrying out the handler
calls. Therefore, the remainder of the guardian consists
of definitions of the creator and handlers, plus an inter-
nal procedure, lookup.

The creator, create, takes the branch’s code and the
hash table size as arguments. It initializes the guardian
state and then returns itself, i.e., the newly created
guardian. The hash table is initialized to contain a full
complement of empty buckets. The buckets can be
empty initially because arrays in Argus grow (and
shrink) dynamically. In the code of create, there are
several illustrations of the notation used in Argus to
name operations. For example, the notation htable$new
names the new operation of the htable type.

Total computes the sum of the balances of the ac-
counts at the branch by using iterators [15]. An iterator
is a special kind of operation that yields its results in-
stead of returning. When the iterator yields, its result is
assigned to the loop variable and the loop body is run.
When the body completes, control resumes in the itera-
tor so it can produce the next result; and when the
iterator has no more results to yield, both it and the
loop terminate. The elements iterator used here pro-
duces all elements of the array from the first to the last.
Total uses nested iterators. The iterator in the outer
for statement produces every bucket iu the hash table.
Each account in the bucket is accessed in the inner
for statement.

When total finishes, it commits and returns the com-
puted sum. As mentioned, a handler runs as a subac-
tion of the calling action. When a handler terminates, it
can either commit or abort. The default is committing;
in the absence of an explicit command to abort, the
handler action will commit. An explicit abort is indi-
cated by prefixing a return or signal with abort. All
handlers in the example terminate by committing; in
our experience, this is the most common case by far.
Total acquires a read lock on the hash table and also
on each bucket since the iterators read the hash table
and the buckets. It also acquires a read lock on each
account when it reads the balance. These locks are
acquired by its parent when it commits.

Open generates an account number for the new ac-
count and advances the seed. It obtains a write lock on

March 1988 Volume 31 Number 3 Communications of the ACM 305

Special Section

This guardian implements the database
for one branch. It maintains information
about accounts in stable storage, and
provides operations to open and close
accounts, to withdraw and deposit
money in accounts, and to provide the
total of all accounts in the database.

FIGURE 6. The Branch Guardian

branch = guardian is create handles total, open, close, deposit, withdraw

% type definitions
htable = atomic-array[bucket]
bucket = atomic-array[pair]
pair = atomic-record[num: account-number, acct: ax-info]
wet-info = atomic-record[bal: int]
account-number = atomic-record[code: string, num: int]
intcell = atomic-record[val: int]

stable ht: htable % the table of accounts
stable code: string % the code for the branch
stable seed: intcell % the seed for generating new account numbers

create = creator (c: string, size: int) returns (branch)
code := c
seed.val := 0
ht := htable$new()
for i: int in int$from-to(l, size) do

htable$sddh(ht, bucket$new())
end

return (self)
end create

total = handler () returns (int)
sum: int := 0
for b: bucket in htable$elements(ht) do

for p: pair in bucket$elements(b) do
sum := sum + p.acct.bal
end

end
return (sum)
end total

open = handler () returns (account number)
intcell$write-lock(seed) 7’ g t o e a write lock on the seed
a: account-number := account- number${code: code, num: seed.val}
seed.val := seed.val + 1
bucket$addh(ht[hash(a.num)], pair${num: a, acct: acct- info${bal: 0}})
return (a)
end open

close = handler (a: account-number) signals (no-such-acct, positive-balance)
b: bucket := ht[hash(a.num)]
for i: int in bucket$indexes(b) do

if b[i].num -= a then continue end
if b[i].acct.bal > 0 then signal positive-balance end
b[i] := bucket$top(b) % store topmost element in place of closed account
bucket$remh(b) % discard topmost element
return
end

signal no-such-acct
end close

lookup = proc (a: account-number) returns (acct- info) signals (no-such--acct)
for p: pair in bucket$elements(ht[hash(a.num)]) do

if p.num = a then return (pacct) end
end

signal no-such-acct
end lookup

deposit = handler (a: account-number, amt: int) signals (no-such-acct, negative-
if amt < 0 then signal negative-amount end
ainfo: acct-info := lookup(a) resignal no-such-acct
ainfabal := ainfabal + amt
end deposit

