
SPECIAL SECTION 

DISTRIBUTED PROGRAMMING IN ARGU!S 

Argus-a programming language and system developed to support the 
implementation and execution of distributed programs-provides 
mechanisms that help programmers cope with the special problems that 
arise in distributed programs, such as network partitions and crashes of 
remote nodes. 

BARBARA LISKOV 

Argus--a programming language and system-was de- 
veloped to support the implementation and execution 
of distributed programs. Distribution gives rise to some 
problems that do not exist in a centralized system, or 
that exist in a less complex form. For example, a cen- 
tralized system is either running or crashed, but a dis- 
tributed system may be partly running and partly 
crashed. The goal of Argus is to provide mechanisms 
that make it easier for programmers to cope with these 
problems. 

A program in Argus runs on one or more nodes. Each 
node is a computer with one or more processors and 
one or more levels of memory; we assume that the 
nodes .are heterogeneous, i.e., contain different kinds of 
processors. Nodes can communicate with one another 
only by exchanging messages over the network. We 
make no assumptions about the network topology; for 
example, the network might be a local area net, or it 
might consist of a number of local area nets connected 
by a long haul net. In such a network, it is usually 
much faster for a node to access local information than 
information residing in some other node. 

Distributed programs must cope with failures of the 
underlying hardware. Both the nodes and the network 
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may fail. The only way nodes fail is by crashing; we 
assume it is impossible for a failed node to continue 
sending messages on the network. The network may 
lose messages or delay their delivery or deliver them 
out of order. It may also partition, so that some nodes 
are unable to communicate with other nodes for some 
period of time. In addition, the network may corrupt 
messages, but we assume the corruption is detectable; 
this assumption is satisfiable with arbitrarily high 
probability by including redundant information in 
messages. 

Argus is intended to be used primarily for Iprograms 
that maintain online data for long periods of time, e.g., 
file systems, mail systems, and inventory control sys- 
tems. These programs have a number of requirements. 
Online information must remain consistent in spite of 
failures and also in spite of concurrent access. Programs 
must provide some level of service even when compo- 
nents fail; for example, a program may replicate infor- 
mation at several nodes so that individual failures can 
be masked. Programmers need to place information and 
processing at a particular node, both to do replication 
properly, and to improve performance, since informa- 
tion is cheaper to access if it is nearby. Finally, pro- 
grams may need to be reconfigured dynamically, by 
adding and removing components, or by moving a com- 
ponent from one node to another. To minimize the im- 
pact of moving components, the method used. to access 
information should be location independent. Argus was 
designed to satisfy these requirements. 
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A DISTRIBUTED BANK 
Imagine a large bank with branches in geographically 
distributed locations. Information about the bank’s ac- 
counts is stored online. To ensure that information 
about the accounts of a particular branch can be ac- 
cessed locally, the online database of accounts is also 
physically distributed, with information about the ac- 
counts of each branch stored at a computer or com- 
puters at that branch. Nevertheless, an important goal 
of the system is to support remote interactions with 
accounts. For example, a customer whose account is at 
branch A can make a deposit or withdrawal at branch 
B and have the amount be credited or debited to his 
account properly. Also, customers can make withdraw- 
als through cash vending machines located at numer- 
ous geographical locations. Furthermore, employees at 
the bank’s main office can access information at all 
branches for auditing and other management purposes. 

The configuration for the banking system is illus- 
trated in Figure 1. Each clerk interacts with a front-end 
program that runs on a minicomputer; a single mini 
may run the front-end programs for many clerks. Cash 
vending machines are connected to other programs at 
the minicomputers. Other users of the system also 
make use of programs running at the minicomputers. 
For example, bank personnel can produce monthly 
statements or run audits by interacting with such pro- 
grams. The minicomputers are connected via a network 
to the back-end computers where the account informa- 
tion resides. Every mini can communicate with every 
back end and vice versa. 

Front ends 

I I I I 
I I 

Sack ends 

The front ends &+e minioomputers that inter&t with clerks 
and other users, and control cash vending machines. The 
back ends are pM%inframe+ sach stores information about 
a&x&& for We branch and physically resides at that 
branch. The front ends interact with the back ends to carry 
out deposits and withdrawals. 

FIGURE 1. Configuration of the Banking System 

Each back end belongs to a particular branch of the 
bank: It resides at that branch and maintains a branch 
database containing information about accounts on site. 
Information stored for an account includes the account 
number, the name and address of the owner of the 
account, the balance, and other information such as a 
log of all transactions processed against the account. 

Example uses of the system are sketched in Figure 2, 
which shows two procedures that run at the front ends. 
The first is the audit procedure, which allows an ad- 
ministrator to compute the total assets for some subset 
of the branches; the identities of the branches of inter- 

est are passed in as an array. Audit sends a request for 
the current total to each branch of interest and sums 
the results. This program is object-oriented in the sense 
that the branch databases are objects that can be asked 
to perform requests such as deposits and withdrawals; 
the notation b.total means the request for the total 
should be sent to branch b. The work of doing a with- 
drawal, deposit, or computing a branch’s total, is ac- 
tually performed at the branches themselves. 

The transfer procedure is used by a clerk to carry out 
a transfer of funds from one account, referred to as 
from, to another account, the to account. This procedure 
either terminates normally, meaning that the transfer 
has been successful, or it signals an exception, insuffi- 
cient-funds, if the balance of the from account is smaller 
than the desired amount. The transfer is carried out by 
withdrawing the desired amount from from and deposit- 
ing it in to. First an attempt is made to withdraw the 
desired amount from the from account. This request is 
directed to from's branch. If there are sufficient funds in 
from, then the desired amount is deposited in the to 
account by directing a deposit request to the branch of 
the to account. The function get-branch computes an 
account’s branch given its account number. (We will 
discuss the details of how such a computation might be 
done later.) 

There are a number of problems with the procedures 
shown, two of which are the following: 

1. Concurrent activities may interfere with one another. 
For example, if a transfer runs concurrently with 
an audit, the audit might record a total that in- 
cludes the withdrawal but not the deposit. 

2. Various failures are not taken into account. For exam- 
ple, suppose the back end of the to account crashes 
immediately after the withdrawal from the from ac- 
count has been made. In this case we need to either 
put the money back into the from account or wait to 
complete the transfer until the to account’s back 
end recovers. 

