A New Benchmark Harness for Systematic and Robust
Evaluation of Streaming State Stores

Esmail Asyabi

Yuanli Wang John Liagouris

Vasiliki Kalavri Azer Bestavros

{easyabi,yuanliw,liagos,vkalavri,best}@bu.edu
Boston University

Abstract

Modern stream processing systems often rely on embedded
key-value stores, like RocksDB, to manage the state of long-
running computations. Evaluating the performance of these
stores when used for streaming workloads is cumbersome as
it requires the configuration and deployment of a stream pro-
cessing system that integrates the respective store, and the
execution of representative queries to collect measurements.

To address this issue, in this paper, we start with an em-
pirical characterization of streaming state access workloads
collected from Apache Flink and RocksDB, using three pub-
licly available datasets, and we show that the characteristics
of real traces cannot be approximated with existing bench-
marks. Next, we present Gadget, a new benchmark harness
that generates realistic streaming state access workloads to
enable easy and thorough performance evaluation of stan-
dalone KV stores through accurate simulation of streaming
operator logic. Finally, we use Gadget to investigate the suit-
ability of RocksDB as the de facto kv store for stream process-
ing systems. Interestingly, we find that, although RocksDB
provides robust results, it is outperformed by FASTER and
BerkeleyDB in six out of eleven workloads. Our results reveal
a wide performance gap between the current performance
of streaming state stores and what could be achieved with
workload-aware approaches.

CCS Concepts: « Information systems — Stream man-
agement; Database performance evaluation;

Keywords: stream processing, KV store, benchmark

ACM Reference Format:

Esmail Asyabi ~ YuanliWang JohnLiagouris Vasiliki Kalavri
Azer Bestavros. 2022. A New Benchmark Harness for Systematic
and Robust Evaluation of Streaming State Stores. In Seventeenth

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys °22, April 5-8, 2022, RENNES, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9162-7/22/04...$15.00
https://doi.org/10.1145/3492321.3519592

559

European Conference on Computer Systems (EuroSys °22), April 5—-
8, 2022, RENNES, France. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3492321.3519592

1 Introduction

Stream processing technology powers numerous business
applications, including continuous analytics, monitoring,
fraud detection, and online recommendations [26, 33]. All
major cloud providers offer stream processing as a managed
service [1, 2, 4, 6] and many large companies have developed
in-house streaming analytics platforms [29, 34, 39, 43, 44].

Modern stream processing systems often use persistent
key-value stores to manage the state of continuous queries [8,
25, 29, 44]. Despite evidence that using a state store in-
creases application latency by as much as an order of mag-
nitude [7, 12, 37], there are no comprehensive performance
studies that contrast various streaming state management ap-
proaches. Existing streaming benchmarks [16, 30, 38, 50] do
not consider state accesses, whereas KV store benchmarks,
like YCSB [31], lack the necessary tuning knobs to allow for
a faithful simulation of a streaming engine’s interaction with
the underlying state store.

To evaluate or tune the performance of a KV store for
streaming workloads, users are currently left with a single
laborious option: configure and deploy a stream process-
ing system that uses the store and execute representative
queries to collect measurements. Investigating alternative
store designs further requires integration with a reference
streaming engine. Unfortunately, replaying an input stream
is not sufficient to generate a workload, as state accesses
depend on the streaming operator logic. Collecting a trace
requires instrumentation to capture the state access events
that operators produce when processing their input.

The work presented in this paper seeks to address this state
of affairs through the development of tools and benchmarks
for conducting performance evaluation of streaming state
stores. First, to understand the characteristics of state access
workloads in streaming applications and develop methods
for accurate simulation, we perform a thorough empirical
characterization study. Next, we confirm empirically that
existing benchmarks, like YCSB, do not generate workloads
with characteristics that accurately resemble those of real
streaming state access traces, and thus cannot be used for
robust evaluation of streaming state stores.

https://doi.org/10.1145/3492321.3519592
https://doi.org/10.1145/3492321.3519592
https://doi.org/10.1145/3492321.3519592
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available

To that end, we introduce Gadget: a benchmark harness
that enables easy and systematic performance evaluation of
standalone streaming state stores. Gadget generates repre-
sentative workloads by closely simulating the state access
logic of streaming operators. It achieves high accuracy by
exposing a set of configurable parameters, which are unique
to streaming computation, such as the arrival rate distribu-
tion, event time skew, and watermark frequency. Currently,
Gadget provides eleven predefined workloads, supports cus-
tom operator implementation, and offers connectors to four
KV stores.

