FASTER State Management for Timely Dataflow

Matthew Brookes Vasiliki Kalavri John Liagouris
ETH Zirich ETH Zirich ETH Zirich
brookesm@student.ethz.ch vasiliki.kalavri@inf.ethz.ch liagos@inf.ethz.ch
ABSTRACT is crucial for two reasons. First, due to low latency require-

We explore the performance and resource trade-offs of two al-
ternative approaches to streaming state management. When
the state size exceeds the amount of available memory, sys-
tems can either scale out and partition the state across dis-
tributed computing nodes or rely on secondary storage and
divide the state into ‘hot’ and ‘cold’ sets. Scaling out a stream-
ing computation might introduce coordination overhead
among parallel workers, while flushing state to disk requires
efficient data structures and careful caching policies to min-
imise expensive I/O.

To study the characteristics of these state management ap-
proaches, we present an integration of the Timely Dataflow
stream processing engine with the FASTER embedded key-
value store. We demonstrate a prototype that allows users to
transparently maintain arbitrary larger-than-memory state
with low overhead by making only minimal changes to ap-
plication code. Our preliminary experimental results show
that managed state incurs acceptable overhead over built-in
in-memory data structures and, in some cases, performs bet-
ter when relying on secondary storage in a single node as
opposed to scaling out to multiple nodes.

ACM Reference Format:

Matthew Brookes, Vasiliki Kalavri, and John Liagouris. 2019. FASTER
State Management for Timely Dataflow. In Real-Time Business Intel-
ligence and Analytics (BIRTE 2019), August 26, 2019, Los Angeles, CA,
USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3350489.3350493

1 INTRODUCTION

Any non-trivial streaming computation maintains and con-
tinuously updates state: running aggregations, synopses of
the input stream, sets of events grouped in windows, triggers
and timers. Efficient state management in stream processing

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7660-0/19/08.
https://doi.org/10.1145/3350489.3350493

ments, streaming engines must process incoming events and
update internal state as quickly as possible. Second, due to
their long-running nature, streaming applications accumu-
late state which can exceed the available memory provided
by a single node. To support both low latency and growing
state, modern streaming dataflow systems employ data par-
allelism and state partitioning so that parallel workers are
responsible for disjoint input streams and state partitions.

Deploying streaming jobs across multiple distributed ma-
chines allows for larger state but might incur performance
penalties due to higher coordination among parallel workers.
This trade-off between supported total state size and coordi-
nation overhead is evident in distributed stream processors.

This demo presents an integration of Timely Dataflow [3]
with FASTER [2], an embedded key-value store that com-
bines a highly optimised cache with a hybrid log spanning
main memory and storage. Offloading the task of state man-
agement to FASTER enables Timely Dataflow to support
large state while keeping the number of parallel workers low
and still use commodity hardware.

2 BACKGROUND

Timely Dataflow is a stream processor, written in Rust,
based upon the Naiad[5] system. Timely computations are
expressed as directed, possibly cyclic, graphs of operators
that process timestamped data. Timely Dataflow programs
can be executed by multiple workers, either on a single ma-
chine or in a networked cluster. Each worker executes a copy
of the dataflow program on partitioned input data and ex-
changes intermediate results and progress information with
other workers as needed. Timely operators may construct,
access, and modify built-in and custom data structures. For
example, the Aggregation operator in Listing 2 modifies
an aggregate value every time it is invoked. Fach Timely
worker maintains its own separate state during processing
and cannot directly access the state of other workers.

FASTER is an embedded Key-Value store that supports in-
place updates and concurrent access to a log-structured
record store for larger-than-memory data via a HybridLog.
It provides point reads, blind updates, and read-modify-write
operations for arbitrary Key-Value types. FASTER exploits
the strong temporal locality exhibited by state in stream-
ing workloads. Records are separated into a changing hot

https://doi.org/10.1145/3350489.3350493
https://doi.org/10.1145/3350489.3350493
https://doi.org/10.1145/3350489.3350493

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

Worker

Custom

Filter angregalion " Womeraior W Aggregation —-{ output ‘

Worker / /
' y ' Custom y '
Filter Aggregation ——> S 000 Aggregation —-{ output ‘
v —r x

Figure 1: Integration Overview

Input

state kept in-memory and a larger on-disk cold state. The
HybridLog record allocator organises records across both
portions such that newer records can be updated in-place
and older records use a copy-on-write strategy. By providing
in-place updates, workloads can benefit from records being
in higher levels of the cache as well as from not copying
entire records when making modifications. FASTER is im-
plemented as a C++/C# library that allows users to define
their own Key and Value types.

3 INTEGRATING TIMELY DATAFLOW
WITH FASTER

Figure 1 showcases the integration of Timely Dataflow and
FASTER. In the following, we describe the state primitives
currently supported, how state is exposed to users, and how
users can define different state backends.

We have implemented a library, faster-rs [1], that allows
any Rust application, including Timely Dataflow programs,
to use FASTER as an embedded Key-Value store. faster-rs is
a wrapper around FASTER’s C++ library [4].

3.1 Managed State Primitives

We have created several basic state primitives that can be
used by developers of Timely programs. These include a
ManagedCount, ManagedValue, and ManagedMap. Listing 1
shows the methods available for each primitive. The state
primitives are backend-agnostic, meaning that dataflow oper-
ators can be configured to use any custom state backend with
any of the aforementioned primitives. State primitives are
accessed via a StateHandle, as we explain in the following.