ARGUS 
Argus was designed to support programs like the bank- 
ing system. To capture the object-oriented nature of 
such programs, it provides a special kind of object 
called a guardian, which implements a number of pro- 
cedures that are run in response to remote requests. To 
solve the problems of concurrency and failures we have 
mentioned, Argus allows computations to run as atomic 
transactions, or actions for short. We will describe guard- 
ians and actions here; however more information can 
be found in [ll, 12, 141. We will illustrate their uses by 
showing how a portion of the banking system can be 
implemented in Argus. 

Guardians 
An Argus guardian is a special kind of abstract object 
whose purpose is to encapsulate a resource or re- 
sources. It permits its resource to be accessed by means 
of special procedures, called handlers, that can be called 
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audit = proc (branches: array[branch]) returns (int) 
sum: int := 0 
for b: branch in elements(branches) do 

sum := sum + b.total( ) 
end 

return (sum) 
end audit 

transfer = proc (from, to: account-number, amt: int) signals (insufficient-funds) 
f: branch := get-branch(from) 
t: branch := get-branch(to) 
f.withdraw(from, amt) 

except when insufficient-funds: signal insufficient-funds end 
t.deposit(to, amt) 
end transfer 

FIGURE 2. Two Front-end Procedures 

from other guardians. For example, a guardian might 
encapsulate some or all of the accounts at a branch, 
and provide handlers to open and close accounts, and 
to withdraw and deposit money in accounts. As an- 
other example, a guardian might control a printing de- 
vice, and provide a handler called en9 to allow files to 
be enqueued for printing and a handler called check- 
9ueue to check the state of the queue. A printer guard- 
ian is illustrated in Figure 3. 
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A guardian contains within it data objects that store 
the state of its resource. These objects are not accessi- 
ble outside the guardian; the only way they can be 
accessed or modified by another guardian is by calls of 
their guardian’s handlers. Handler calls are performed 
using a message-based communication mechanism. Ar- 
guments are passed by value, which ensure:; that a 
guardian’s objects cannot be accessed directly by any 
other guardian. The Argus implementation takes care 
of all details of constructing and sending messages. 

Inside a guardian are one or more processes. Pro- 
cesses can access all the guardian’s objects clirectly. 
Some processes carry out handler calls; whenever a 
handler call arrives at a guardian, a process is created 
to run the call. In addition there may be background 
processes that carry out tasks independently of particu- 
lar handler calls. For example, the en9 handler of the 
printer guardian might merely record information 
about the request; a background process would carry 
out the actual printing. 

Each guardian resides at a single node of i.he net- 
work, although it can change its node of residence. 
Several guardians can reside at the same node. A 
guardian is resilient to failures of its node. Some of its 
objects survive crashes; these are the stable objects, 
and they are written periodically to stable storage de- 
vices. With high probability, stable storage devices 
avoid loss of information in spite of failures [9]. The 
other objects in the guardian are volatile. For example, 
in the printer guardian, information about queued re- 
quests would be stored in stable objects so that requests 
are not lost in a crash. However, detailed information 
about the exact processing of the current request need 
not be stable, since the request can be redone after a 
crash. 

A crash destroys all volatile objects of a guardian and 
also all processes that were running at the time of the 

FIGURE 3. The Printer Guardian crash. After the crash, the Argus system restores the 
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guardian’s code and recovers the stable objects from 
stable storage. Then it creates a special recovery pro- 
cess, which runs code defined by the guardian to ini- 
tialize the volatile objects. When this process finishes, 
the guardian is ready to accept new handler calls and 
to run background processes. Since the volatile state 
does not survive crashes, it should be used only to 
record redundant information (e.g., an index into a 
database) or information that can be discarded in a 
crash (e.g., current printing information in the printer 
spooler). 

A guardian can create other guardians dynamically 
and (the names of) guardians and handlers can be sent 
as arguments of handler calls. The creator specifies the 
node at which the new guardian is to reside; in this 
way individual guardians can be placed at the most 
advantageous locations. Handler calls are location inde- 
pendent, so that one guardian can use another without 
knowing its location. 

A distributed program in Argus is composed of a 
number of guardians residing at a number of nodes. For 
example, in the banking system there might be a guard- 
ian running at the back-end computer of each branch 
to carry out requests on the accounts of that branch. In 
addition, there would be a guardian for each input 
agent. This guardian would use a background process 
to listen for input, and then make handler calls to the 
appropriate branch guardians. The branch guardians 
would remember all crucial information about accounts 
in stable objects, so that we can be sure the effect of a 
withdrawal or deposit is not lost if the branch’s com- 
puter crashes. 

Guardians allow programs to be decomposed into 
units of tightly coupled data and processing. However, 
they do not solve the synchronization and failure prob- 
lems mentioned earlier. These problems are addressed 
by the second main mechanism in Argus, the atomic 
action. 

Actions 
Argus permits a computation such as a transfer or an 
audit to run as an atomic action [3]. Actions have pre- 
cisely the properties that are needed to solve the con- 
currency and failure problems. First, they are serializa- 

ble: the effect of running a group of actions is the same 
as if they were run sequentially in some order. Second, 
they are total: an action either completes entirely or 
it is guaranteed to have no visible effect. An action 
that completes is said to commit; otherwise, the 
action aborts. 

Recovery is done by using versions. The state of an 
unlocked object is stored in a base version. Modifica- 
tions to an object are not done to the base version 
directly. Instead a copy is made (in volatile memory), 
and modifications are done to the copy. If the action 
commits, the copy becomes the base version and is 
written to stable storage if the object is stable. If the 
action aborts, the copy is discarded. 

Serializability solves the concurrency problem. If a 
transfer action and an audit action are running concur- 
rently, then the effect must be as if they ran sequen- 
tially in some order. Either the audit will (effectively) 
run after the transfer is finished or before it starts; in 
either case it observes the proper total. It should be 
noted that serializability permits concurrent execution, 
but ensures that concurrent actions cannot interfere 
with one another. 