Our experimental evaluation shows that Gadget produces
state access workloads that exhibit the same temporal and
spatial locality as real traces. Furthermore, we show that
YCSB is not a reliable tool to determine whether a store is
suited for streaming workloads. Finally, we use Gadget’s
workloads to evaluate current practices in streaming state
management and reveal opportunities for future research.

We hope Gadget will become a valuable tool for designers
of new stream processing systems, users of existing systems
who want to (i) test different configurations for embedded
state stores or (ii) use an external store to benefit from decou-
pling compute and state, and developers of novel KV stores
who might want to optimize for streaming workloads.

Paper outline and key contributions. In Section 3, we
report on the first empirical characterization study of stream-
ing state access workloads: we use three real-world publicly
available data streams to collect state access traces and an-
alyze them in terms of (i) number and type of operations,
(ii) degree of amplification, (iii) temporal and spatial local-
ity, and (iv) working set size. In Section 4, we showcase the
limitations of YCSB-generated workloads. In Section 5, we
present the design and implementation of Gadget, a new
benchmark harness for systematic and robust evaluation of
standalone streaming state stores. In Section 6.1, we provide
eleven workloads corresponding to common streaming oper-
ators and we empirically verify Gadget’s accuracy. Finally, in
Section 6.2 and 6.3, we integrate Gadget with the RocksDB,
Lethe, BerkeleyDB, and FASTER KV stores, and use it to
evaluate their performance for streaming state management.

Major findings. The key findings from our workload char-
acterization and performance evaluation work are:

1. Many state access workloads are predictable and can
be accurately simulated.

2. Streaming state access workloads exhibit high event
and key amplification, meaning that the state store ac-
cepts a significantly higher load than the input stream
arrival rate.

3. YCSB workloads can be tuned to have either high spa-
tial or high temporal locality, but not both. Moreover,
these properties are exhibited in a significantly higher
degree than what is observed in real-world streaming
state access traces.

560

4. RocksDB, the de facto KV store in stream processing
systems, provides robust results across Gadget work-
loads, but it is outperformed by both FASTER and
BerkeleyDB in six out of eleven workloads.

We will publish Gadget as open-source and make all traces
and results of this paper publicly available.

2 Preliminaries

In this section, we provide background on stream processing
and clarify basic concepts that we use throughout the paper.

2.1 Streaming dataflow concepts

In the dataflow model [14, 26], a streaming computation is
represented as a logical directed graph G = (V, E), where
vertices in V represent operators and edges in E denote
data streams. Upon deployment, the logical graph is trans-
lated to a physical execution plan, G’ = (V’, E’), which maps
operators to provisioned workers, in practice, threads. We
call vertices in V' tasks or instances of a logical operator in
V and edges in E’ physical data channels. Tasks are typically
scheduled once and are long-running. Each task is assigned
to exactly one worker and each worker may execute one
or more tasks of the same or different operators. The as-
signment is system-specific; it is computed at deployment
time and remains static throughout job execution, unless
a reconfiguration occurs. In a data-parallel execution, all
tasks of an operator execute an identical logic on disjoint
partitions of the input stream and they communicate with
tasks of upstream and downstream operators via messages.

Each event in a streaming dataflow is associated with an
event time that corresponds to the time when the event
occurred. In general, this time is different from the wall-clock
time when the event arrives at the stream processor. To track
progress of the computation, many stream processors use
special events called watermarks [14] that are generated at
the data sources. A watermark with event time t,, arriving
at the input of an operator means that there will be no more
events with event time ¢ < t,,. In many real applications,
however, events (including watermarks themselves) may ar-
rive at an operator out-of-order. In this case, all events whose
timestamp is less than or equal to the current watermark
are called late events. An operator will consider late events
within a period of allowed lateness (e.g., “k units of event
time after the watermark”) and will discard all late events
outside this period. The watermark generation frequency
and the allowed lateness can both be configured by the user.

