
Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

Resolving File Conflicts in the Ficus File System�

Peter Reiher, John Heidemann, David Ratner, Greg Skinner, Gerald Popek
Department of Computer Science

University of California, Los Angeles

Abstract

Ficus is a flexible replication facility with optimistic
concurrency control designed to span a wide range
of scales and network environments. Optimistic con-
currency control provides rapid local access and high
availability of files for update in the face of disconnec-
tion, at the cost of occasional conflicts that are only
discovered when the system is reconnected. Ficus re-
liably detects all possible conflicts. Many conflicts
can be automatically resolved by recognizing the file
type and understanding the file’s semantics. This pa-
per describes experiences with conflicts and automatic
conflict resolution in Ficus. It presents data on the fre-
quency and character of conflicts in our environment.
This paper also describes how semantically knowl-
edgeable resolvers are designed and implemented, and
discusses our experiences with their strengths and lim-
itations. We conclude from our experience that opti-
mistic concurrency works well in at least one realistic
environment, conflicts are rare, and a large proportion
of those conflicts that do occur can be automatically
solved without human intervention.

1 Introduction

The value of file replication is widely recognized, but
replication of updatable files leads immediately to con-
sistency problems. File replicas can be partitioned
from each other for a variety of reasons, ranging from
failures of machines and networks to intentionally in-
termittent connections (e.g., connection via modem, or
replicas on portable machines that are not always at-
tached to a network). If no efforts are taken, partition-

�This work was sponsored by the Defense Advanced Research
Projects Agency under contract N00174-91-C-0107. Gerald Popek
is also affiliated with Locus Computing Corporation.

The authors can be reached at 4760 Boelter Hall, UCLA, Los An-
geles, CA, 90024, or by electronic mail to ficus@cs.ucla.edu.

ing can permit conflicting updates to different replicas
of a file. Much of the value of replication is based on
all replicas being identical, so inconsistent updates are
a potentially serious problem.

Early solutions to the problem relied on various con-
servative algorithms that prevented conflicting updates
to different replicas [1]. These solutions used a wide
variety of mechanisms, but their common theme is that
they refuse updates that have any possibilityof causing
conflicting updates. These solutions trade availability
for consistency. When consistency of replicas is of vi-
tal importance, conservative solutions are preferable.

However, experience with file access by typical users
has shown that many files are only accessed by a single
user [10]. Of those that are shared by multiple users,
few are updated by more than one user. In such en-
vironments, a mechanism that prevents one user from
updating a file in favor of preserving the update ability
of other users who might never generate an update is se-
riously flawed. Conservative replication mechanisms
exhibit this flaw.

Optimistic replication mechanisms do not. They al-
low any replica of a file to be updated at any time.
This choice ensures that users who need to update a
file can do so when any replica is available. However,
optimistic mechanisms gain this availability by trad-
ing off consistency. Since any replica can be updated,
two non-communicating replicas can be changed in-
dependently, leading to conflicts, i.e., different replica
contents. To maintain consistency, a system with op-
timistic replication must detect and recover from such
conflicts.

The improved availability of optimistic systems
must be weighed against the frequency and cost of re-
covering from conflicts. A hypothesis of this paper is
that the cost of optimism is low in many environments.

To test this hypothesis, this paper reports conflict
resolution experiences with Ficus, an optimistic file
system developed at UCLA [4]. Ficus has supported

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

the primary computing needs of over a dozen users at
UCLA for more than three years.

Ficus has a general architecture for dealing with file
conflicts. Conflicts are automatically detected and ex-
amined to determine if they can also be resolved au-
tomatically. Special programs called resolvers handle
conflicts that can be dealt with automatically.

Ficus is able to resolve almost all conflicts for a par-
ticularly important class of files—directories. Ficus
supports a Unix-style directory system; the semantics
of Unix directories provide that almost every conflict
that can occur in them can be automatically resolved.
Directory conflicts could be resolved by submitting
them to a resolver that implements the algorithms nec-
essary to resolve their conflicts, but the integrity of the
Unix file system is so closely linked to its directories
that we have chosen to put the algorithms into Ficus
itself.

We have instrumented the Ficus system to keep
track of the number of conflicts generated and how
many conflicts were resolved automatically. This pa-
per presents the statistics gathered, which support the
contention that, for important patterns of usage, the fre-
quency of file conflicts is low enough that optimistic
replication is highly attractive. Further, the statistics
demonstrate that the use of automatic resolvers is both
practical and important to reduce the number of con-
flicts reported to users.

The next section presents an overview of the Ficus
file system. We begin there with an example of how
a conflict can arise in an optimistic replication system,
discuss the different kinds of conflicts that can arise,
briefly describe how conflicts are detected, and cover
other relevant aspects of Ficus. Section 3 describes
the Ficus resolution architecture. It discusses the au-
tomated directory conflict resolution mechanisms in
Ficus and describes how Ficus handles other types of
conflicts. Section 4 discusses Ficus conflict resolver
programs. It covers their interface and the various ap-
proaches used to resolve conflicts for different types
of files. Section 5 presents conflict data gathered from
Ficus; Section 6 discusses some related research. We
close with a discussion of future work and some con-
clusions.

2 Ficus Overview

Ficus is a distributed file system utilizing optimistic
replication [16, 4]. The default synchronization policy
provides single copy availability; so long as any copy
of a data item is accessible, it may be updated. Once
a single replica has been updated, the system makes a
best effort to notify all accessible replicas that a new
version of the file exists via update propagation. Those

replicas then pull over the new data. Ficus guarantees
no lost update semantics despite this optimistic con-
currency control. Conflicting updates are guaranteed
to be detected, allowing recovery after the fact.

Ficus groups subtrees of files into volumes. A vol-
ume can be replicated multiple times. A background
process known as reconciliation runs on behalf of each
volume replica after each reboot and periodically dur-
ing normal operation. It compares all files and directo-
ries of the local volume replica with a remote replica of
the volume, pulling over missed updates and detecting
concurrent update conflicts.

Several types of conflicts are possible. They include:

� Update/update conflicts

� Name conflicts

� Remove/update conflicts

The remainder of this section will discuss these types
of conflicts in more detail. The next section describes
how we manage these conflicts.