An example of an atomic array is shown in Figure 4. 
Like all atomic objects, the array has a header with 
components to record the current lock holders, a base 
version, and, if there is an action holding a write lock, a 
current version. Figure 4A shows the object in an initial, 
unlocked state. Figure 4B shows what happens when 
the object is accessed by action A. Since A is modifying 
the object, a write lock is acquired on its behalf. This is 
possible because no other action has a lock on the ob- 
ject. The current version is created by copying the base 
version, and A’s modification is made to the current 
version. Now A may continue to use the object. Both 
reading and writing are permitted since it already has a 
write lock. In either case, it uses the current version, so 
if it reads, it sees the changes it made previously. Fig- 
ure 4C shows a further modification by A. Figure 4D 
shows what happens if A commits; the current version 

Totality solves the failure problem. Either the trans- ’ Thus. we are using strict two-phase locking [3]. 

fer completes entirely, in which case both the from and 
to accounts contain the proper new balances, or it 
aborts and has no effect, in which case the accounts 
still have their old balances. 

To implement serializability, we need to synchronize 
the accesses made by actions to shared objects. To im- 
plement totality, we need some way to recover the old 
state of any objects modified by an action that aborts. 
In Argus, synchronization and recovery are done 
through special objects called atomic objects that, like 
ordinary objects, provide a set of operations to access 
and manipulate them. However, their operations syn- 
chronize the using actions and permit the effects of 
aborted actions to be undone. Argus provides a number 
of built-in types of atomic objects, such as atomic ar- 
rays and atomic records, which have the same kinds of 
operations as ordinary arrays and records, but pro- 
vide the additional support needed for atomicity. It 
also provides a mechanism for users to define new 
atomic data types that permit greater concurrency than 
the built-in atomic types. This mechanism is discussed 
in [ZO]. 

Synchronization for built-in atomic objects is done by 
means of locks. Every operation on an atomic object is 
classified as a reader or writer. An operation that modi- 
fies the object is a writer; other operations are readers. 
Readers automatically acquire a read lock on the object 
before accessing it; writers automatically acquire a 
write lock. These locks are held until the action com- 
pletes, i.e., commits or aborts.’ As is usual, there can be 
many concurrent holders of a read lock, but if an action 
holds a write lock on some object, then no other con- 
current action can hold locks on that object. 
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Lock Base Current Lock Base Current 
A/W 

3 5 35 32 

(A) The Original State (B) A Performs x[2] := 2 

Lock Base Current Lock Base Current 
.A/W 

35 42 4 2 

(C) A Performs x[l] := 4 (D) A Commits 

Atomic objects implement synchronization and recovery for 
using actions. Locks are used for synchronization, and ver- 
sions for recovery. Initially, atomic array x is unlocked and has 
a single base version. Then action A acquires a write tack; et 
this point the current version is created by copying the base 
version. A’S modiication is done to the cutient version and 
so is a subsequent modification. If A commits, the current 
version is installed as the base version, and thelock is dis- 
carded; if A aborts, the object reverts to its initial state. 

FIGURE 4. Using Atomic Objects 

replaces the base version and A’s lock is discarded. If A 
aborts, its lock and version are discarded and the object 
reverts to its state in Figure 4A. 

Argus allows actions to be nested [Z, 171; thus an 
action can have one or more subactions. Nested actions 
are useful for the following two reasons: 

1. They allow concurrency within an action. An action 
can run many subactions in parallel. The sub- 
actions will synchronize with one another using the 
sa.me rules discussed earlier. For example, all calls 
to get the totals of the branches in the audit proce- 
dure be done in parallel. 

2. They can be used to establish checkpoints within an 
nction. If there are several ways to accomplish a 
task, one can be attempted as a subaction, and, if 
that aborts, another can be tried without having to 
abort the entire computation. 

Subactions require extensions to locking and version 
management; the complete rules are summarized in 
Figure 5. A subaction can acquire a read lock only if 
all holders of write locks are ancestors (i.e., itself, its 
parent, its parent’s parent, and so on). It can acquire a 
write lock only if all holders of read or write locks are 
ancestors, and in this case a new version is created for 
its use the first time it acquires a write lock. When a 
subaction aborts, its locks and versions are discarded 
and it.s parent action can continue from the state at 
which the subaction started. If a subaction commits, its 
locks and versions are inherited by its parent. If the 
parent aborts later, all modifications of the subaction 
will be undone. The rules make sense because Argus 
does not permit a parent to run concurrently with its 
children, nor does it permit any concurrency within an 
action except by creating subactions. For example, if a 

parent could run concurrently with a child, then the 
commit of the child could overwrite changes made by 
the parent since the child was created. The rules are 
implemented by maintaining a stack of versions, one 
for each active action that is modifying the object. 
When a subaction needs a new version, the version on 
top of the stack is copied and the result pushed on 
the stack. 

Argus runs every handler call as a subaction; we re- 
fer to this subaction as the cull action. This extra action 
ensures that calls have a zero or one semantics: If the 
call is successful and the called guardian returns a re- 
ply, we guarantee that the call happened exactly once. 
If it is not possible to complete the call, we a.bort the 
call action, thus guaranteeing that the call (effectively) 
did not happen at all. Running a call as a suhaction 
ensures that calls have a clean semantics, which is a 
non-trivial and desirable property in a distributed sys- 
tem. In addition, remote calls are often a handy place 
for checkpoints, since the inability to reach one guard- 
ian can sometimes be compensated for by calling a 
different guardian. 

Also, Argus runs the processing of a handler call at 
the called guardian as a subaction of the call action; we 
refer to this subaction as the handler action. The handler 
action gives a clean separation of the calling and called 
guardians and ensures that each individual action runs 
at just one guardian. It avoids anomalies such as an 
action that commits at one guardian and aborts at an- 
other. It allows the handler to commit or abort unilater- 
ally, without concern about what the calling guardian 
does, and similarly for the caller. 

A computation in Argus starts as a topaction, an ac- 
tion that has no parent, at some guardian. The compu- 
tation spreads to other guardians by means of handler 
calls. Execution of a handler call may cause some ob- 
jects at the handler’s guardian to be modified, and may 
in turn lead to further calls. Modifications made by 
these calls will be lost if a modified object’s guardian 

Acquiring a read lock. All holders of write locks on x must be 
ancestors of S. 

Acquiring ~1 write lock. All holders of read and write locks on 
x must be ancestors of S. If this is the first time A. has 
acquired a write lock on x, push a copy of the object on top 
of the version stack. 

Commit. S’s parent acquires S’s lock on x. If S holds a write 
lock on x, then S’s version (which is on top of the version 
stack) becomes S’s parent’s version. 

Abort. S’s lock and version (if any) are discarded. 