2.2 Streaming operators

Modern stream processors support the following operators:

Windows. Windows are the most prominent streaming oper-
ators. They allow computing aggregations on the most recent

events and provide continuous fresh results to their down-
stream applications. Tumbling windows split the stream into
fixed-size segments of equal length. For example, a tumbling
window query in a cluster monitoring application would
compute the number of jobs submitted to the cluster every 5
seconds. Every event in the input stream belongs to a sin-
gle tumbling window. Sliding windows define an additional
slide parameter which determines how often a new window
starts. If the slide is smaller than the length, then consecutive
windows overlap and input events may belong to multiple
windows. For example, every 5 minutes, compute the number
of jobs submitted to the cluster during the last 30 minutes. Ses-
sion windows group events according to periods of activity
separated by periods of inactivity. Session windows have
variable length and their end is detected when no event has
arrived for a given time gap. In the cluster monitoring appli-
cation, a session window can detect job stages by grouping
together tasks submitted in quick succession. Regardless of
its type, a window operator is incremental if its function is
a distributive or algebraic aggregation (e.g., min, average).
Otherwise, we call it holistic (e.g., median, rank).

Joins. Streaming joins are two-input operators that find
matching pairs of events in their incoming streams. To make
join computations practical, streaming systems typically pro-
vide window join operators to bound the state requirements
and dispose events when windows expire. Two custom join
operators are more expressive and flexible than window joins.
Interval join defines a relative time interval within which
an event from one stream can match events from the other
stream. This join type is useful in cases when the clocks of
input sources might be distributed and thus exhibit skew.
Continuous join is useful when the stream itself encodes a
validity interval or expiration timestamp — e.g., a query in a
location-based service that computes the total amount of taxi
fare events for a shared taxi ride before the drop-off timestamp.

Aggregations. Continuous aggregations compute per-key
rolling aggregate values (e.g., sum, count, min, max) of the
input events they receive. These operators are usually light-
weight but their state requirements increase over time as the
keyspace size of the input stream grows.

2.3 Streaming state management

Most stream processors assume a key-value schema for input
events [17, 25, 27, 35, 42] and always associate state with a
key that is derived from the event according to a function.
Recall that a task of a data-parallel operator is executed by
exactly one worker thread and processes a disjoint partition
of the operator input (cf. § 2.1). This model guarantees single-
thread access isolation to state: any state associated with
a particular key is read and modified by a single worker at
any point in time. Hereafter, we represent a state access as
atuple a = (p, k,v,t), where p is an operation (e.g., get, put,

561

Physical plan

N

Logical plan

sreq op2

op1
:)%o
sink

Stateaccess D
..eiz2eir e |[Operator _ Stream Embedded| | 0/ 0i1 02 ...
logic kv store
Input stream get (ki) (RocksDB) | | Output stream
put (ki, V)
get (ki)

Figure 1. Streaming state access overview. A task maintains larger-
than-memory state locally using its own embedded key-value
store. The input stream triggers a sequence of state accesses and
results in an output stream.

delete, etc.) on a key k with value v (can be null), and ¢ is
the timestamp the operation is performed.

In this work, we consider data-parallel operators that
maintain local state, possibly larger than memory, using em-
bedded KV stores. Each operator task has its own store, as
shown in Figure 1, and every incoming event e triggers a se-
quence of state accesses in the local store. The type and num-
ber of accesses depend on the operator logic, as we discuss in
the next section. Since event processing within the same task
is sequential, all requests to the state store are totally ordered
and state accesses corresponding to event e; are performed
before any access due to event e;;1. We define the state ac-
cess stream as the sequence of state accesses generated by a
task while processing input events. In the example of Figure 1,
the state access streamis s = (get, k;, null, t1), (put, k;, v, t2),
(get, kis1,null, t3), ..., which also defines a sequence of ac-
cessed keys (k;, ki, kiy1, ...) and a sequence of operation types
(get, put, get,...).

The embedded KV store model is rather general and is
adopted by the majority of distributed stream processors,
including Apache Flink, Kafka Streams, Spark Structured
streaming [17] (Databricks Runtime), and Samza. External
state management approaches are out of scope for this work
and we discuss them in § 8.

3 Characterizing state access workloads

To accurately simulate streaming state access workloads, we
first conduct a thorough empirical characterization study.

3.1 Methodology and setup

We select Apache Flink [3, 25] as a representative stream
processing system with embedded state management. To
capture state requests as they arrive to the KV store, we have
instrumented Flink’s state management layer that interacts
with RocksDB [11]. Using this instrumented runtime, we
collect traces of state accesses for all streaming operators of

§ 2.2. Besides put, get, and delete, RocksDB also supports
merge, which is a lazy read-modify-write operation.