withdraw = handler (a: account- number, amt: int)
signals (no such-acct, negative-amount, insufficient-funds)

if amt < 0 then signal negative amount end
ainfo: acct-info := lookup(a) res~gnal no-such-acct
if ainfabal < amt then signal insufficient-funds end
ainfabal := ainfabal - amt
end withdraw

end branch

306 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

the seed first to prevent deadlocks between concurrent
opens. (The deadlock would occur if two opens each
obtained a read lock on the seed; then neither would be
able to obtain the write lock needed to increment the
seed.) Open uses the hash procedure to compute the
bucket of the new account (the code of this procedure
is not shown in the example). Hush takes in the integer
part of the account number, it returns an integer be-
tween zero and the current size of the hash table. Open
uses the array addh operation, which extends the array
by one and stores the element passed to it as an argu-
ment in the new position, to enter the new account in
the accounts table.

operations at that branch are delayed. Conflicts with
deposits and withdrawals are necessary if the reported
total is to be up to date. They could be avoided by
having total return a sum that is slightly out of date.
Again, a user-defined atomic type would help here.

As implemented, most of the handlers can deadlock
with other concurrent operations. For example, deposit
can deadlock with other deposits or withdrawals on its
account. The reason for the deadlock is that the opera-
tion first obtains a read lock on the account and then
later needs a write lock. Such a problem was avoided in
the implementation of open by obtaining the write lock
first; a similar solution can be used here.

Close looks up the account by using the array indexes
iterator to search the account’s bucket; this iterator re-
turns all the legal indexes in the array. The other han-
dlers make use of the internal procedure, lookup, to find
the entry in the map for a particular account, or signal
no-match if there is no such account.

The implementation provides lots of concurrent ac-
tivity. Concurrent deposits and withdrawals are permit-
ted on different accounts. This concurrency is allowed
because these operations acquire only read locks on the
hash table and on the account’s bucket. A write lock is
acquired only on the information stored for the account
itself.

No operations modify the hash table. This is impor-
tant for performance since an operation that modified
the hash table would conflict with all other operations.
Also, the hash table is big, so we do not want to copy it
to stable storage. Of course, it might be necessary to
reorganize the guardian by changing the size of the
hash table, or using a different method of hashing. Such
a change could be installed by running a topaction, and
copying the new hash table and buckets to stable stor-
age when that topaction commits.

The Front-end Guardian

Close can run in parallel with calls of open, close,
deposit, and withdraw, provided those other calls make
use of different buckets. It prevents other calls that use
the same bucket because it acquires a write lock on
the bucket (when it assigns to the ith element of the
bucket). Open is similar to close except that it also
excludes other concurrent opens because each open
acquires a write lock on the seed. This exclusion is not
a problem if buckets are small and if accounts are
opened rarely. If it is a problem, the state of the guard-
ian can be implemented differently, possibly using
mechanisms for user-defined atomic types, to reduce
conflicts. For example, user-defined types could permit
concurrent opens.

A portion of the front-end guardian is shown in Figure
7. This guardian has no handlers; all its work is done
in the background code. When it is created, it passes
information about the devices it is controlling, and also
the identity of another guardian (of type registry) whose
job is to remember how branch codes are related to
branch guardians. This guardian provides various oper-
ations to access its information, The device information
and the identity of the registry guardian are kept in
stable storage. To speed up processing of requests, the
front end maintains in table bt a volatile copy of the
information stored by the registry guardian. This copy
is initialized by the creator and also by the recovery
code after a crash.

The amount of writing to stable storage is small in all
cases. For deposit and withdraw, only the account itself
must be written to stable storage. For open and close,
the bucket of the opened or closed account must be
written. The accounts contained by the buckets are not
written, except for the newly opened account. Nothing
need be written for total since it does not modify any-
thing.

The implementation of total is the main problem with
the guardian. Total is slow because it needs to examine
the balances of all accounts. It could be improved by
keeping a running total, but then deposits and with-
drawals would conflict with one another because each
would need to change the total and thus would require
a write lock. A user-defined atomic type would permit
us to keep a running total without having conflicts be-
tween deposits and withdrawals.