Here ‘ancestor” is transitive so that an action S is an ancestor 
of itself. Subactions can read and overwrite modifications 
made by ancestors, but not by unrelated actions. If a sub- 
action commits, its parent inherits its locks and versions; 
if it aborts, its locks and versions are discarded. 

FIGURE 5. Locking and Version Management Rules for Subaction 
S on Object x 
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crashes subsequently. When the topaction commits, it 
is essential that the modifications made to stable ob- 
jects be written to stable storage. If this is impossible, 
the topaction must abort. For example, this property is 
needed to guarantee that a transfer would modify both 
(or neither) of the from and to accounts. We ensure that 
committing is atomic by using the two-phase commit 
algorithm [3] as discussed further in the section on 
Implementation of Action. Two-phase commit is car- 
ried out only when topactions commit. 

THE BANKING SYSTEM IN ARGUS 
Figure 6 shows the definition of the guardian that runs 
at the back end at a branch. (Argus is an extension of 
the CLU language [15], and most of its syntax and se- 
mantics is taken from CLU.) The guardian definition 
begins with a header explaining the type of guardian 
being defined (branch in this case), and the names of the 
operations. There are two kinds of operations. Creators 
are used to create new guardians of the type, while 
handlers are the operations provided by the guardians 
once they are created. For some types of guardians it is 
useful to have several creators, but the branch guardian 
has a single creator named create. Once a branch guard- 
ian has been created, there are five handlers that can 
be used to communicate with it, open, close, deposit, 
withdraw, and total. 

The first definitions to appear inside a guardian defi- 
nition are type definitions and declarations of the vari- 
ables that make up the guardian’s state. In this case, the 
entire state of the guardian is stable, since all the vari- 
ables making up the state are declared to be stable. The 
state consists of three objects: a hash table providing 
access to accounts, the unique code for this branch, 
and the seed used to generate unique names for new 
accounts. 

Since deposits and withdrawals are likely to happen 
frequently, we want them to be fast. There are several 
issues to consider here. First, locating the account of 
interest must be fast. Second, concurrent deposits and 
withdrawals are quite likely, so we want to allow them 
when possible. Finally, we want to minimize the 
amount of writing to stable storage needed to record 
the results of the various operations. 

The representation used in the branch guardian 
achieves these goals. To find the account, we use the 
hash table, ht, which maps from integers (obtained from 
hashing the account number) to buckets. The name 
htable is used as an abbreviation for ht’s type (atomic- 
array[bucket]). A bucket is an atomic array, each of 
whose elements contains information about an account 
that hashes to that bucket. (The name bucket is used as 
an abbreviation for this type.) The information stored is 
the account number and the object that records the 
information about the account itself. An account num- 
ber is an atomic record with two components; the first 
component records the code for its branch, while the 
second is an integer that is unique for its branch. The 
only information stored for an account is its balance; in 
a real implementation, of course, much more informa- 

tion would be stored. The seed is stored as an atomic- 
record with a single integer component to ensure 
proper synchronization of concurrent opens. It should 
be noted that all the data structures used are atomic 
objects, which means that actions using the branch 
guardian will be synchronized properly and that their 
effects will be undone if they abort. Read and write 
locks on atomic objects are mostly acquired automati- 
cally when operations are invoked; e.g., the last state- 
ment of open acquires a read lock on ht (since it reads it 
to obtain the bucket of the new account) and a write 
lock on the bucket, since it modifies it to add the new 
account. 

Since there is no volatile state for this guardian, there 
is no need for any code to run during crash recovery. 
Furthermore, the guardian has no background code; it 
does all its work as part of carrying out the handler 
calls. Therefore, the remainder of the guardian consists 
of definitions of the creator and handlers, plus an inter- 
nal procedure, lookup. 

The creator, create, takes the branch’s code and the 
hash table size as arguments. It initializes the guardian 
state and then returns itself, i.e., the newly created 
guardian. The hash table is initialized to contain a full 
complement of empty buckets. The buckets can be 
empty initially because arrays in Argus grow (and 
shrink) dynamically. In the code of create, there are 
several illustrations of the notation used in Argus to 
name operations. For example, the notation htable$new 
names the new operation of the htable type. 

Total computes the sum of the balances of the ac- 
counts at the branch by using iterators [15]. An iterator 
is a special kind of operation that yields its results in- 
stead of returning. When the iterator yields, its result is 
assigned to the loop variable and the loop body is run. 
When the body completes, control resumes in the itera- 
tor so it can produce the next result; and when the 
iterator has no more results to yield, both it and the 
loop terminate. The elements iterator used here pro- 
duces all elements of the array from the first to the last. 
Total uses nested iterators. The iterator in the outer 
for statement produces every bucket iu the hash table. 
Each account in the bucket is accessed in the inner 
for statement. 

When total finishes, it commits and returns the com- 
puted sum. As mentioned, a handler runs as a subac- 
tion of the calling action. When a handler terminates, it 
can either commit or abort. The default is committing; 
in the absence of an explicit command to abort, the 
handler action will commit. An explicit abort is indi- 
cated by prefixing a return or signal with abort. All 
handlers in the example terminate by committing; in 
our experience, this is the most common case by far. 
Total acquires a read lock on the hash table and also 
on each bucket since the iterators read the hash table 
and the buckets. It also acquires a read lock on each 
account when it reads the balance. These locks are 
acquired by its parent when it commits. 

Open generates an account number for the new ac- 
count and advances the seed. It obtains a write lock on 
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This guardian implements the database 
for one branch. It maintains information 
about accounts in stable storage, and 
provides operations to open and close 
accounts, to withdraw and deposit 
money in accounts, and to provide the 
total of all accounts in the database. 