3.1.1 Data streams. We use three publicly available real-
world data streams to drive the characterization of state
access workloads. Borg consists of 2.5M task events and
26K job events extracted from the Google cluster usage
traces [46]. Taxi consists of 1M taxi trips (pickup and drop-
off events) and 500K corresponding taxi fare events from the
2013 NYC TLC Trip Record Data [9]. Azure is the full trace of
4M VM creation events of the 2017 Azure VM workload [32].

3.1.2 Configuration parameters. We evaluate all stream-
ing operators in the event time domain [14] using the real
timestamps provided in the input streams and punctuated
watermarks with a default frequency of 100 events. Unless
otherwise specified, we use 5s for window length, 1s for the
window slide, and a 2min session gap. We configure interval
joins with a lower bound of 2min and an upper bound of
3min. As event keys, we use the jobID in the Borg stream, the
medallionID in Taxi, and the subscriptionID in Azure.

3.2 Analysis of streaming state access workloads

We start by analyzing the workload composition in terms of
operation types (§ 3.2.1). The distinction between read-heavy
and write-heavy workloads is an important guiding principle
when evaluating KV stores. Next, we measure the degree of
amplification that streaming operators cause as they trans-
form the input stream into a state stream (§ 3.2.2). Finally, we
examine state access workloads in terms of their temporal
and spatial locality, and their working set size (§ 3.2.3).

3.2.1 Workload composition. Table 1 presents the per-
centage of reads, writes (put or merge), and deletes in the
state access traces generated by different operators for all
input streams (Azure is a single stream, thus, we cannot
execute joins on it). We observe that the workload composi-
tion differs significantly across operators for the same input
stream, and moderately across streams for the same operator.

All incremental windows, the holistic session window,
joins, and aggregations generate update heavy workloads
with an almost equal mix of get and put/merge operations.
On the other hand, holistic tumbling and sliding window
workloads are write heavy, having considerably higher per-
centages of merge operations compared to reads. Further,
with the exception of aggregation, delete operations are
prevalent in all workloads, ranging from 1.4% for the Borg
continuous join to 43% for the Taxi holistic session window.

While this general operator behavior persists across traces,
the Taxi stream generates a much higher percentage of dele-
tions. In the case of windows and interval join, this difference
is due to the stream’s lower arrival rate. Recall that tumbling
and sliding windows are configured with a 5s length by de-
fault (cf. § 3.1.2). Given such an interval, taxi rides are less
frequently occurring events than job status changes and VM

562

o GET X MERGE
PUT s DEL

1]
Z
3600
Window length (s)

(a) Tumbling incremental

AN GET WS MERGE
= pUT B== DEL

%O0perations
%O0perations

500
Session gap (s)

300 3600

18000

(b) Session incremental

Figure 2. Effect of window configuration on the workload compo-
sition (Taxi). Smaller window lengths and session gaps produce a
higher proportion of delete operations.

B Events N Key space
20x
N
3x 3x 1x 2% 2x
- -,] !

dﬁ\b\‘\'\O\

AnCt g.\’\"\

AT .
oY 5\-\d\ﬂ

AnCE A0 cont et ngof
e g 0™ o Gt b

o
S cest™

AW ces

o\
Figure 3. Event and keyspace amplification for the Borg stream.
The state store accepts a much higher load than the stream arrival
rate. All operators amplify the key space except for continuous
aggregation.

creation events. Similarly, a default 2min session gap is too
small of an interval for taxi rides that tend to last much
longer. In contrast, the number of delete operations in the
continuous join workload depends on the validity period
of the input events themselves (cf. § 2.2). The Borg stream
triggers a state cleanup per job completed, while the Taxi
stream incurs a delete for every passenger drop-off.

Since delete operations occur when a window triggers,
their absolute number depends on time, but their ratio over
the total number of operations depends on the input rate.
A stream with low input rate results in windows with few
elements and respective update operations. The same effect
can be observed by varying the window length or session
gap for a fixed input rate. To better understand the effect
of the input rate on the workload composition, we perform
an experiment with the Taxi stream and plot the results in
Figure 2. The smaller the window length (i.e., the lower the
input rate) the higher the percentage of delete operations
in the state workload, as windows contain fewer updates
and expire more frequently.