A transfer is carried out by interacting with the user
to determine the from and to accounts and the amount.
A topaction is then created and the transfer is carried
out within it. Get-branch is used to determine the
branches of the two accounts; it extracts the code of an
account and looks it up in the bt table. The calls to the
two branches are done in parallel, each in its own
subaction. If both calls return normally, the coenter
completes, committing both its subactions, and then the
topaction commits. If either call signals an exception,
the coenter is halted immediately, aborting the other
call if it has not yet completed, and then the topaction
aborts. The topaction must be aborted in this case be-
cause it is possible that the call in other arm (the one
that did not raise an exception) terminated first, in
which case the transfer is partly done. Aborting the
topaction will undo the effects of the other call in this
case.

In addition, total conflicts with all other operations: To carry out an audit, the background code interacts
until the topaction that called total completes, other with its user to determine what branches are of inter-

March 1988 Volume 31 Number 3 Communications of the ACM 307

Special Section

est, and then runs the entire audit as a topaction. It
communicates with all branches in parallel, using a
separate process and subaction for each call. As each
call returns, the total is incremented. The total is main-
tained in an atomic record to ensure proper synchroni-
zation of the accesses in the arms. Each arm obtains a
write lock on the total first to avoid deadlocks with
other arms that are running concurrently. If all calls
return normally, the topaction commits.

Even though the total handler signals no exceptions,
it is still possible for its call to terminate with an excep-
tion. ‘This can happen, for example, because it is impos-
sible to communicate with the handler’s guardian, even
after repeated tries. In such a case, the Argus system
will terminate the call automatically with the unavaila-
ble exception. If such an exception occurs, the coenter
is terminated immediately, aborting any unfinished
arms, and then the topaction aborts.

It is important for actions to be short since they hold
locks and therefore can interfere with other actions.
For this reason, all communication with the user is
done outside of actions for both transfers and audits. A
crash before the front end informs the user of the out-
come of a request can leave the user uncertain about
whether the request completed. All external actions, i.e.,
those that interact with the external environment, have
this problem. The problem cannot be solved by moving
the interaction inside the action, because then the ac-
tion rnight not commit after telling the user the transfer
had completed.

The system as shown so far is static: e.g., no provision
is made for adding new branches. The registry guardian
can be used to support dynamic reconfiguration of the
system. The front end could carry out a dialog with the
user and then interact with the registry to enter the
new information. For example, to add a new branch,
the user could define an appropriate code for the
branch, or the registry could do this. The user would
need to indicate where the new branch guardian
should reside; Argus provides a built-in datatype, node,
for this purpose. The registry would then create the
new guardian by the statement:

b: branch := branch$create(c) @ n

This will create a new branch at the node indicated by
n, and then run the creator in this new guardian, pass-
ing it code c as an argument. The new guardian re-
turned by create can then be stored in the registry’s
tables.

To run in such a dynamic system, the front end must
be prepared for information in its bt table to be out of
date. For example, when the get-brunch procedure
looks up an account number, it might discover an un-
known code. In this case, it would read the table from
the registry and try again. Having only a single registry
would be an availability bottleneck in the dynamic sys-
tem and can be avoided by replicating the registry.

IMPLEMENTATION OF ACTIONS
The current implementation of Argus is a prototype
running on MicroVAX-11s under Unix version Ultrix 1.2.
The machines communicate over a 10 megabit/second
ethernet. Each MicroVax has either 9 or 13 megabytes
of primary memory and two RD.53 disks, each with 70
megabytes of disk storage. One of the disks is used for
our stable storage.

The implementation was done with limited man-
power, and we have not optimized it the way we would
if it were a production system. For example, for the
most part we have avoided making modifications to the
Unix kernel. Nevertheless, we designed the implemen-
tation carefully and thus avoided certain pitfalls. An
area of particular interest is the way we implement
actions, because this is where Argus differs most from
other implemented systems. Our experience indicates
that nested actions do not require significant overhead.
Top-level actions do have a cost, but this cost can be
minimized by careful design. We will now sketch our
implementation of actions and give some data on the
performance of our system; a more thorough discussion
appears in [12].