Since single copy availability permits any replica to
be updated, even a simple partitioning of a two-replica
file can result in a conflict. Figure 1 illustrates this
situation. File foo has two replicas in Figure 1a, with
replica 1 at site A and replica 2 at site B. If sites A
and B are partitioned, as Figure 1b shows, updates to
both replicas are accepted. Then, when the partition
is merged, as shown in figure 1c, file foo exists in two
versions. This is an update/update conflict.

Directories provide a special case of update/update
conflicts. Partitioned creation of independent files in
the same directory would ordinarily result in an up-
date/update conflict on that directory. Since directo-
ries are internal to the file system, Ficus automatically
resolves this sort of concurrent update, producing the
union of all directory changes. (See [6] for a descrip-
tion of the algorithms employed in directory manage-
ment.) A problem occurs when two files are indepen-
dently created with the same name; Unix requires that
each directory entry be unique. We term is kind of
directory update/update conflict a name conflict.

Figure 2 illustrates a different kind of conflict. In fig-
ure 2a, we see two replicas of file foo before a partition.
In 2b, file foo is removed at site B (indicated by the
shading of site B’s replica), while the partitioned rep-
lica at site A is updated. When the partition merges, as
shown in 2c, if no update had occurred, then the other
replica should simply be removed. However, if the
updated replica is removed in this situation, the update
generated during the partition is lost, possibly without
the knowledge of the person making the update. Fi-
cus’ “no lost update semantics” requires that the update
generated at site A not be discarded as a result of the

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

Foo

Replica 1

Foo

Replica 1

Foo

Replica 1

Foo

Replica 2

Foo

Replica 2

Foo

Replica 2

Site A Site B

Partition

Update
 x

Update
 y

Fig. 1a − Before partition

Fig. 1b − During partition

Fig. 1c − After partition

Conflict

Figure 1: An update/update conflict.

removal of the file at site B. This kind of conflict is
called a remove/update conflict.

If a file is independently deleted from two replicas
of a partitioned directory, Ficus does not log a conflict.
This delete/delete situation is not a problem, provided
any other replicas of the file are also deleted when the
partitions merge, since both deletions have precisely
the same effect.

Ficus makes a “best-effort” attempt to propagate up-
dates as they occur. However, even when no partition-
ings or other machine failures happen, update propa-
gation is not guaranteed. Thus, conflicting updates can
arise even without machine or network failures. Also,
Ficus does not lock replicas for update even within a
partition, so two replicas can accept simultaneous up-
dates to a file that could result in a conflict. In practice,
the update propagation mechanism is fast and reliable
enough that conflicts unrelated to actual failures or par-
titioning almost never occur.

Ficus detects all types of conflicts using a mecha-
nism known as a version vector [14]. Each file replica
maintains its own version vector that keeps track of the

history of updates to the file. Conflicts are detected
by comparing version vectors from two file replicas.
Version vectors reliably detect all file conflicts that in-
volve replicas of a single file. They do not assist in
ensuring the consistency of updates that span multiple
files. Other mechanisms (not supported in Ficus, nor
in most file systems) are required to do so.

3 Ficus Conflict Resolution Architecture

Several types of conflicts are possible in Ficus. Be-
cause of the importance of the integrity of directo-
ries, directory conflicts receive special handling. Re-
move/update conflicts also require some special treat-
ment. Update/update conflicts on non-directory files
are the most common case. The following subsections
discuss each type of conflict and its handling in more
detail.

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

Foo

Replica 1

Foo

Replica 1

Foo

Replica 1

Foo

Replica 2

Foo

Replica 2

Foo

Replica 2

Site A Site B

Partition

Conflict

Fig. 2b − During partition

Fig. 2a − Before partition

Fig. 2c − After partition

Update Remove

Figure 2: A remove/update conflict.

3.1 Directory Conflicts

The integrity of a Unix file system depends on its di-
rectories. If a directory cannot be used because it has
received conflicting updates, a portion of the file sys-
tem’s name space may become inaccessible. Thus,
conflicts in directories are very serious. Either they
must not occur often, or they must be resolved auto-
matically.

Ficus directory conflicts are repaired automatically
during reconciliation. As shown in [4, 3], all conflicts
that can occur in a Unix directory can be automatically
resolved, except for name conflicts. A complete de-
scriptionof directory reconciliationalgorithms is avail-
able in these references, so we discuss only their broad
outlines here, as an example of how known semantics
of files can be used to resolve conflicts.

Unix directories support only two operations: a pro-
cess can add a name to the directory or remove a name
from a directory. Creation of a file adds a name to a
directory (in addition to creating data structures to rep-
resent the file itself). Creating a hard link to a file adds

a second name for the file. File contents are discarded
only when the last name for the file has been removed.
While mechanically rename is an atomic operation in
many Unix systems, semantically it can be treated as a
remove followed by a create.

A number of issues, such as handling arbitrary pat-
terns of failures and recoveries, distinguishingbetween
creation and deletion of entries, and avoiding central-
ized algorithms, make the problem of directory man-
agement substantially more complex than it seems at
first glance. In broadest principle, the automatic recon-
ciliationmechanisms for directories examine all entries
in both versions of the directory in conflict, determine
which entries are common to both, and, for an entry
that is present in only one directory, determine whether
the file was created or deleted during partition. Ficus
keeps sufficient information to distinguish precisely the
patterns of file entry additions and deletions while par-
titioned, which in turn allows all possibly conflicting
updates to be addressed.

One class of conflicting updates can create another
problem, however. Concurrent creation of different

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

files with the same name results in a directory with two
identical, effectively indistinguishable names. Ficus
detects that the two files are actually different, but the
Unix directory model does not permit different files to
have identical names, so some action is required. Fi-
cus appends unique suffixes to each name and invokes
name conflict resolvers to handle the situation. Like
other conflict resolvers, if automatic resolution fails, a
default resolver notifies the file owner, who must either
rename or remove one of the files.