FIGURE 6. The Branch Guardian 

branch = guardian is create handles total, open, close, deposit, withdraw 

% type definitions 
htable = atomic-array[bucket] 
bucket = atomic-array[pair] 
pair = atomic-record[num: account-number, acct: ax-info] 
wet-info = atomic-record[bal: int] 
account-number = atomic-record[code: string, num: int] 
intcell = atomic-record[val: int] 

stable ht: htable % the table of accounts 
stable code: string % the code for the branch 
stable seed: intcell % the seed for generating new account numbers 

create = creator (c: string, size: int) returns (branch) 
code := c 
seed.val := 0 
ht := htable$new( ) 
for i: int in int$from-to(l, size) do 

htable$sddh(ht, bucket$new( )) 
end 

return (self) 
end create 

total = handler ( ) returns (int) 
sum: int := 0 
for b: bucket in htable$elements(ht) do 

for p: pair in bucket$elements(b) do 
sum := sum + p.acct.bal 
end 

end 
return (sum) 
end total 

open = handler ( ) returns (account number) 
intcell$write-lock(seed) 7’ g t o e a write lock on the seed 
a: account-number := account- number${code: code, num: seed.val} 
seed.val := seed.val + 1 
bucket$addh(ht[hash(a.num)], pair${num: a, acct: acct- info${bal: 0}}) 
return (a) 
end open 

close = handler (a: account-number) signals (no-such-acct, positive-balance) 
b: bucket := ht[hash(a.num)] 
for i: int in bucket$indexes(b) do 

if b[i].num -= a then continue end 
if b[i].acct.bal > 0 then signal positive-balance end 
b[i] := bucket$top(b) % store topmost element in place of closed account 
bucket$remh(b) % discard topmost element 
return 
end 

signal no-such-acct 
end close 

lookup = proc (a: account-number) returns (acct- info) signals (no-such--acct) 
for p: pair in bucket$elements(ht[hash(a.num)]) do 

if p.num = a then return (pacct) end 
end 

signal no-such-acct 
end lookup 

deposit = handler (a: account-number, amt: int) signals (no-such-acct, negative- 
if amt < 0 then signal negative-amount end 
ainfo: acct-info := lookup(a) resignal no-such-acct 
ainfabal := ainfabal + amt 
end deposit 

withdraw = handler (a: account- number, amt: int) 
signals (no such-acct, negative-amount, insufficient-funds) 

if amt < 0 then signal negative amount end 
ainfo: acct-info := lookup(a) res~gnal no-such-acct 
if ainfabal < amt then signal insufficient-funds end 
ainfabal := ainfabal - amt 
end withdraw 

end branch 
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the seed first to prevent deadlocks between concurrent 
opens. (The deadlock would occur if two opens each 
obtained a read lock on the seed; then neither would be 
able to obtain the write lock needed to increment the 
seed.) Open uses the hash procedure to compute the 
bucket of the new account (the code of this procedure 
is not shown in the example). Hush takes in the integer 
part of the account number, it returns an integer be- 
tween zero and the current size of the hash table. Open 
uses the array addh operation, which extends the array 
by one and stores the element passed to it as an argu- 
ment in the new position, to enter the new account in 
the accounts table. 

operations at that branch are delayed. Conflicts with 
deposits and withdrawals are necessary if the reported 
total is to be up to date. They could be avoided by 
having total return a sum that is slightly out of date. 
Again, a user-defined atomic type would help here. 

As implemented, most of the handlers can deadlock 
with other concurrent operations. For example, deposit 
can deadlock with other deposits or withdrawals on its 
account. The reason for the deadlock is that the opera- 
tion first obtains a read lock on the account and then 
later needs a write lock. Such a problem was avoided in 
the implementation of open by obtaining the write lock 
first; a similar solution can be used here. 

Close looks up the account by using the array indexes 
iterator to search the account’s bucket; this iterator re- 
turns all the legal indexes in the array. The other han- 
dlers make use of the internal procedure, lookup, to find 
the entry in the map for a particular account, or signal 
no-match if there is no such account. 

The implementation provides lots of concurrent ac- 
tivity. Concurrent deposits and withdrawals are permit- 
ted on different accounts. This concurrency is allowed 
because these operations acquire only read locks on the 
hash table and on the account’s bucket. A write lock is 
acquired only on the information stored for the account 
itself. 

No operations modify the hash table. This is impor- 
tant for performance since an operation that modified 
the hash table would conflict with all other operations. 
Also, the hash table is big, so we do not want to copy it 
to stable storage. Of course, it might be necessary to 
reorganize the guardian by changing the size of the 
hash table, or using a different method of hashing. Such 
a change could be installed by running a topaction, and 
copying the new hash table and buckets to stable stor- 
age when that topaction commits. 

The Front-end Guardian 

Close can run in parallel with calls of open, close, 
deposit, and withdraw, provided those other calls make 
use of different buckets. It prevents other calls that use 
the same bucket because it acquires a write lock on 
the bucket (when it assigns to the ith element of the 
bucket). Open is similar to close except that it also 
excludes other concurrent opens because each open 
acquires a write lock on the seed. This exclusion is not 
a problem if buckets are small and if accounts are 
opened rarely. If it is a problem, the state of the guard- 
ian can be implemented differently, possibly using 
mechanisms for user-defined atomic types, to reduce 
conflicts. For example, user-defined types could permit 
concurrent opens. 

A portion of the front-end guardian is shown in Figure 
7. This guardian has no handlers; all its work is done 
in the background code. When it is created, it passes 
information about the devices it is controlling, and also 
the identity of another guardian (of type registry) whose 
job is to remember how branch codes are related to 
branch guardians. This guardian provides various oper- 
ations to access its information, The device information 
and the identity of the registry guardian are kept in 
stable storage. To speed up processing of requests, the 
front end maintains in table bt a volatile copy of the 
information stored by the registry guardian. This copy 
is initialized by the creator and also by the recovery 
code after a crash. 

The amount of writing to stable storage is small in all 
cases. For deposit and withdraw, only the account itself 
must be written to stable storage. For open and close, 
the bucket of the opened or closed account must be 
written. The accounts contained by the buckets are not 
written, except for the newly opened account. Nothing 
need be written for total since it does not modify any- 
thing. 

The implementation of total is the main problem with 
the guardian. Total is slow because it needs to examine 
the balances of all accounts. It could be improved by 
keeping a running total, but then deposits and with- 
drawals would conflict with one another because each 
would need to change the total and thus would require 
a write lock. A user-defined atomic type would permit 
us to keep a running total without having conflicts be- 
tween deposits and withdrawals. 

A transfer is carried out by interacting with the user 
to determine the from and to accounts and the amount. 
A topaction is then created and the transfer is carried 
out within it. Get-branch is used to determine the 
branches of the two accounts; it extracts the code of an 
account and looks it up in the bt table. The calls to the 
two branches are done in parallel, each in its own 
subaction. If both calls return normally, the coenter 
completes, committing both its subactions, and then the 
topaction commits. If either call signals an exception, 
the coenter is halted immediately, aborting the other 
call if it has not yet completed, and then the topaction 
aborts. The topaction must be aborted in this case be- 
cause it is possible that the call in other arm (the one 
that did not raise an exception) terminated first, in 
which case the transfer is partly done. Aborting the 
topaction will undo the effects of the other call in this 
case. 