Our implementation of actions is designed to avoid
unnecessary delay of user computations. There are two
main forms of delay to avoid: extra communication,
and writes to stable storage. In general, communication
delays are avoided by piggybacking information on
messages that must be exchanged anyway, and by com-
municating information in background mode. When
multiple guardians participate in an action, delay is
minimized by performing stable storage writes concur-
rently at all guardians. In addition, most writing to sta-
ble storage can take place in background mode. One
place where delays cannot be avoided is when top-
actions commit; at this point it is necessary to commu-
nicate with the guardians where descendants ran, and
some writing to stable storage is required.

The activity that takes place when various events
occur, such as creating and terminating actions, is sum-
marized in Table I. Creating top- and subactions is done
locally at the guardian where the subaction runs. (Re-
call that each action runs entirely at a single guardian.)
All that is needed is to create a unique identifier for the
new action and to initialize some data structures associ-
ated with it. For example, we keep track of all guardi-
ans visited by committed descendants of an action in
the plist, which becomes the list of participants that is
used during two-phase commit. Initially, the plist for a
sub- or topaction contains one guardian, the creating
guardian.

When a handler subaction commits, its guardian re-
members the local atomic objects it has lock.ed. (As
mentioned earlier, a handler subaction is cr’eated for
running the processing of a handler call.) The reply
message indicates that the action committed and also
contains other information such as the subaction’s plist.
The guardians in its plist are added to its parent’s plist
when the reply message arrives.

308 Communications of the ACM March 1988 Volume 31 Number 3

Special Section

frontend = guardian is create

btable = atomic-array[binfo]
binfo = atomic-record[code: string, branch: branch]
account-number = atomic-record[code: string, num: int]
intcell = atomic-record[val: int]

stable central: registry % maintains relationship between codes and branches
stable dew device-info
bt: btable % relates codes to branches; this is volatile

recover
bt := central.get_branchjnfo()
end

background

% the background code listens to the various devices using a separate process for each one
% and carries out commands of its users

% for a transfer it does the following
% find out accounts and amounts from user and store in local variables to, from and amt
enter topaction

t: branch := get-branch(to)
f: branch := get-branch(from)
coenter

action f.withdraw(from, amt)
action t.deposit(to, amt)
end except others: abort exit problem end % all exceptions cause abort of topaction

end % topaction
except when problem: % tell user that transfer failed

end % except

% tell user that transfer succeeded

% for an audit it does the following:
blist: array[branch] := % put in branches of interest to user
total: intcell := intcell${val: 0) % initialize total
enter topaction

eoenter

action foreach b: branch in array[branch]$elements(blist)
t: int := b.total()
intcell$write-lock(tota1)
tota1.va1 := total.val + t

end except others: abort exit problem end % all exceptions cause abort
end except when problem: % tell user that audit cannot be done now

end

% tell user the result

end % background

create = creator (c: registry, d: device-info) returns (frontend)
central := c
dev := d
bt := central.get_branch-info() 9’ g t o e in ormation about branches from central f
return (self)

end create

get-branch = proc (a: account-number) returns (branch) signals (no-such-account)
for b: binfo in btable$elements(bt) do

if b.code = axode then return (b.branch) end
end

signal no-such-account
end get-branch

end frontend

March 1988 Volume 31 Number 3

The front-end guardian has no handlers.
It interacts with clerks and other users,
and also with cash vending machines, in
the background code. It makes handler
calls to branch guardians to carry out
requests and uses topactions to ensure
that requests happen atomically. The
pressing of transfers and audits is
shown.

FIGURE 7. A Portion of the Front-end
Guardian

Communications of the ACM 309

Special Section

When any other subaction commits, its locks and
versions for objects belonging to its guardian are propa-
gated to its parent, but locks and versions for objects
belonging to other guardians are not propagated, since
this would require communication. (It would have ac-
quired these locks and versions from its committed
handler action descendants.) Similarly, aborting a
topaction or a subaction releases its locks and versions
for local objects but not for nonlocal objects. In addi-
tion, in this case we send abort messages to the appro-
priate guardians in background mode. We do not guar-
antee that such messages will arrive, although they do
arrive with high probability.