3.2 Remove/Update Conflicts

Remove/update conflicts are handled specially. Ficus
is able to recognize such cases, again using version
vectors. Ficus’ “no lost update” semantics requires
that an remove/update conflict not result in the loss of
the update. On the other hand, all names for the data
have been removed, so Ficus should not permit the file
to remain available via those names. Ficus’ solution
to this problem is to move the file into a special direc-
tory called an orphanage. Each volume has its own
orphanage directory located under its root directory.
When the reconciliation process moves a file into an
orphanage, electronic mail is sent to the owner notify-
ing him, allowing him to decide whether to keep the
updated file or discard it.

3.3 Update/Update Conflicts

Some update/update conflicts for non-directory files
can be resolved automatically and some cannot, de-
pending on the semantics associated with the file. Ficus
has the ability to invoke various resolvers to attempt
to handle file conflicts. Ficus allows individual users
to specify how they would like their conflicts resolved,
but also provides a default system for resolving con-
flicts when users have not specified their own methods,
or when the user’s methods fail.

3.4 Conflict Resolution

The Ficus reconciliation process runs through the files
in two replicas of a volume, examining each file to de-
termine if it has been modified since the last successful
reconciliation. When it discovers conflicting versions
of those file replicas, the reconciliation process marks
the file as “in conflict.” After marking the file, recon-
ciliation invokes resolvers to attempt to fix the conflict.
As long as the file is in conflict, normal operations on
the file under its usual name will fail. Each replica of
the file can be accessed by special mechanisms, and
Ficus provides a tool to clear the conflict. Ficus re-
solver programs must use these capabilities and tools

\.newsrc /bin/newsrc_resolver
fortunes\.dat /bin/fortune_resolver
man/cat[1-9] /bin/man_resolver
\.history /bin/arbitrary_resolver
\.bash_history /bin/arbitrary_resolver
\.pl$ /bin/prolog_resolver
.* /bin/default_resolver

Figure 3: A resolver selection file. The left column is
the pattern to match against the conflicted file’s path-
name. The right column is the resolver that is invoked
in an attempt to fix the conflict.

along with semantic knowledge of particular file types
to resolve conflicts.

Ficus selects a resolver to use for a particular con-
flicted file by searching a personal and a system-wide
resolver list. Entries in the system-wide list include re-
solvers for common file types. Personal resolver lists
specify resolvers for file types unique to an individ-
ual. Personal resolver lists also allow an individual to
choose between safety and convenience by optionally
enabling resolvers that don’t preserve all data. For ex-
ample, some users don’t care about conflicts on backup
files left from editors and so have a resolver arbitrarily
select one of conflicting backup files. More conserva-
tive users may wish to have data in backup files com-
pletely preserved and so may invoke a resolver saving
each replica of the backup file as separate files.

Conflict resolvers almost always require knowledge
about the type of the file being resolved. Since Unix
systems do not provide a typed file system, Ficus infers
file types from file names and from type-recognition
programs that examine file contents and attributes.

The reconciliation process that examines the resolver
lists matches only on file-name-to-regular-expression
comparisons. Because regular expressions are used,
matches can be exact or on substrings. Figure 3 shows
a portion of a resolver file. Whenever a conflicted file
named .newsrc or a file whose pathname contains
man/cat is encountered the newsrc or manual-page
resolvers are invoked. All resolvers shown in this
figure have been implemented with the exception of
the prolog resolver.

Unfortunately, simple file name comparison cannot
reliably identify all file types. For example, the file
csh.1might be a manual page in certain contexts and
shell script in others. To support more sophisticated
file type identification, a resolver list might use more
intelligent programs to check the file type. Continuing
with the example in Figure 3, theprolog resolver
could abort if invoked to resolve a Perl program (whose

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

files end with the same extension), by recognizing that
certain constructs in the file were probably not legal
Prolog. If a resolver aborts other resolvers are invoked
in turn until one succeeds.

Separate resolver lists are provided for name con-
flicts and file conflicts. In retrospect, the data-specific
actions taken in the case of a name conflict and a file
conflict are often quite similar; only details about re-
solving the conflict differ. However, in certain cases it
is important for a resolver to know whether it is deal-
ing with a name conflict or an update/update conflict.
In the future we plan to merge the different resolver
lists and specify the conflict type as an argument to the
resolver.

Ficus allows files to be replicated any number of
times, so it is possible that a given file might have
three or more conflicting replicas. The Ficus reconcili-
ation mechanism works on only two replicas at a time,
though, so the conflicting replicas will be dealt with
in a pairwise fashion. This simplifies the writing of
resolvers, since they need only deal with the common
case of exactly two conflicting replicas, rather than
an arbitrary number. All conflicts involving multiple
replicas can be regarded as multiple pairwise conflicts,
so no power is lost. Also, often not all of the con-
flicting replicas are simultaneously available. Since
reconciliation runs between two sites known to be in
communication, at least the pair of replicas they store
are guaranteed to be available.

How resolvers fix conflicts depends on the seman-
tics of the file in question. Section 4 discusses a variety
of the existing Ficus conflict resolvers. Typically, re-
solvers read the data contained in both versions of the
file, update one version of the file on the basis of both
versions, then update the version vector of that replica
to dominate the other, clearing the conflict.

4 Conflict Resolution Strategies and
Examples

Experience with the Ficus conflict resolution mecha-
nism has shown that there are broad classes of file con-
flicts that can be automatically resolved. This section
discusses them, presenting examples of each. We make
no claim that the list is exhaustive—in fact, we are
sure it is not, since it simply demonstrates the classes
of conflicts that have occurred frequently enough in
our environment to draw the attention of conflict re-
solver writers. Further investigation, especially work
in different computing environments, will undoubtedly
reveal other classes of file conflicts amenable to auto-
matic resolution.

In several important cases, much of the potential

work of resolving conflicts is done by Ficus itself. As
mentioned, Ficus resolves most directory conflicts au-
tomatically. Thus, any application that makes substan-
tial use of the Unix directory structure has much of its
conflict resolution problem automatically solved. Two
important examples are Ficus graft points and MH mail
directories.

Ficus divides its file space into volumes, each of
which is connected to a single place in the file hierar-
chy. That place is called the volume’s graft point, sim-
ilar to a Unix mount point. The graft point must keep
information about all the replicas of the volume, includ-
ing each replica’s storage site and other bookkeeping
information. Since Ficus uses a Unix directory with
one directory entry per graft point entry, graft point
conflicts can be resolved automatically. For instance,
if a new replica is added on each side of a partition,
when the partition merges the graft point will automat-
ically be resolved to indicate that both new replicas are
available. Graft points do not experience name con-
flicts because the tools that update them never generate
identical graft point entries.