In addition, total conflicts with all other operations: To carry out an audit, the background code interacts 
until the topaction that called total completes, other with its user to determine what branches are of inter- 
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est, and then runs the entire audit as a topaction. It 
communicates with all branches in parallel, using a 
separate process and subaction for each call. As each 
call returns, the total is incremented. The total is main- 
tained in an atomic record to ensure proper synchroni- 
zation of the accesses in the arms. Each arm obtains a 
write lock on the total first to avoid deadlocks with 
other arms that are running concurrently. If all calls 
return normally, the topaction commits. 

Even though the total handler signals no exceptions, 
it is still possible for its call to terminate with an excep- 
tion. ‘This can happen, for example, because it is impos- 
sible to communicate with the handler’s guardian, even 
after repeated tries. In such a case, the Argus system 
will terminate the call automatically with the unavaila- 
ble exception. If such an exception occurs, the coenter 
is terminated immediately, aborting any unfinished 
arms, and then the topaction aborts. 

It is important for actions to be short since they hold 
locks and therefore can interfere with other actions. 
For this reason, all communication with the user is 
done outside of actions for both transfers and audits. A 
crash before the front end informs the user of the out- 
come of a request can leave the user uncertain about 
whether the request completed. All external actions, i.e., 
those that interact with the external environment, have 
this problem. The problem cannot be solved by moving 
the interaction inside the action, because then the ac- 
tion rnight not commit after telling the user the transfer 
had completed. 

The system as shown so far is static: e.g., no provision 
is made for adding new branches. The registry guardian 
can be used to support dynamic reconfiguration of the 
system. The front end could carry out a dialog with the 
user and then interact with the registry to enter the 
new information. For example, to add a new branch, 
the user could define an appropriate code for the 
branch, or the registry could do this. The user would 
need to indicate where the new branch guardian 
should reside; Argus provides a built-in datatype, node, 
for this purpose. The registry would then create the 
new guardian by the statement: 

b: branch := branch$create(c) @ n 

This will create a new branch at the node indicated by 
n, and then run the creator in this new guardian, pass- 
ing it code c as an argument. The new guardian re- 
turned by create can then be stored in the registry’s 
tables. 

To run in such a dynamic system, the front end must 
be prepared for information in its bt table to be out of 
date. For example, when the get-brunch procedure 
looks up an account number, it might discover an un- 
known code. In this case, it would read the table from 
the registry and try again. Having only a single registry 
would be an availability bottleneck in the dynamic sys- 
tem and can be avoided by replicating the registry. 

IMPLEMENTATION OF ACTIONS 
The current implementation of Argus is a prototype 
running on MicroVAX-11s under Unix version Ultrix 1.2. 
The machines communicate over a 10 megabit/second 
ethernet. Each MicroVax has either 9 or 13 megabytes 
of primary memory and two RD.53 disks, each with 70 
megabytes of disk storage. One of the disks is used for 
our stable storage. 

The implementation was done with limited man- 
power, and we have not optimized it the way we would 
if it were a production system. For example, for the 
most part we have avoided making modifications to the 
Unix kernel. Nevertheless, we designed the implemen- 
tation carefully and thus avoided certain pitfalls. An 
area of particular interest is the way we implement 
actions, because this is where Argus differs most from 
other implemented systems. Our experience indicates 
that nested actions do not require significant overhead. 
Top-level actions do have a cost, but this cost can be 
minimized by careful design. We will now sketch our 
implementation of actions and give some data on the 
performance of our system; a more thorough discussion 
appears in [12]. 

Our implementation of actions is designed to avoid 
unnecessary delay of user computations. There are two 
main forms of delay to avoid: extra communication, 
and writes to stable storage. In general, communication 
delays are avoided by piggybacking information on 
messages that must be exchanged anyway, and by com- 
municating information in background mode. When 
multiple guardians participate in an action, delay is 
minimized by performing stable storage writes concur- 
rently at all guardians. In addition, most writing to sta- 
ble storage can take place in background mode. One 
place where delays cannot be avoided is when top- 
actions commit; at this point it is necessary to commu- 
nicate with the guardians where descendants ran, and 
some writing to stable storage is required. 

The activity that takes place when various events 
occur, such as creating and terminating actions, is sum- 
marized in Table I. Creating top- and subactions is done 
locally at the guardian where the subaction runs. (Re- 
call that each action runs entirely at a single guardian.) 
All that is needed is to create a unique identifier for the 
new action and to initialize some data structures associ- 
ated with it. For example, we keep track of all guardi- 
ans visited by committed descendants of an action in 
the plist, which becomes the list of participants that is 
used during two-phase commit. Initially, the plist for a 
sub- or topaction contains one guardian, the creating 
guardian. 

When a handler subaction commits, its guardian re- 
members the local atomic objects it has lock.ed. (As 
mentioned earlier, a handler subaction is cr’eated for 
running the processing of a handler call.) The reply 
message indicates that the action committed and also 
contains other information such as the subaction’s plist. 
The guardians in its plist are added to its parent’s plist 
when the reply message arrives. 
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frontend = guardian is create 

btable = atomic-array[binfo] 
binfo = atomic-record[code: string, branch: branch] 
account-number = atomic-record[code: string, num: int] 
intcell = atomic-record[val: int] 

stable central: registry % maintains relationship between codes and branches 
stable dew device-info 
bt: btable % relates codes to branches; this is volatile 

recover 
bt := central.get_branchjnfo( ) 
end 

background 

% the background code listens to the various devices using a separate process for each one 
% and carries out commands of its users 