Since abort messages may not arrive, and messages
about commits of subaction ancestors are not even sent,
the guardian where the locked object resides may have
out-of-date information. For example, an object it has
marked as locked may actually be unlocked. To deter-
mine the true state of such an object, it can send a
query message to some other guardian. Query messages
are di.rected to guardians where ancestors of the action
currently holding the lock ran. They are typically sent
when some other action needs the lock. They relieve us
of the need to guarantee delivery of abort messages and
of the need to send any messages about commits of
ancestors.

TABLE I. Running Actions

Event Activltv

Creating an action

Aborting a top- or
subaction

Committing a
subaction

Committing a
topaction

Create action identifier, and initialize
action state; all work is local to the
action’s guardian

Discard locks and versions locally;
send abort messages to guardians
of committed descendants in
background

Propagate locks and versions locally

Carry out two-phase commit unless
the action has no nonlocal
descendants

Most iaction events require only local processing. Each action runs at
a single guardian. That guardian creates it (by creating its identifier
and initializing some associated state) and handles its termination.
Committing or aborting a subaction, or aborting a topaction, is done
entirely at the guardian, although, if the action aborts, abort mes-
sages are sent in background to notify other guardians. Commits of
topacl:ions require the two-phase commit protocol to be carried out
unless the topaction has no nonlocal committed descendants.

When a topaction commits, the system carries out the
two-phase commit protocol [3] to ensure the action
either commits everywhere or aborts everywhere. The
participants in the protocol are the guardians in the
plist; the coordinator is the topaction’s guardian. In
Phase One the coordinator sends prepare messages to
all participants. Each participant records the versions
written by (descendants of) the preparing action on sta-
ble storage, writes a prepare record to stable storage, and
then rlesponds “ok.” (To speed up two-phase commit,

versions can be written to stable storage while in back-
ground mode at the participants, although this optimi-
zation has not yet been implemented.) The participant
also releases all read locks held by the action at this
point. If the participant is unable to record the neces-
sary information because it crashed after the subaction
ran at it, it responds “refused.”

If all participants respond “ok,” then the coordinator
writes a committed record to stable storage and enters
Phase Two by notifying all participants to commit the
action. (We optimize to avoid Phase Two for read-only
actions.) The rest of this phase is carried out in back-
ground mode. When a participant receives a “commit”
message, it records the commit on stable storage, in-
stalls the action’s versions and releases its locks, and
then notifies the coordinator that it is done. ‘The coordi-
nator continues to re-send commit messages to partici-
pants until it gets this acknowledgement. Thus we
guarantee that commit messages are delivered eventu-
ally; the committed record contains the plist so that this
promise can be kept even if the coordinator (crashes.
When all participants acknowledge, the coordinator
records this fact on stable storage, and the second phase
is over.

If some participant responds “refused” or d.oes not
respond, the coordinator aborts the transaction and
sends abort messages to the participants. When a partic-
ipant receives an abort message, it records it on stable
storage and discards the action’s versions and locks.
The abort messages are sent in background mode and
we do not guarantee delivery. As discussed earlier, par-
ticipants can send query messages to recover from lost
abort messages.

The minimal delay of user code for committing a
topaction is effectively one network round-trip (the
“prepare” and “ok” messages) plus two write:3 to stable
storage (the prepare and committed records). The mini-
mal delay occurs when all versions at participants have
already been written to stable storage before the pre-
pare message arrives.

Our method of implementing actions has proved
quite satisfactory. Piggybacking action information in
messages and being lazy about propagating information
about aborts and commits of subactions are both good
ideas. Subactions are cheap as a result. The use of
queries as a backup mechanism is also good because it
eliminates the need for reliable communication in
many cases. Queries place the responsibility for making
sure information is communicated on the guardian that
needs to know what happened. As a result, other
guardians need not remember events such as aborts of
actions.