Take-away: Streaming state access workloads are update- and
write-heavy. The percentage of delete operations depends on
the stream’s arrival rate and the window length.

3.2.2 Amplification. To properly configure the resource
allocation (e.g., memtable size, cache size) of streaming state
backends, developers need to estimate the request load their

Borg Taxi Azure

GET PUT MERGE DELETE | GET PUT MERGE DELETE | GET PUT MERGE DELETE
Tumbl-Incr | 0.5 0.459 0 0.041 0.5 0.308 0 0.191 0.5 0.405 0 0.095
Sliding-Incr | 0.5 0.459 0 0.041 0.5 0.308 0 0.191 0.5 0.405 0 0.095
Session-Incr | 0.575 0.281 0.062 0.082 | 0399 0.108 0.109 0384 | 0.544 0.202 0.064 0.189
Tumbl-Hol | 0.076 0 0.847 0.076 | 0.277 0 0.446 0277 | 0.165 0 0.669 0.165
Sliding-Hol | 0.076 0 0.847 0.076 | 0.277 0 0.446 0277 | 0.159 0 0.681 0.159
Session-Hol | 0.409 0 0.477 0.114 | 0327 0 0.242 0.430 | 0.429 0 0.334 0.238
Join-Cont 0.59 0.006 0.39 0013 | 0.429 0.281 0.143 0.147 -
Join-Interval | 0.446 0.446 0 0.108 | 0.334 0.334 0 0332 - - -
Aggregation | 0.5 0.5 0 0| 05 0.5 0 0| 05 05 0 0

Table 1. Workload composition of the access traces generated by the Borg, Taxi, and Azure data streams

c 40
i) EBA Events S 300 775 Key space ||
30 =1 7
£ 20 S 200 _L /A
o Il = V7 /
g1 £1001 7 7
< < 0 w7 vy

5 2 1 5 > 1

Slide (min) Slide (min)

Figure 4. Effect of varying the slide of a 10-min window on event
and keyspace amplification (Taxi). The degree of amplification is
proportional to the ratio of the slide length over the window length.

applications will generate, based on the input stream char-
acteristics. Metrics such as the stream’s arrival rate and the
expected number of distinct keys in the input (e.g., number
of concurrent cluster jobs, number of drivers) could either
be known in advance or measured by monitoring the in-
put sources. In this section, we examine how helpful such
knowledge can be in estimating the state access load.

First, we find that the state store accepts a considerably
higher load than the streaming operator itself. We quantify
this load increase by measuring (i) event amplification as
the number of state requests caused per event, and (ii) key
space amplification as the ratio of distinct keys in the input
stream over the number of distinct keys in the state stream.
Event amplification essentially defines the request rate at
the state store whereas key space amplification determines
the resulting state size.

Figure 3 plots the amplification metrics for the Borg trace.
With the exception of holistic tumbling windows, all oper-
ators generate at least 2 state accesses per input event. A
stream with rate 100K events/s will result in 200K requests/s
in the state store of the interval join and 400K requests/s in
the state store of the sliding window. Keyspace amplification
is significant in time-based operators, such as windows and
the interval join, which use timestamps as keys to maintain
state within time bounds. Continuous aggregation is the only
operator that maintains the event stream properties.

In Flink, windows are mapped in state using the W-ID strat-
egy [40]. Each window is represented as a KV pair, where the
key is the start or end timestamp and the value is a bucket
containing the window contents. When a new event arrives,

563

the operator fetches its corresponding buckets from the KV-
store, updates their contents, and writes them back. When
the watermark advances, the operator identifies all expiring
windows, retrieves their buckets from state, and deletes their
contents. As a result, the window operator sends a pair of
get-put (corr. merge for holistic windows) operations to the
state for every incoming event and a pair of get-delete
operations when windows fire. We further verify this behav-
ior by running a sliding window experiment using the Taxi
stream and varying the window slide. Figure 4 shows the
results. For sliding windows, amplification is proportional

to the ratio of the slide length over the window length, as

. . . . length __ .
each incoming event is assigned to EZZ .- window buckets.

Finally, we examine to what degree the state access stream
preserves the key distribution of the event stream. To quan-
tify the distance between distributions, we run the KS test
(Kolmogorov-Smirnov test) [23] for all operators using the
Borg trace. Table 2 presents the results. We find that all oper-
ators distort the input distribution and none of them passes
the test except continuous aggregation, which uses the input
stream keys for state access.