The MH mail application also makes substantial use
of directories. In MH, messages are organized into
folders, which are implemented as directories. Most of
the conflicts that could occur to MH folders during a
partition are thus resolved automatically. For example,
if a user re-files mail messages into different folders on
both sides of a partition, the Ficus directory conflict res-
olution mechanism would handle most of the resulting
conflicts. Only name conflicts occasionally caused by
re-filing messages into the same position in two repli-
cas of a given folder require user attention. If numeric
identity of messages is not considered important, even
these conflicts can be automatically resolved.

Another type of conflict that Ficus resolves auto-
matically is conflicts on files whose contents can be
automatically reconstructed. Control files used by the
MH mail system are an example. These files maintain
sequence and context mechanisms. They can, and of-
ten are, built as needed by MH. The only requirement
is that MH generally expects something to be there—it
is not prepared to deal with a totally absent file, though
it can deal with a file that does not contain very useful
information. Thus, to resolve conflicts on these files,
the file contents are truncated. The next time MH is
run, the file will be reconstructed with a default context.

Many types of files are not important to most users.
For example, many users do not care about core files
produced by Unix processes that fail, or about backup
files produced by some Unix programs. Users who do
not care about such files can put lines in their personal
resolver files that either delete all such files when they
get in conflict, or choose one of the conflicting replicas

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

arbitrarily, or choose the replica with the later date.
However, since some users do not want to lose some of
their core or backup files without their knowledge, the
system resolver file does not impose these decisions on
users.

Some files are monotonically increasing logs of in-
formation. An example is the .newsrc file listing
what newsgroups and articles have been read. The
message numbers listed as read in each newsgroup
usually increase monotonically. In the case of truly
monotonically increasing logs, resolving conflicts is
simple. The post-resolution version of the conflicting
file simply contains the high water mark for each entry.
If the file keeps exhaustive lists of items, the resolved
version merges items from both conflicting versions.

In the particular case of .newsrc files, the situ-
ation is a little more subtle. The semantics of what
can be changed in a .newsrc file is a bit richer than
simply updating a record of articles seen. The user
can subscribe or unsubscribe to newsgroups, for exam-
ple. Some of these actions remove information from
the file, making perfect conflict resolution impossi-
ble. The Ficus conflict resolver for .newsrc files
thus must make some choices. It generally errs on the
side of information preservation, presenting users with
more news rather than with less. For instance, if one
version of a.newsrc file indicates that a newsgroup is
not subscribed to, and the other version indicates that
it is, the conflict resolver subscribes the user to that
newsgroup. The user can easily unsubscribe again, if
that was truly what he wanted to do. If the system
had left him unsubscribed when he had just recently
subscribed, however, the user might not notice that his
subscription had been invisibly revoked. This is an ex-
ample of the create/delete ambiguity described in [5].
In some cases, taking one possible action and reporting
the action taken to the user may be sufficient.

The .newsrc resolver shows a typical character-
istic of many resolvers. Often, it is relatively easy to
produce a resolver that is right the great majority of the
time, but occasionally makes a mistake. Producing one
that is right all of the time, on the other hand, may be
very difficult, or even impossible. A reasonable strat-
egy in such cases is to write a resolver anyway, as long
as the resolver can do something in the tricky cases
that will not produce disastrous results. If the results
are merely inconvenient in the rare cases when they’re
not necessarily right, then the resolver has solved the
conflict correctly most of the time, and caused little
more trouble than not solving it at all the rest of the
time. Since the alternative to this choice is notifying
the user to solve it himself, this approach is attractive.

In some cases, the semantics of a file are quite sim-
ple. Score files for some of the popular Unix games are

one such case. These files typically keep the top scores
in sorted order. Ficus has conflict resolvers for many
such games that sort and merge the two conflicting
versions, removing duplicates. The case of game score
files does bring up a difficulty with writing general re-
solvers, however. While each of the game score files
contains substantially the same kindof information, the
actual format is sufficiently different that writing a sin-
gle resolver to handle all of them is difficult. Instead,
Ficus has a class of very similar resolvers to deal with
the peculiarities of each.

In other cases, conflicts can be solved simply by
merging the two versions of a file into one, preserving
all data in both. Doing so may cause some data to be
duplicated, but many programs are able to handle such
duplications without problems. One such case is the
xcal program, an interactive window-based calendar
manager. Conflicted xcal data files can be resolved
simply by concatenating the two versions into one. The
Ficus resolver includes a comment line indicating what
happened, should the user care to clean up further, but
the xcal program can go ahead and work with the
merged version.

When the Ficus resolver files cannot resolve a con-
flict themselves, they call a final resolver (called the
generic resolver) that notifies the user via electronic
mail that a conflict occurred. The conflict is left unre-
solved until the user gives it personal attention.

In the UCLA environment, every replica of a vol-
ume is reconciled with another replica every hour. In
the case of unresolvable conflicts, users might be bom-
barded with hourly messages about unresolved con-
flicts that hadn’t been fixed. If a user did not log in
over a weekend, fifty or more messages could accumu-
late in his mailbox telling him about a single conflict.

This problem is prevented by keeping track of unre-
solved conflicts that have been brought to the owner’s
attention already. When the generic resolver sends out
a message about a conflict, it also logs the conflict in
a per-volume conflict log file. The next time the re-
solver notices this conflict, it also reads the entry in
the conflict log and determines that it need not send
out another message to the user. The conflict log suc-
cessfully limits the number of conflict report messages
users receive.

However, since the conflict log is replicated in its
volume (for very good reasons), this log itself can expe-
rience conflicts. Therefore, the conflict log itself needs
a conflict resolver. This resolver is another example
of how one can easily write a resolution mechanism
that is correct almost all of the time, even though it
is hard to write one that is always absolutely correct.
The conflict log resolver must make sure that a given
conflict is reported only once, but also that all conflicts

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

are reported. It does so by reading both versions and
writing a new version that contains all lines in either
conflicted version. In case of any problems that can-
not be automatically solved, the conflict log resolver
simply removes both conflicting versions. Should that
happen, the next time a conflict is detected a new con-
flict log will be created. The user will receive another
message for each unresolved conflict in the volume, but
no conflicts go unreported and only one extra message
per conflict is sent.