Some performance information is given in Table II,
although a more thorough analysis can be found in
[12]. All data in the figure are in milliseconds. The data
show that our costs are dominated by communication
and disk writes. Committing and aborting subactions,
and also committing a local, read-only topacbon, are
inexpensive because neither communication nor writ-
ing to disk is required. Committing a local topaction

310 Communications of the ACM March 1988 Volume 3’1 Number 3

Special Section

that modified an object requires writing to disk but not
two-phase commit.’ A read-only topaction with one
participant does one handler call to a remote guardian,
and then later does Phase One of two-phase commit; no
writing to disk is required. (Handler calls take approxi-
mately 17.5 milliseconds.) An updating topaction re-
quires writing to disk and both phases of two-phase
commit.

TABLE II. Data on Action Commits and Aborts

Read-only Update

Subaction commits 0.60 0.81
Subaction aborts 0.65 0.85
Local topaction commits 0.63 17.50
Topaction with one participant commits 36.50 82.00

All data are in milliseconds. Subactions are cheap because all pro-
cessing is local. Local topaction commit requires no communication;
for a read-only action, the cost is equivalent to a read-only subaction.
For an update action, however, one record must be written to stable
storage. A topaction with a participant makes a handier call and later
does communication during two-phase commit. Only one phase of
communication is needed for the read-only transaction. For the updat-
ing transaction, two phases of communication and four writes are
needed, although most of the second phase, including the second
pair of writes, takes place in background mode.

Our current implementation is a prototype that was
developed primarily to test the soundness of our ideas
and to provide a testbed for experimentation, and many
obvious optimizations have not been done. Under these
circumstances, we consider our performance quite sat-
isfactory and believe it indicates the practicality of sys-
tems like ours. These conclusions are borne out by data
from other projects such as Camelot [lg].

CONCLUSIONS
Argus is intended to support distributed implementa-
tions of systems that maintain on-line state for users.
Guardians can be used to control where data and pro-
cessing are located, and they are resilient, so informa-
tion is not lost in crashes. Also, they support dynamic
reconfiguration since they can be created, moved, and
destroyed dynamically and handler calls are location
independent. Atomic actions allow online information
to be maintained consistently in spite of failures and
concurrency and make it relatively easy to improve
system availability by replicating information.

Argus is unique because it provides atomic actions
within a programming language. Several other lan-
guages, e.g., SR [l], Ada [8], and Mesa [16], support
distributed computing but not transactions. In addition,
a new language [7] is being developed that is similar to
Argus. Transactions arose in database systems [3],
where they are made available to users via the data
base but not for general objects as in Argus. There are
also a number of systems that provide operating system
support for actions but not language support [18, 191.

‘A raw disk write without a seek requires approximately 17 ms: we do not
implement true stable storage (which requires two sequential writes) at
present.

Argus has been running for about two years, al-
though early in this period the implementation was
quite incomplete. We have used it to implement a
number of distributed programs, including the follow-
ing:

1. A preliminary version of a library in which infor-
mation about programs is stored. The library allows
Argus guardians and other modules to be developed
by different people at different locations while still
enforcing compile-time type checking of module in-
terfaces. Also, it provides stable storage for program
code.

2. The catalog that allows run-time lookup of guardi-
ans and handlers. For example, a program could
use the catalog to find a printer spooler for a print-
ing device.

3. A distributed editor [5] that allows users at differ-
ent locations to collaborate on the same document.

4. A mail repository, which provides mailboxes for
storing and retrieving mail for users. The mail repo-
sitory uses replication to provide high availability,
and is also designed to permit a wide range of re-
configurations.

5. A program to compute Hailstone numbers (see [6]).
6. A distributed game that allows users at different

machines to take part in the same game.

Our Argus experience to date indicates that it is rela-
tively easy to write distributed programs, even sophisti-
cated ones that replicate information to increase avail-
ability and that are able to reconfigure themselves
dynamically. The system is helpful because atomic
actions are an important tool both for understanding
what a system should do and for implementing it cor-
rectly.