% for a transfer it does the following 
% find out accounts and amounts from user and store in local variables to, from and amt 
enter topaction 

t: branch := get-branch(to) 
f: branch := get-branch(from) 
coenter 

action f.withdraw(from, amt) 
action t.deposit(to, amt) 
end except others: abort exit problem end % all exceptions cause abort of topaction 

end % topaction 
except when problem: % tell user that transfer failed 

end % except 

% tell user that transfer succeeded 

% for an audit it does the following: 
blist: array[branch] := % put in branches of interest to user 
total: intcell := intcell${val: 0) % initialize total 
enter topaction 

eoenter 

action foreach b: branch in array[branch]$elements(blist) 
t: int := b.total( ) 
intcell$write-lock(tota1) 
tota1.va1 := total.val + t 

end except others: abort exit problem end % all exceptions cause abort 
end except when problem: % tell user that audit cannot be done now 

end 

% tell user the result 

end % background 

create = creator (c: registry, d: device-info) returns (frontend) 
central := c 
dev := d 
bt := central.get_branch-info( ) 9’ g t o e in ormation about branches from central f 
return (self) 

end create 

get-branch = proc (a: account-number) returns (branch) signals (no-such-account) 
for b: binfo in btable$elements(bt) do 

if b.code = axode then return (b.branch) end 
end 

signal no-such-account 
end get-branch 

end frontend 
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The front-end guardian has no handlers. 
It interacts with clerks and other users, 
and also with cash vending machines, in 
the background code. It makes handler 
calls to branch guardians to carry out 
requests and uses topactions to ensure 
that requests happen atomically. The 
pressing of transfers and audits is 
shown. 

FIGURE 7. A Portion of the Front-end 
Guardian 
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When any other subaction commits, its locks and 
versions for objects belonging to its guardian are propa- 
gated to its parent, but locks and versions for objects 
belonging to other guardians are not propagated, since 
this would require communication. (It would have ac- 
quired these locks and versions from its committed 
handler action descendants.) Similarly, aborting a 
topaction or a subaction releases its locks and versions 
for local objects but not for nonlocal objects. In addi- 
tion, in this case we send abort messages to the appro- 
priate guardians in background mode. We do not guar- 
antee that such messages will arrive, although they do 
arrive with high probability. 

Since abort messages may not arrive, and messages 
about commits of subaction ancestors are not even sent, 
the guardian where the locked object resides may have 
out-of-date information. For example, an object it has 
marked as locked may actually be unlocked. To deter- 
mine the true state of such an object, it can send a 
query message to some other guardian. Query messages 
are di.rected to guardians where ancestors of the action 
currently holding the lock ran. They are typically sent 
when some other action needs the lock. They relieve us 
of the need to guarantee delivery of abort messages and 
of the need to send any messages about commits of 
ancestors. 

TABLE I. Running Actions 

Event Activltv 

Creating an action 

Aborting a top- or 
subaction 

Committing a 
subaction 

Committing a 
topaction 

Create action identifier, and initialize 
action state; all work is local to the 
action’s guardian 

Discard locks and versions locally; 
send abort messages to guardians 
of committed descendants in 
background 

Propagate locks and versions locally 

Carry out two-phase commit unless 
the action has no nonlocal 
descendants 

Most iaction events require only local processing. Each action runs at 
a single guardian. That guardian creates it (by creating its identifier 
and initializing some associated state) and handles its termination. 
Committing or aborting a subaction, or aborting a topaction, is done 
entirely at the guardian, although, if the action aborts, abort mes- 
sages are sent in background to notify other guardians. Commits of 
topacl:ions require the two-phase commit protocol to be carried out 
unless the topaction has no nonlocal committed descendants. 

When a topaction commits, the system carries out the 
two-phase commit protocol [3] to ensure the action 
either commits everywhere or aborts everywhere. The 
participants in the protocol are the guardians in the 
plist; the coordinator is the topaction’s guardian. In 
Phase One the coordinator sends prepare messages to 
all participants. Each participant records the versions 
written by (descendants of) the preparing action on sta- 
ble storage, writes a prepare record to stable storage, and 
then rlesponds “ok.” (To speed up two-phase commit, 

versions can be written to stable storage while in back- 
ground mode at the participants, although this optimi- 
zation has not yet been implemented.) The participant 
also releases all read locks held by the action at this 
point. If the participant is unable to record the neces- 
sary information because it crashed after the subaction 
ran at it, it responds “refused.” 

If all participants respond “ok,” then the coordinator 
writes a committed record to stable storage and enters 
Phase Two by notifying all participants to commit the 
action. (We optimize to avoid Phase Two for read-only 
actions.) The rest of this phase is carried out in back- 
ground mode. When a participant receives a “commit” 
message, it records the commit on stable storage, in- 
stalls the action’s versions and releases its locks, and 
then notifies the coordinator that it is done. ‘The coordi- 
nator continues to re-send commit messages to partici- 
pants until it gets this acknowledgement. Thus we 
guarantee that commit messages are delivered eventu- 
ally; the committed record contains the plist so that this 
promise can be kept even if the coordinator (crashes. 
When all participants acknowledge, the coordinator 
records this fact on stable storage, and the second phase 
is over. 

If some participant responds “refused” or d.oes not 
respond, the coordinator aborts the transaction and 
sends abort messages to the participants. When a partic- 
ipant receives an abort message, it records it on stable 
storage and discards the action’s versions and locks. 
The abort messages are sent in background mode and 
we do not guarantee delivery. As discussed earlier, par- 
ticipants can send query messages to recover from lost 
abort messages. 

The minimal delay of user code for committing a 
topaction is effectively one network round-trip (the 
“prepare” and “ok” messages) plus two write:3 to stable 
storage (the prepare and committed records). The mini- 
mal delay occurs when all versions at participants have 
already been written to stable storage before the pre- 
pare message arrives. 

Our method of implementing actions has proved 
quite satisfactory. Piggybacking action information in 
messages and being lazy about propagating information 
about aborts and commits of subactions are both good 
ideas. Subactions are cheap as a result. The use of 
queries as a backup mechanism is also good because it 
eliminates the need for reliable communication in 
many cases. Queries place the responsibility for making 
sure information is communicated on the guardian that 
needs to know what happened. As a result, other 
guardians need not remember events such as aborts of 
actions. 

Some performance information is given in Table II, 
although a more thorough analysis can be found in 
[12]. All data in the figure are in milliseconds. The data 
show that our costs are dominated by communication 
and disk writes. Committing and aborting subactions, 
and also committing a local, read-only topacbon, are 
inexpensive because neither communication nor writ- 
ing to disk is required. Committing a local topaction 

310 Communications of the ACM March 1988 Volume 3’1 Number 3 



Special Section 

that modified an object requires writing to disk but not 
two-phase commit.’ A read-only topaction with one 
participant does one handler call to a remote guardian, 
and then later does Phase One of two-phase commit; no 
writing to disk is required. (Handler calls take approxi- 
mately 17.5 milliseconds.) An updating topaction re- 
quires writing to disk and both phases of two-phase 
commit. 