Most of the existing Ficus conflict resolvers are writ-
ten in Perl. Some are written in C, and some in other
scripting languages. Generally, resolvers can be writ-
ten in any language, provided they accept the param-
eters that the reconciliation process passes to them,
and they return a value indicating success or failure.
So far, the processing a typical resolver must per-
form has proven particularly suitable to Perl, in that
resolvers frequently perform pattern matching, sort-
ing, and merging, all functions that are provided by
Perl. In most cases, the files in question are small,
so the greater processing speed C could provide is not
important.

There are undoubtedly many other types of files
whose conflicts can be resolved automatically. Our
approach is to first write resolvers for several known
problems areas, then to write resolvers for conflicts
that actually come up in practice. Thus, the set of re-
solvers used at UCLA gradually grows as new types
of files generate conflicts and people tire of solving the
conflicts by hand. At the moment, we have about 15
different resolvers, some of which are used to resolve
multiple file types.

5 Data on Conflict Occurrence and
Resolution

The Ficus file system has been running as the primary
development environment for Ficus itself for several
years. Recently, we began to gather data about the oc-
currence of conflicts in Ficus. This data was gathered
by loggingevery conflict detected by the reconciliation
processes and tracking conflict resolution. In addition
to recording conflict detection and resolution, we also
recorded the total number of updates made to deter-
mine the relative frequency of conflicting updates in
our environment.

One shortcoming of this data is that most indepen-
dent directory updates are not detected by this instru-
mentation. We detect all name conflicts, but do not
detect the much more common case of independent
creation of two differently named files. Such update
“conflicts” are automatically resolved by Ficus direc-

tory resolution algorithms. We know that many such
cases have arisen and have required this automatic res-
olutioncode. For example, many programs create tem-
porary files in a user’s home directory. Such programs
would have created many conflicting directory updates
between home-use and office machines were it not for
automatic directory reconciliation. Unfortunately, this
sort of conflict is not represented in our statistics, and
we currently cannot precisely estimate the frequency
of this situation.

The nature of the environment has a strong influ-
ence on how often conflicting updates will occur. An
environment in which almost all the machines are con-
nected almost all the time will generate relatively few
conflicts. An environment in which some machines
are often disconnected will generate more conflicts.

The UCLA environment contains approximately a
dozen Sun workstations, each with a regular user, shar-
ing a replicated namespace over an Ethernet. The net-
work connection rarely fails. However, since Ficus is
an experimental file system built into the kernel and
undergoing continual change, the machines running it
crash or are voluntarily rebooted much more often than
most workstations. Machines going up and down ef-
fectively create partitions as easily as network failures
do.

Two of our workstations are located at project mem-
bers’ homes and are only rarely connected to the net-
work. These primarily disconnected machines store
replicas of volumes important to their users. These ma-
chines and their volumes communicate with the core
Ficus hosts only rarely and only to exchange updates
via reconciliation. Although one might expect this
pattern of usage to result in very high conflict rates,
surprisingly it does not. One reason is that replica rec-
onciliation is scheduled to coordinate the movement
of the users with the data of the system, effectively
allowing the system’s user to act as a human “write
token” [7]. While this behavior avoids many conflicts,
nevertheless the conflict rate in mostly disconnected
volumes is much higher than in other volumes.

Table 1 shows the conflict statistics for more than
nine months of operation in the UCLA environment.
About 0.0035% of all non-directory updates resulted
in conflicts.

During the period under measurement, several con-
flict resolvers were added to our suite. Using the re-
solvers available at the end of the measurement pe-
riod, 162 of the update/update conflicts (roughly, one
in three) experienced could have been resolved auto-
matically if the same patterns of conflicts occured today
as did during this nine month period. This set of re-
solvable conflicts includes files related to the MH mail
system, shell historyand editor backup files, .newsrc

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

14,142,241 total non-directory updates
14,141,752 non-conflicting updates
489 update/update conflicts

162 automatically resolved
176 resolvable automatically
151 not clearly resolvable automatically

98 update/remove conflicts
98 passed to the user for resolution

708,780 name creations
708,652 non-conflicting name creations
128 name conflicts

128 passed to the user for resolution

Table 1: Conflict statistics for a nine month period.
Theoretically resolvable conflicts are conflicts on files
with semantics amenable to automatic resolution but
for which we have not yet written resolvers.

files, and several types of game score files.
Many of the other conflicts experienced could have

been handled by resolvers that have not been written.
We found 176 of those, more than another third of the
total number of conflicts. These include control files
for the trn news reader, saved news postings, manual
pages, compiler-produced object files, measurement
statistics files, and score files for other games.

The remaining 151 conflicts would not be easy to re-
solve automatically with our current system. Files that
occasionally got into conflict that cannot be resolved
include such things as source code and arbitrary text
files. A significant number of these conflicts occured
in files placed in orphanages. Such files no longer
possess their original names. Since most of our exist-
ing resolvers are selected solely by name, our current
system has little hope of finding a proper resolver for
these files. Explicit storage (or identification) of file
type would make resolution of these files possible.

None of the name conflicts were resolved automat-
ically. Because many fewer name conflicts occurred
than file conflicts, we did not develop any name con-
flict resolvers in the sample period. About 0.018% of
all name creations led to name conflicts, all of which
were resolved by human users. On the average, each
user had to deal with about ten name conflicts during
this nine month period.

Taken as a whole, the average user in this environ-
ment thus had to resolve about five conflicts a month,
and examine one update/delete conflict per month. In
actuality, this average is misleading, since conflicts

tended to happen more often to users who worked with
the disconnected machines. A few users thus expe-
rienced much higher conflict rates, while many users
encountered considerably fewer conflicts than the av-
erage.

The conflicts were not evenly spread across all vol-
umes in our environment. Table 2 shows the number
of updates and conflicts for different types of volumes,
and the conflicts rates by volume for the nine month
period.