3.2 Accessing State

Timely Dataflow provides several generic operators that can
be used to implement arbitrary logic. These generic operators
provide several handles for accessing their input(s), output(s),
notificator (used for coordination with other workers), and

Matthew Brookes, Vasiliki Kalavri, and John Liagouris

pub trait ManagedCount {
fn decrease(amount: i64);
fn increase(amount: 1i64);
fn get() -> i64;
fn set(value: i64);

pub trait ManagedValue<V> {
fn set(value: V);
fn get() -> Option<Rc<V>>;
fn take() -> Option<V>;
fn rmw(modification: V);

e

pub trait ManagedMap<K, V> {
fn insert(key: K, value: V);
fn get(key: &K) -> Option<Rc<V>>;
fn remove(key: &K) -> Option<V>;
fn rmw(key: K, modification: V);
fn contains(key: &K) -> bool;

Listing 1: Managed State Primitive Methods

internal state. By exposing the StateHandle through the
generic operators’ API, one can implement individual opera-
tors with their own managed state primitives. Listing 2 shows
how a generic Timely Dataflow operator (unary_notify())
can access a ManagedMap state primitive. State primitives can
also be accessed through StateHandles exposed through
the node and worker’s API. Instances of state primitives are
given a name (“aggs” in the example below) when created or
accessed. This serves as a key for storing the values on the
state backend.

fn aggregate(...) -> Stream {
self.unary_notify(...,
move |input, output, notificator, state_handle| {
let mut aggregates // a ManagedMap (Listing 1)
= state_handle.get_managed_map("aggs");

Listing 2: Aggregation Operator with Managed State

3.3 Defining State Backends

Currently, our implementation provides an in-memory and
a FASTER backend, however, there is no restriction against
custom backends as long as they implement the required
interface for the various state primitives.

FASTER State Management for Timely Dataflow

State backends are defined at the node, worker or operator
level. The FASTER state backend at the node level allows
workers on the same node to share state. At the worker level,
all stateful operator instances executed by the particular
worker will use the defined backend. Defining a state back-
end for a worker is compulsory but can be overridden for
individual operators if needed. In Figure 1, each worker is
configured to use FASTER as the default backend for state-
ful operators; however, the last Aggregation operator (just
before the Output) is set to use Heap for storing its state. List-
ing 3 shows how state backends are defined at the worker and
operator levels. The node level backend cannot be changed.

worker.dataflow: :<_,_,_,FASTERBackend>(
| scope, worker_state_handle| {
/// Worker is configured to use the FASTERBackend
input
.to_stream(scope)
.unary_notify_core::<_,_,_,InMemoryBackend> (
/// This operator overrides the configured
/// state backend and uses the InMemoryBackend
// Operator logic

DR

Listing 3: Configuring State Backends

3.4 Preliminary Results

We present the results of two experiments on commodity
machines, each having Intel Xeon Platinum 8000 series pro-
cessors and 16GB of available memory. Figure 2a shows
the complementary cumulative distribution function (CCDF)
of per-record latency for Query 3 of the Nexmark bench-
mark [6] with either the FASTER or in-memory backend.
The state fits within available memory in both configura-
tions. Currently, using FASTER incurs a 1.1x overhead until
the p98 latency and a 16x overhead afterwards. The latter
overhead comes from FASTER dynamically allocating mem-
ory as the in-memory buffer fills. Despite this overhead, the
maximum absolute latency when using FASTER is 26ms. Fig-
ure 2b shows the CCDF of per-record latency for the same
query and 22GB of total state, when using FASTER on one
worker compared to scaling out using in-memory on four
nodes with 24 workers in total. We show that until the p97
latency and after the p9999, a single worker with larger-than-
memory state achieves better performance.

4 DEMONSTRATION OUTLINE

In this demonstration we will show the implementation of
several Nexmark queries in both Timely Dataflow’s origi-
nal form and with managed state. We will demonstrate the

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

10°

T T T T ——————g
E > FASTER Backend E|
\ In Memory Backend - - - -]

10t £ \ E

102 | = m—— e

CCDF

102 g iy \ 3

0% ¢ B E

[0 — . P R
10° 10t 102

Latency [ms]

(a) FASTER overhead compared to in-memory backend

10° T
E . FASTER Backend E|
F \ T In Memory Backend - - - -]

w0t \

102 | v \ <
E N \]

102 ¢ \ E

104 b HE 3

CCDF

10—5 TR | n n Lol n n TR | n L
10° 10t 102 103

Latency [ms]

(b) Single-node FASTER compared to distributed in-
memory workload

Figure 2: CCDFs of per-record latency for Nexmark
Query 3 (incremental join)

modification of Timely Dataflow programs, using various
state primitives and switching between state backends on
a worker or operator level. We will also demonstrate our
results showing when it is preferable to rely on secondary
storage for storing larger-than-memory state rather than
scaling out to more nodes.

REFERENCES

[1] Matthew Brookes and Max Meldrum. 2019. faster-rs. Retrieved June
01, 2019 from https://github.com/faster-rs/faster-rs

[2] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-
doski, James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent
Key-Value Store with In-Place Updates. Sigmod 2018 (2018).

[3] Frank McSherry. 2019. Timely Dataflow. Retrieved June 01, 2019 from
https://github.com/TimelyDataflow/timely-dataflow

[4] Microsoft. 2019. FASTER. Retrieved June 06, 2019 from https://github.
com/microsoft/FASTER

[5] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. 2013. Naiad: a timely dataflow system. In
SOSP ’13: Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles.

[6] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2002.
NEXMark—A Benchmark for Queries over Data Streams DRAFT. Techni-
cal Report. OGI School of Science & Engineering at OHSU.

https://github.com/faster-rs/faster-rs
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/microsoft/FASTER
https://github.com/microsoft/FASTER

	Abstract
	1 Introduction
	2 Background
	3 Integrating Timely Dataflow with FASTER
	3.1 Managed State Primitives
	3.2 Accessing State
	3.3 Defining State Backends
	3.4 Preliminary Results

	4 Demonstration Outline
	References