TABLE II. Data on Action Commits and Aborts 

Read-only Update 

Subaction commits 0.60 0.81 
Subaction aborts 0.65 0.85 
Local topaction commits 0.63 17.50 
Topaction with one participant commits 36.50 82.00 

All data are in milliseconds. Subactions are cheap because all pro- 
cessing is local. Local topaction commit requires no communication; 
for a read-only action, the cost is equivalent to a read-only subaction. 
For an update action, however, one record must be written to stable 
storage. A topaction with a participant makes a handier call and later 
does communication during two-phase commit. Only one phase of 
communication is needed for the read-only transaction. For the updat- 
ing transaction, two phases of communication and four writes are 
needed, although most of the second phase, including the second 
pair of writes, takes place in background mode. 

Our current implementation is a prototype that was 
developed primarily to test the soundness of our ideas 
and to provide a testbed for experimentation, and many 
obvious optimizations have not been done. Under these 
circumstances, we consider our performance quite sat- 
isfactory and believe it indicates the practicality of sys- 
tems like ours. These conclusions are borne out by data 
from other projects such as Camelot [lg]. 

CONCLUSIONS 
Argus is intended to support distributed implementa- 
tions of systems that maintain on-line state for users. 
Guardians can be used to control where data and pro- 
cessing are located, and they are resilient, so informa- 
tion is not lost in crashes. Also, they support dynamic 
reconfiguration since they can be created, moved, and 
destroyed dynamically and handler calls are location 
independent. Atomic actions allow online information 
to be maintained consistently in spite of failures and 
concurrency and make it relatively easy to improve 
system availability by replicating information. 

Argus is unique because it provides atomic actions 
within a programming language. Several other lan- 
guages, e.g., SR [l], Ada [8], and Mesa [16], support 
distributed computing but not transactions. In addition, 
a new language [7] is being developed that is similar to 
Argus. Transactions arose in database systems [3], 
where they are made available to users via the data 
base but not for general objects as in Argus. There are 
also a number of systems that provide operating system 
support for actions but not language support [18, 191. 

‘A raw disk write without a seek requires approximately 17 ms: we do not 
implement true stable storage (which requires two sequential writes) at 
present. 

Argus has been running for about two years, al- 
though early in this period the implementation was 
quite incomplete. We have used it to implement a 
number of distributed programs, including the follow- 
ing: 

1. A preliminary version of a library in which infor- 
mation about programs is stored. The library allows 
Argus guardians and other modules to be developed 
by different people at different locations while still 
enforcing compile-time type checking of module in- 
terfaces. Also, it provides stable storage for program 
code. 

2. The catalog that allows run-time lookup of guardi- 
ans and handlers. For example, a program could 
use the catalog to find a printer spooler for a print- 
ing device. 

3. A distributed editor [5] that allows users at differ- 
ent locations to collaborate on the same document. 

4. A mail repository, which provides mailboxes for 
storing and retrieving mail for users. The mail repo- 
sitory uses replication to provide high availability, 
and is also designed to permit a wide range of re- 
configurations. 

5. A program to compute Hailstone numbers (see [6]). 
6. A distributed game that allows users at different 

machines to take part in the same game. 

Our Argus experience to date indicates that it is rela- 
tively easy to write distributed programs, even sophisti- 
cated ones that replicate information to increase avail- 
ability and that are able to reconfigure themselves 
dynamically. The system is helpful because atomic 
actions are an important tool both for understanding 
what a system should do and for implementing it cor- 
rectly. 

It is important to understand that atomic actions do 
not constrain the kinds of systems that can be built. It 
is up to the person defining a system to decide how 
quickly effects of computations must propagate to other 
parts of the system, and to decide how much informa- 
tion can be lost in case of a crash. Actions can be used 
to implement a spectrum of requirements. If quick 
propagation and no lost information are required, the 
cost of actions will be greater than what is needed to 
support weaker requirements. 

For example, in the banking system shown earlier, 
deposits and withdrawals are visible to other users of 
the system as soon as their topaction commits. Suppose 
instead that the designer of the banking system decides 
that deposits should have a delayed effect. This could 
be implemented by having the front end (see Figure 7) 
record the deposit in local stable storage and complete 
it at night, for instance. 

Another example of weak constraints is the program 
that computes Hailstone numbers [6]. This program 
uses different guardians to do parallel searches for 
numbers in separate ranges. It has a stable state so that 
the results of past computations will not be entirely lost 
in crashes. It uses atomic actions to take periodic 
checkpoints and to coordinate interactions between the 
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searching guardians and a front end that is responsible 
for assigning ranges to guardians. Checkpoint actions 
run every 10 minutes; coordination actions about once 
a day. Actions made these parts of the program very 
easy to implement, yet their impact on performance is 
negligible. 

Argus does not free the programmer from concern 
with (details of concurrency. The programmer must 
think about deadlocks and starvation and implement 
the code to avoid them when possible. Often deadlocks 
are program errors, but this is not always true, e.g., a 
concu.rrent transfer and audit could deadlock. The Ar- 
gus implementation does not detect deadlocks at pres- 
ent, but we intend to add such detection capabilities 
shortly. 

Programmers must also think carefully about the effi- 
ciency of data representations. Both the amount of writ- 
ing to stable storage and the degree of concurrency are 
of interest. User-defined atomic types can be used 
where necessary to improve performance and remove 
some deadlocks. User-defined atomic types are compli- 
cated to implement, but are not needed very often. 

Although we are quite happy with Argus, there are 
areas where we think more work is needed. Our user- 
defined atomic type mechanism, for example, is more 
complicated than we would like. We need better sup- 
port for reconfiguration than is available at present. 
Also, sometimes it would be useful for a guardian to 
explicitly run code when an ancestor of some action 
that ran there commits or aborts. 

For now, however, we plan to leave Argus essentially 
unchanged and to use it to build a number of additional 
applications, such as an object repository. Some of these 
applications will be used by a large community of 
users. To run them effectively, we intend to improve 
the performance of the implementation in some areas. 
Communications is one area where we believe we can 
reduce our costs substantially by implementing some 
special Unix kernel calls. We will do a full evaluation 
of Argus when these applications are complete and in 
use. 
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