It is important to understand that atomic actions do
not constrain the kinds of systems that can be built. It
is up to the person defining a system to decide how
quickly effects of computations must propagate to other
parts of the system, and to decide how much informa-
tion can be lost in case of a crash. Actions can be used
to implement a spectrum of requirements. If quick
propagation and no lost information are required, the
cost of actions will be greater than what is needed to
support weaker requirements.

For example, in the banking system shown earlier,
deposits and withdrawals are visible to other users of
the system as soon as their topaction commits. Suppose
instead that the designer of the banking system decides
that deposits should have a delayed effect. This could
be implemented by having the front end (see Figure 7)
record the deposit in local stable storage and complete
it at night, for instance.

Another example of weak constraints is the program
that computes Hailstone numbers [6]. This program
uses different guardians to do parallel searches for
numbers in separate ranges. It has a stable state so that
the results of past computations will not be entirely lost
in crashes. It uses atomic actions to take periodic
checkpoints and to coordinate interactions between the

March 1988 Volume 31 Number 3 Communications of the ACM 311

Special Section

searching guardians and a front end that is responsible
for assigning ranges to guardians. Checkpoint actions
run every 10 minutes; coordination actions about once
a day. Actions made these parts of the program very
easy to implement, yet their impact on performance is
negligible.

Argus does not free the programmer from concern
with (details of concurrency. The programmer must
think about deadlocks and starvation and implement
the code to avoid them when possible. Often deadlocks
are program errors, but this is not always true, e.g., a
concu.rrent transfer and audit could deadlock. The Ar-
gus implementation does not detect deadlocks at pres-
ent, but we intend to add such detection capabilities
shortly.

Programmers must also think carefully about the effi-
ciency of data representations. Both the amount of writ-
ing to stable storage and the degree of concurrency are
of interest. User-defined atomic types can be used
where necessary to improve performance and remove
some deadlocks. User-defined atomic types are compli-
cated to implement, but are not needed very often.

Although we are quite happy with Argus, there are
areas where we think more work is needed. Our user-
defined atomic type mechanism, for example, is more
complicated than we would like. We need better sup-
port for reconfiguration than is available at present.
Also, sometimes it would be useful for a guardian to
explicitly run code when an ancestor of some action
that ran there commits or aborts.

For now, however, we plan to leave Argus essentially
unchanged and to use it to build a number of additional
applications, such as an object repository. Some of these
applications will be used by a large community of
users. To run them effectively, we intend to improve
the performance of the implementation in some areas.
Communications is one area where we believe we can
reduce our costs substantially by implementing some
special Unix kernel calls. We will do a full evaluation
of Argus when these applications are complete and in
use.

Acknowledgments. Argus is the result of a collabora-
tion with a number of other researchers, including
Maurice Herlihy, Paul Johnson, Robert Scheifler, and
Willia:m Weihl. The author is grateful to all those who
helped develop Argus, and also to the referees of earlier
drafts of this article.

REFERENCES
1. Andrew, G.R., and Olsson, R.A. The evolution of the SR language.

Distrib. Comput. I, 2 (Apr. 1986) Also Tech. Rep. 85-22, Univ. of
Ariz.ona, Tucson, Ariz., Oct. 1985.

2. Davies, C.T. Data processing spheres of control. IBM Syst. 1. 12, 2
(1976), 179-198.

3. Gray, J.N. Notes on data base operating systems. In Lecture Notes in
Computer Science. G. Goos and J. Hartmanis, Springer-Verlag, New
York, 1978. pp. 393-481.