Volumes are classified as either shared or private,
and either office, disconnected, or network. Shared
volumes indicate volumes that receive heavy update
traffic from multiple users, often to different volume
replicas. A prominent example of this category of
volume is the games volume. Updates to the games
volume involve access to shared database files (game
score files). Multiple users accessing different replicas
and using the same application concurrently create high
probability of conflicts. In addition, the games volume
is a disconnected one, meaning that replicas exist both
in the office and at users’ homes. Disconnection in-
creases the likelihood of concurrent use, for the time
period in which independent updates are deemed con-
current is increased. Fortunately, the shared database
files have relatively simple semantics, so it is easy to
write automatic resolvers for these files. Other discon-
nected, shared volumes included volumes of installed
programs and libraries, which easily get in conflict if
users are not careful about how they perform installa-
tions.

The source code volumes are another example of
shared volumes, though these are stored entirely in the
office. Although most source code files themselves are
protected against multiple writers by a revision control
service, conflicts can occur in two ways. First, multiple
users can attempt to gain write permission on the same
file via different replicas. Second, the same user can
perform updates to two different replicas. The latter is
not nearly as uncommon as it would seem, since source
code volumes are replicated on server-style machines,
which experience more down-time than normal work-
stations due to increased load. Server crashes cause
automatic replica switching, creating the potential for
conflicts: a user updates one replica, then switches
replicas and updates the second.

Private volumes are user’s personal volumes. They
are almost always updated solely by the one user, and
experience very few conflicts. However, when the
private volumes are also disconnected, conflict rates
rapidly increase. Examples of such volumes are the
personal volumes of two Ficus project members who
have replicas at the office and at home. Home for one
user is across town, and home for the other is across the

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

Volume Number of Volumes Number of Number of Conflict User-Visible
Classification in class Updates Conflicts Rate Conflict Rate
Disconnected, Shared 9 1,114,855 273 .0245% .0052%
Disconnected, Private 16 387,523 106 .0274% .0012%
Office, Shared 27 6,316,331 66 .0010% .0005%
Office, Private 48 6,286,754 44 .0007% .0003%
Network, Shared 8 36,778 0 0% 0%

Table 2: Update/update conflicts grouped by volume classification.

ocean in Guam. They both call the office by modem
and reconcile periodically, ranging from once a day to
once every few weeks.

Most of the private volumes are rarely disconnected,
and therefore one would expect there to be almost no
conflicts, since only one person is performing updates
and usually to the same replica. Private volumes stored
only in the office accounted for only 9% of the total
conflicts.

Network volumes are volumes shared between sites
connected by the Internet. These volumes are all
shared, in our current environment. Many of them
are test volumes, leading to a low number of updates
for such volumes.

As expected, disconnected volumes had a much
higher rate of conflicts, 20 to 40 times as high as their
office counterparts. Somewhat surprisingly, however,
disconnected shared volumes suffer a lower conflict
rate than private volumes.

Table 2 also indicates which of these conflicts could
have been resolved automatically. For example, all
of the conflicts on the game volume were on simple
database score files, and therefore easily resolved. The
only conflicts that the user need see in the disconnected,
shared class of volumes were those in the installation
volumes. Most of the conflicts on source code files
in the office shared class could not be resolved au-
tomatically, however, because source code files have
arbitrary semantics, and therefore require user inter-
vention. Those conflicts that were resolvable were on
object files (.o files).

The unresolvable conflict rates for disconnected vol-
umes are still significantly higher than the unresolvable
conflict rates for office volumes, but the relative dif-
ference is somewhat lower, particularly in the case of
private volumes. Many of the files in disconnected
private volumes that get into conflict are simple data-
base files that can be resolved automatically. Shell
histories are again a good example. In the discon-
nected environment, they are likely to frequently enter
conflict, while they rarely enter conflict in the office
environment. But these conflicts are always automat-

ically resolvable. Once automatic resolution is taken
into account, instead of one disconnected private vol-
ume update in five thousand requiring user attention,
one in one hundred thousand requires it. This twenty-
fold reduction in user intervention in conflicts on this
class of volume is a powerful motivation for providing
automatic resolution in the disconnected environment.

6 Related Work

The Ficus file system draws from several earlier sys-
tems, and has some similarities to work done by others.
This section discusses some of the related work, with
particular attention to that concerning optimistic rep-
lication, conflicts in optimistically replicated systems,
and automatic resolution of such conflicts.

Parker’s work on version vectors was an important
early step in optimistic file replication [14]. It permit-
ted reliable detection of independent updates to differ-
ent replicas of a data item with limited and reasonable
costs for maintaining the necessary information.

Version vectors were used in the university Locus
operating system [15, 17], a system that provided data
replication and dealt with partitioned operation. How-
ever, the Locus system never dealt substantively with
the problems of conflicting updates.

Sergio Faissol’s Ph.D. dissertation examined this
question in the context of databases [2]. He inves-
tigated several classes of information that could be
stored in a database, how independent updates to those
classes of information could be reconciled, and the
information required to perform the necessary recon-
ciliation. His work was primarily theoretical, and was
never applied to file systems.

The Coda project at Carnegie-Mellon University,
discussed in detail in [18], is also developing an opti-
mistically replicated file system. The Coda developers
have considered the questions of disconnected opera-
tions in a somewhat different context than the Ficus
system. They support a highly connected backbone
of server machines that replicate files. While these
servers may occasionally fail or become disconnected

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

from each other, they are expected to be more reli-
able than the typical single-user workstation machine.
Client machines cache replicas of files they actually
use, and send the updates back to a server replica [10].

The nature of the Coda system makes partitioned
first class replicas a less common event than in Ficus.
Partitioned update is far more common between first
and second class Coda replicas where simpler reconcil-
iation algorithmsare possible [10]. References [11, 12]
discuss Coda’s log-based approach to conflict resolu-
tion between first-class replicas. The design of conflict
resolution in Coda is described in [13]. Like the Fi-
cus approach, conflict resolvers are provided and are
selected by file type.