Take-away: The state store accepts a much higher request load
than the stream arrival rate. Most workloads exhibit key distri-
butions different from those of their respective input streams.

3.2.3 Locality and ephemerality. We further character-
ize state access workloads with respect to properties that
may help guide the design and configuration of caching,
prefetching, and compaction components of streaming state
stores. In particular, we quantify the degree of locality in
state access streams and study the evolution of their working
set size. For these experiments, we select three representa-
tive streaming operators: continuous aggregation as the only
operator that preserves the input stream characteristics, tum-
bling incremental window as a commonly used time-based
operator that performs incremental computation, and sliding
join as a complex time-based two-input operator that per-
forms holistic aggregation. We present the results in Figure 5
and discuss each metric in detail next.

Temporal locality indicates the likelihood that recently
accessed keys will be accessed again in the near future. We

Operator | D p-value n m
Tumbling-Incr | 0.898 0.0 841135 1832810
Tumbling-Hol 0.896 0.0 841135 992080
Sliding-Incr 0.962 0.0 841135 9163798
Sliding-Hol 0.963 0.0 841135 4960416
Session-Incr 0.590 0.0 841135 2996940
Session-Hol 0.528 0.0 841135 2155805
Join-Cont 0.229 0.0 854582 1438628
Join-Interval 0.916 0.0 867385 1944979
Aggregation 0.0 1.0 841135 1682270

Table 2. Kolmogorov-Smirnov Test results for the Borg trace and
the corresponding state traces. Continuous aggregation is the only
operator that generates a state stream with the same distribution
as the input stream.

define the temporal locality of a state access stream as the
distribution of the number of unique keys accessed between
consecutive operations on the same key. This definition is
equivalent to the stack distance metric used to characterize
web request workloads [15] and shown to be helpful in cache
tuning [41, 52], as it can directly estimate the cache miss ratio
for a given cache size. As requests come in, they are placed
in a LRU stack data structure. The position of a key in the
stack at the moment of its access is equal to its stack distance.
Traces with small stack distances contain frequent accesses
to keys which tend to be near the top of the stack.

Figure 5 (top) shows stack distance histograms of state
access traces plotted in contrast to stack distance histograms
of random permutations of the same trace (shuffled). Note
that these are overlapping bars rather than regular stacked
histograms. We observe that all three operators exhibit high
temporal locality. The average stack distance computed in
the state access traces is much lower than that of the shuffled
traces: 53.75 as opposed to 270.40 for continuous aggregation,
1,236.95 as opposed to 9, 927 for the tumbling window, and
10, 627 versus 58, 510 for the interval join.

Spatial locality refers to the likelihood that keys with nearby
accesses in the past will also be accessed close to each other
in the future. Workloads with spatial locality can benefit
from prefetching mechanisms and from designs that lever-
age the neighborhoods of keys in the access stream to decide
address space proximity. We quantify the spatial locality of
a state access stream s w.r.t. a number £ € N by computing
the distribution of the number of unique key sequences in s
with maximum length ¢.

Figure 5 (middle) plots the number of unique sequences
of up to £ = 10 for the state traces alongside the number of
unique sequences found in the corresponding shuffled trace.
The shuffled traces preserve the key popularity but destroy
the sequences of accessed keys. We observe that all three
operators generate workloads with high spatial locality as
the total number of unique sequences observed in their traces
are much lower than those found in the shuffled traces.

Working set size. As streaming computations are long-
running and tend to access fresh data, we expect streaming
state to be ephemeral. To study the evolution of streaming

564

state, we define the working key set as the set of active keys
per operator state at a specific point in time, that is the set
of keys that can be accessed in the future with probability
greater than zero. We further define Time-to-Live (TTL) as
the number of time units (steps) between the first and the
last access of a key in the state access stream.

To characterize state ephemerality, we sample the work-
ing set size in fixed steps of 100 operations in the state access
stream and plot the results in Figure 5 (bottom). The working
set of continuous aggregation increases over time, as this
operator maintains as many distinct keys as those appear-
ing in the input stream. On the contrary, tumbling window
removes keys from state every time a window fires. Since
keys represent window boundaries, the key space is entirely
refreshed periodically and more frequently for small win-
dows. The working set size of interval join also evolves over
time, as new events are added to the state and old events are
removed whenever the validity interval is exceeded.