4. Gray, J.N., Lorie, R.A., Putzolu, G.F., and Traiger, I.L. Granularity of
locks and degrees of consistency in a shared data base. In Modeling
in Data Base Management Systems. G.M. Nijssen, Ed. North Holland,
Amsterdam, 1976.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Greif. I., Seliger, R., and Weihl, W. A case study of CES: A distributed
collaborative editing system implemented in Argus. Programming Meth-
odology Group Memo 55. MIT Laboratory for Cornpurer Science,
Cambridge, Mass. Apr. 1987. To be published in IEEE Transactions
on Software Engineering.
Hayes, B. Computer recreations: On the ups and downs of hailstone
numbers. Scientif. Amer. 250, 1 (Jan. 1984).
Herlihy, M., and Wing, J. Avalon: Language support for reliable
distributed systems. In Proceedings of the I 7th International Sympo-
sium on Fault-Tolerant Computing, (Pittsburgh, Pa., Jul:~). IEEE, New
York, 1987.
Ichbiah, J., et al. Rationale for the design of the Ada programming
language. SIGPLAN Not. 14, 6 (June 1979).
Lampson, B.W., and Sturgis, H.E. Crash recovery in a distributed data
storage system. Tech. Rep. Xerox Research Center, Palo Alto, Calif.,
1979.
Liskov, B. Overview of the Argus language and system. Programming
Methodology Group Memo 40. M.I.T. Laboratory for Computer Sci-
ence, Cambridge, Mass., Feb. 1984.
Liskov, B., et al. Argus reference manual. Tech. Rep. M:!T/LCS/TR-
400. M.I.T. Laboratory for Computer Science, Cambridge, Mass.,
1987.
Liskov, B., Curtis, D., Johnson, P., and Scheifler, R. Implementation
of Argus. In Proceedings of the 21th Symposium on Operating Systems
Principles (Austin, Texas, Nov.). ACM, New York, 1987.
Liskov, B., and Guttag, J. Iteration abstraction. In Abstraction and
Specification in Program Developmenf. MIT Press, Cambridge, Mass.,
and McGraw Hill, New York, 1986.
Liskov, B., and Scheifler, R.W. Guardians and actions: Linguistic
support for robust, distributed programs. ACM Trans. Prog. Lang. Syst.
5, 3 (July 1983). 381-404.
Liskov, B., Snyder, A., Atkinson, R.R., and Schaffert. J.C. Abstraction
mechanisms in CLU. Commun. ACM 20,8 (Aug. 1977). 564-576.
Mitchell, J.G., Maybury, W.. and Sweet, R. Mesa language manunl
version 5.0. Tech. Rep. CSL-79-3. Xerox Research Center, Palo Alto,
Calif., 1979.
Moss, J.E.B. Nested transactions: An approach to reliable distributed
computing. MIT Press, Cambridge, Mass., 1985.
Mueller, E., Moore, J., and Popek, G. A nested transaction mecha-
nism for LOCUS. In Proceedings of the 9th ACM Symposium on Operat-
ing Systems Principles (Bretton Woods, N.H., Oct.). ACM, New York,
1983.
Spector, A.Z., et al. Camelot: A distributed transaction facility for Mach
and the Internet-An interim report. Tech. Rep. CMU-CS-87-129.
Dept. of Computer Science, Carnegie Mellon University, Pittsburgh,
Pa., 1987.
Weihl, W., and Liskov, B. Implementation of resilient, atomic data
types. ACM Trans. Prog. Lang. Syst. 7, 2 [Apr. 1985), 244-269.

CR Categories and Subject Descriptors: C.2.4 [Computler-Communi-
cation Networks]: Distributed Systems: C.4 [Performance of Systems]:
Reliability, Availability, and Serviceability; D.l.3 [Programming Tech-
niques]: Concurrent Programming; D.3.2 [Programming Languages]:
Language Classifications-very high level languages; Argus; D.3.3 [Pro-
gramming Languages]: Language Constructs--abstract dab? types; con-
current programming structures; D.4.1 [Operating Systems]: Process
Management-concurrency; deadlocks: synchronization; D.4.4 [Operating
Systems]: Communications Management-network communication; D.4.5
[Operating Systems]: Reliability: D.4.7 [Operating Systems]: Organiza-
tion and Design-distributed systems; HZ.4 [Database Management]: Sys-
tems

General Terms: Languages, Reliability

Author’s Present Address: Barbara Liskov, MIT, Laboratory for Corn.
puter Sciences, 545 Technology Square, Cambridge, MA 02139.

Permission to copy without fee all or part of this material :is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

312 Communications of the ACM March 1988 Volume 3:l Number 3