Unlike Ficus, the Coda approach uses files that hold
resolution rules that apply to all files in a directory or
its subdirectories. These rules are similar in form to
rules in a Unix makefile. By placing a set of generic
rules in the topmost directory, Coda can achieve the
same effect as Ficus’ system resolver file. By using
regular expressions that match only certain directory
prefixes, the Ficus resolver files can achieve the same
effect as Coda’s per-directory rules files. Unlike the
Ficus approach, Coda does not automatically serially
apply different resolvers to a file in conflict, though
presumably the makefile rules could be set up in such
a way that they could. Generally speaking, the expres-
sive power of the Coda and Ficus approaches seem
similar. More experience with both systems is needed
to determine if either approach has a clear advantage in
user friendliness. The statistics presented in this paper
provide the first step at addressing some of these issues.

Huston and Honeyman describe their approach to
optimistic replication in disconnected AFS in [9]. This
system permits updates to cached copies of data at
disconnected client sites under AFS. Writes generated
by a disconnected client site are logged and replayed
when the client is reconnected to a server. If any of the
logged write operations conflict with writes performed
by some other client during the disconnection, the con-
flicts are detected and reported. No attempt is made to
automatically resolve them, though Huston and Hon-
eyman do briefly discuss plans to provide tools to help
users resolve common types of conflicts.

Howard has developed an optimistic reconciliation-
based system to permit occasionally connected ma-
chines to share files [8]. He reliably detects conflicts
using a journalling mechanism, but currently makes no
attempt to reconcile them.

7 Observations and Conclusions

Optimistic file replication in an environment that has
any serious degree of disconnection benefits from au-

tomatic conflict resolution; it can substantially reduce
the conflict rate observed by users. We present data for
two environments, a usually-connected office environ-
ment and a periodically connect, usually-disconnected
home use environment.

In the office environment, without automatic con-
flict resolution, the typical user would need to resolve
around two conflicts per month, considering both up-
date/update and name conflicts. With automatic resolu-
tion, the frequency of conflicts requiring user attention
would drop to one and a half or less. The resolvers
Ficus currently has installed and that will be added to
our suite can reduce the total number of user-visible
conflicts by about one half.

The effects are more dramatic in the home use en-
vironment. In this environment, two users generated
380 conflicts in 9 months, averaging nearly a conflict a
day for each user. In actuality, one of the two users ex-
perienced the bulk of the conflicts. He made extensive
use of disconnected home computing, reconciling his
volumes only once a day or so, so his conflict rate was
significantly higher. He observed 30 to 40 conflicts per
month. Applying automatic resolvers to the home use
environment reduces the observed conflict rate for this
user to around seven conflicts per month.

The in-office statistics might suggest that the added
value of automatic resolution of some conflicts is not
that great, in that environment. However, there are
some additional points to consider. First, as pointed
out in Section 5, we did not gather statistics for the
value of the most important case of all, the automatic,
built-in directory resolver. (We hope to gather these
statistics in the future.) Second, many of the conflicts
that are automatically resolved are easily handled using
a program, but hard to resolve by hand. If they were
not automatically resolved, they would require a user
to invoke a tool that might equally well be invoked
automatically. Directories and binary data are exam-
ples. Third, further effort applied to writing resolvers
certainly would decrease the observed rate of conflicts
even more.

The case for automatic conflict resolution in less
connected environments is even stronger. Environ-
ments in which disconnection is more even common
than our home use environment, such as mobile com-
puting, can be expected to have higher conflict rates.
Our data suggests that conflicts in this environment
are often easier to reconcile than those in the office
environment. Decreasing the observed conflict rate
by sixfold for a replicated home use environment is a
major improvement.

Many files have semantics allowing fairly simple
resolution of all conflicts. Even when not all possible
conflicts a file can experience are automatically resolv-

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

able, there are often large classes of conflicts that can
be fixed without human attention. Unix-style directo-
ries are one such example, where all conflicts except
name conflicts can be automatically resolved. In sev-
eral other cases, we have discovered that solutions that
solve 80% or so of all possible problems work very
well. The user need only be informed in the case of
the 20% that cannot be resolved. In some cases, the
resolution of the difficult set of conflicts can even be
guessed at, with the user only becoming aware of the
difficulty if the guess is wrong. .newsrc and conflict
log files are two such cases.

Implementing data storage as directories offers an
opportunity to leverage the Ficus directory resolution
algorithms. When data follows insert/delete semantics
(such as Ficus graft points do) this mapping is quite
natural. In the future, we plan to restructure the direc-
tory reconciliation algorithms as a library that can be
used in more general situations.

Reconciliation chooses resolvers first by file name,
applying consecutive resolvers until one succeeds.
Storing the file type as an attributeof the file would be a
more attractive approach. Existing Unix file attributes
leave little room for such information, but an object-
oriented file system with a general purpose attribute ser-
vice could store a resolver list as an attribute. The rec-
onciliation process could then directly call the proper
resolvers for each conflict. Such an object-oriented file
system is under development in our project, and will be
tested with resolver attributes. Until all data is stored
as typed objects, the approach discussed in this paper
offers an attractive interim solution.

While this work has been applied to a Unix-style file
system, most of it is not specific to Unix systems. The
general approach is applicable to many other systems
and could be simplified on systems that don’t allow
multiple names for the same file. The approach of pair-
wise resolution of single conflicting files, name-based
choice of resolvers, and iteratively invoking conflict
resolvers until one of them succeeds appears to be gen-
erally applicable.

In conclusion, our experience with conflicts in opti-
mistically replicated file systems is that, for one com-
mon environment, conflicts are rare. At least two thirds
of those conflicts that do occur can be resolved automat-
ically, with no user intervention or even notification.
Further effort in building more resolvers would reduce
the rate of user notification of conflicts even lower. Our
experience with working on the Ficus system is that the
typical user is not bothered by either the possibility of
conflicts or their actual occurrence.

Acknowledgments

Ficus is a large system and would not be possible with-
out the efforts of many people. In addition to the
authors of this paper, Richard Guy, Dieter Rothmeier,
and Steven Stovall were involved in the issues dis-
cussed in this paper. Others who have contributed to
Ficus include (chronologically) Wai Mak, Tom Page,
Yuguang Wu, Jeff Weidner, John Salomone, Michial
Gunter, Ashvin Goel, Geoff Kuenning, Sivaprakasam
Suresh, Sugata Mukhopadhyay, and Ted Kim.