In the case of event-time operators, the evolution of the
working set further depends on the watermark frequency.
Recall that watermarks indicate the stream’s event time
progress [14, 48]. When a watermark with timestamp t,,
arrives at an operator, it informs the system that no future
event with timestamp ¢ < t,, will be received in the opera-
tor’s input. As a result, the operator can decide that a window
expiring by t < t,, is complete. Watermarks offer a tunable
trade-off between low latency and result completeness. Ea-
ger watermarks allow for early window firings and frequent
state cleanup while slow watermarks provide result confi-
dence at the expense of higher latency and longer state TTL.
To study the effect of watermark frequency on the working
set size, we configure the streaming source to generate wa-
termarks with variable frequency and run an experiment
with a tumbling window and the Azure trace. Figure 6 plots
the working set size over time for frequencies of 100 events
and 1K events. We observe that slow watermarks increase
the maximum working set by up to 3%, as windows must be
kept in state longer.

Take-away: Streaming state access workloads exhibit high
temporal and spatial locality. State is ephemeral and keys have
low Time-to-Live.

4 Limitations of YCSB workloads

We now investigate whether state access traces produced
by streaming operators can be approximated with YCSB.
Although YCSB can be configured to generate workloads
with some temporal or spatial locality, we find that none of
the synthetic traces are close to the real ones according to
the metrics of § 3. Interestingly, this is true even for simple
streaming operators, such as continuous aggregation, whose
access patterns include pairs of read/update operations that
one would expect to accurately simulate using the YCSB
read-modify-write workload.

Cont. Aggregation

Tumbling window

Sliding Window Join

= > 310° 2 State trace E State t
S E = 4 [Shuffled trace 104 = Shau;:le‘::face Bz State trace
g* s 10 3 [Shuffled trace
S S g10° 10
107
0 2 4 6 8 10 0 10 20 30 40 50 60 70 0 100 200 300 400
Stack distance (K) Stack distance (K) Stack distance (K)
3
n 1750
= “? S 1750 —¢— State trace —¢— State trace
'*:—': = ©1250 1250 —e— Shuffled trace 4000 —e— Shuffled trace
Q, 8 2 — State trace
a3 g 750 —— Shuffled trace 750 5000
[
g 20 250
C
2 L a3 &8 7 9 1 3 5 7 9 1 3 5 7 9
Sequence length Sequence length Sequence length
]
w
0 o 10000 35000
E N 8000
=P % 6000 £.25000
= ¥ 4000 15000
2000
0 5000
2500 7500 12500 17500
Timestep 2500 7500 12500 17500 0 5000 10000 15000
Timestep Timestep
Figure 5. Locality and ephemerality characteristics of streaming state access workloads (Borg).
Operator | p50 p90 p99.9 max
Continuous Aggr. | 0.001(1513) 206 (1630) 1675 (1651) 1676 (1652)
Tumbling Incr. 0.4(1185) 1.4(1633) 14.5 (1726) 21 (1727)
Sliding Join 2(2102) 789 (4631) 2922 (5129) 2991 (5138)

12000 16000 20000
Timestep

8000

0
4000

Figure 6. Effect of watermark frequency on working set size of an
incremental tumbling window (Azure). Slow watermarks cause the
window state to remain in the store longer, increasing the size of
the working set.

Our goal is to identify YCSB configurations that produce
traces as close as possible to streaming state accesses. To do
so, we generate YCSB workloads using all available request
distributions (uniform, zipfian, hotspot, sequential,
exponential, latest). For each YCSB workload, we set (i)
the number of operations (operationcount), (ii) the num-
ber of distinct keys (recordcount), and (iii) the ratio of
read/update (or read-modify-write) requests as in the respec-
tive real trace. In contrast to streaming workloads where new
keys are introduced on-the-fly, YCSB assumes that distinct
keys are preloaded and can be used in read/update requests
as soon as the workload generation starts. New keys inserted
during workload generation are not used in subsequent op-
erations and their only purpose is to increase the size of
the database. For this reason, we set the insertproportion
parameter to zero in all synthetic workloads. We also omit
delete operations, as they are not supported by YCSB.