References

[1] Susan B. Davidson, Hector Garcia-Molina, and Dale
Skeen. Consistency in partitioned networks. ACM
Computing Surveys, 17(3):341–370, September 1985.

[2] Sergio Zarur Faissol. Operation of Distributed Data-
base Systems Under Network Partition. Ph.D. disserta-
tion, University of California, Los Angeles, 1981.

[3] Richard G. Guy. Ficus: A Very Large Scale Reliable
Distributed File System. Ph.D. dissertation, University
of California, Los Angeles, June 1991. Also available
as UCLA technical report CSD-910018.

[4] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and Dieter Roth-
meier. Implementation of the Ficus replicated file sys-
tem. In USENIX Conference Proceedings,pages 63–71.
USENIX, June 1990.

[5] Richard G. Guy and Gerald J. Popek. Reconciling par-
tially replicated name spaces. Technical Report CSD-
900010, University of California, Los Angeles, April
1990.

[6] Richard G. Guy, Gerald J. Popek, and Thomas W. Page,
Jr. Consistencyalgorithms for optimistic replication. In
Proceedings of the First International Conference on
Network Protocols. IEEE, October 1993.

[7] John S. Heidemann, Thomas W. Page, Jr., Richard G.
Guy, and Gerald J. Popek. Primarily disconnected op-
eration: Experiences with Ficus. In Proceedings of the
Second Workshop on Management of Replicated Data.
IEEE, November 1992.

[8] John H. Howard. Using reconciliation to share files be-
tween occasionally connected computers. In Proceed-
ings of the Fourth Workshop on Workstation Operating
Systems, pages 56–60, Napa, California, October 1993.
IEEE.

[9] L. B. Huston and Peter Honeyman. Disconnected oper-
ation for AFS. In Proceedings of the USENIX Sympo-
sium on Mobile and Location-Independent Computing,
pages 1–10. USENIX, 1993.

[10] James J. Kistler and Mahadev Satyanarayanan. Dis-
connected operation in the Coda file system. ACM
Transactions on Computer Systems, 10(1):3–25, 1992.

Appeared in the Proceedings of the
Summer USENIX Conference,
June 1994, pages 183-195

[11] Puneet Kumar. Coping with conflicts in an optimisti-
cally replicated file system. In Proceedingsof the Work-
shop on Management of Replicated Data, pages 60–64.
IEEE, November 1990.

[12] Puneet Kumar and Mahadev Satyanarayanan. Log-
based directory resolution in the Coda file system.Tech-
nical Report CMU-CS-91-164, Carnegie-Mellon Uni-
versity School of Computer Science, 1991.

[13] Puneet Kumar and Mahadev Satyanarayanan. Support-
ing application-specific resolution in an optimistically
replicated file system. In Proceedings of the Fourth
Workshop on Workstation Operating Systems, pages
66–70, Napa, California, October 1993. IEEE.

[14] D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin,
Allen Stoughton, Bruce J. Walker, Evelyn Walton, Jo-
hanna M. Chow, David Edwards, Stephen Kiser, and
Charles Kline. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software
Engineering, 9(3):240–247, May 1983.

[15] Gerald Popek,Bruce Walker, Johanna Chow,David Ed-
wards, Charles Kline, Gerald Rudisin, and Greg Thiel.
LOCUS: A network transparent, high reliability dis-
tributed system. In Proceedings of the Eighth Sympo-
sium on Operating Systems Principles, pages 169–177.
ACM, December 1981.

[16] Gerald J. Popek, Richard G. Guy, Thomas W. Page,
Jr., and John S. Heidemann. Replication in Ficus dis-
tributed file systems. In Proceedings of the Workshop on
Management of Replicated Data, pages 20–25. IEEE,
November 1990.

[17] Gerald J. Popek and Bruce J. Walker. The Locus Dis-
tributed System Architecture. The MIT Press, 1985.

[18] Mahadev Satyanarayanan, James J. Kistler, Puneet Ku-
mar, Maria E. Okasaki, Ellen H. Siegel, and David C.
Steere. Coda: A highly available file system for a dis-
tributed workstation environment. IEEE Transactions
on Computers, 39(4):447–459, April 1990.

Author Information

Electronic mail to the authors should be directed to
ficus@ficus.cs.ucla.edu.

Peter Reiher received his B.S. in Electrical Engi-
neering from the University of Notre Dame in 1979.
He received his M.S. in Computer Science from UCLA
in 1984, and his Ph.D. in Computer Science in 1987.
He has worked on several distributed operating systems
projects. His research interests include distributed op-
erating systems, optimistic computation, and security
for distributed systems.

John Heidemann received his B.S. from the Uni-
versity of Nebraska-Lincoln and his M.S. from UCLA,
both in computer science. He is currently pursuing his
Ph.D. in stackable layered file systems at UCLA.

David Ratner has been a graduate student re-
searcher with the Ficus project at UCLA for three
years. His work on the project includes the rewriting
and maintaining of the reconciliation, directory and
file management code. Recently he has been working
on algorithm and replication issues. He received his
B.A. in Computer Science and a B.A. in Mathematics
from Cornell University in 1991.

Gerald J. Popek has been a Professor of Computer
Science at UCLA since 1973. He has been the principal
investigator for the ARPA distributed systems contract
since 1977. He is best known for his work on secure
systems, the design of the Locus distributed Unix sys-
tem, and most recently, the Ficus large scale replicated
filing environment.

Popek’s academic background includes a doctorate
in computer science from Harvard University. He co-
authored “The LOCUS Distributed System Architec-
ture,” published by the MIT Press in 1985, and has
written more than 70 professional articles concerned
with computer security, system software, and computer
architectures.

He is a principal founder of Locus Computing
Corporation. Privately-held Locus Computing is the
largest independent developer of UNIX-based connec-
tivity and distributed processing software technology.

Greg Skinner is a systems programmer for the Fi-
cus Distributed Systems Research Group of the UCLA
Computer Science Department. He received his MSCS
from UCLA in 1992, with a concentration in network
modeling and analysis. In his ten year professional
career, he has worked on a number of projects in the
areas of distributed systems and computer networks.