Below we provide results for the three representative op-
erators of § 3 (i.e., continuous aggregation, tumbling window

565

Table 3. TTL (in thousand timesteps) in real traces vs TTL in the
closest YCSB traces (in parentheses).

with incremental aggregation, and sliding join) using real
state access traces generated with the Borg dataset. Results
for other streaming operators and datasets are similar.

Request distributions. We first compare the empirical key
distributions between each real trace and all possible YCSB
traces (one per built-in distribution) that have the same ratio
of request types as the real trace. For each pair of traces,
we map both empirical distributions to the same domain [0,
#distinct_keys) and apply the Kolmogorov-Smirnov test.
We find that the null hypothesis is rejected in all cases with
significance level « = 0.001. We also use the Wasserstein
metric to quantify the distance between the real and syn-
thetic key distributions. The Wasserstein distances range
from 621 (for continuous aggregation) to 174316 (for sliding
join). Our analysis shows that the built-in distributions of
YCSB cannot approximate the real request distributions in
the steaming workloads we consider.

Temporal and spatial locality. We further compare the
real and synthetic traces with respect to their temporal and
spatial locality. YCSB traces with latest request distribution
(and in some cases hotspot) are the closest to the real traces
in terms of temporal locality but have poor spatial locality, in
most cases almost identical to that of the shuffled trace. On

20000

—< Real —— YCSBL —— YCSB-S

B Real trace -3- Realsh. -=- YCSB-Lsh. -+- YCSB-Ssh

[YCSB-L trace

=
g o o
< B]
» =10° g
8 z %1000
c -
a § 103 S a
= :
i
= 10? E
S E
0 2 4 6 8 10 5 2 3 A 10
Stack distance (K) Sequence length
" 21750 e Fra—vm——— ra———
S 5104 1500
= £ 51250
8 210 1000
.- v n 750
= 2 M
"g g0 ‘ 2 500| ;
= 5 250
= * 9
0 10 20 30 40 50 60 70 2 4 6 8 10
Stack distance (K) Sequence length
£5000
— P
.g 3 g 4000
maEaal 23000
o & g
(=] | 0
= 8 o © 2000
= g 102 g
= el <
L pEEZ. | =
100 200 300 400 2 4 6 8 10

Stack distance (K)

Sequence length

Figure 7. Stack distances for 1K random keys (left) and number of
unique sequences (right) in real traces vs YCSB traces with temporal
(YCSB-L) and spatial locality (YCSB-S). Dashed lines in the sequence
plots correspond to shuffled traces.

the other hand, the only YCSB distribution that provides high
spatial locality (but distorts temporal locality) is sequential.
In fact, the synthetic workloads are not close to the real ones
on either metric: traces with latest (YCSB-L) have lower
temporal locality whereas traces with sequential (YCSB-
S) have higher spatial locality compared to the real traces.
Figure 7 shows the distribution of stack distances (left, over-
lapping bars) and the number of unique sequences (right)
in the real traces and the closest YCSB traces (we also plot
the number of unique sequences in the YCSB-L traces for
reference). As we can see, real traces have more skewed stack
distance distributions compared to YCSB-L traces (with more
observations close to zero) but are closer to their shuffled
counterparts in number of unique sequences compared to
YCSB-S workloads. YCSB-L for continuous aggregation ex-
hibits some spatial locality because it is generated using
read-modify-write operations; the rest of the YCSB-L traces
have almost the same number of unique key sequences as
the respective shuffled traces.

Ephemerality. Working set sizes of YCSB workloads never
decrease since YCSB does not support delete operations.
Nevertheless, the synthetic traces may still exhibit some
ephemerality, e.g., in case certain keys are not accessed after
some time. To compare the ephemerality of the real and syn-
thetic traces, we use the distribution of TTL values. Table 3
shows different TTL percentiles for 1K randomly selected
keys in the real and the closest YCSB traces. We see that the
real workloads have considerably shorter TTLs compared to

566

YCSB, especially in p50 (over 1000x) and p90 (over 5x), but
also in higher percentiles for tumbling window, due to the
small window length in this experiment (5s in event time).
We also find that, in many YCSB workloads, a large percent-
age of keys (up to 90% in some experiments) is accessed once,
which never happens in real streaming workloads.

5 The Gadget benchmark harness

We now present Gadget, a new benchmark harness that en-
ables systematic evaluation of KV stores for stateful stream-
ing applications. Gadget supports one or more configurable
data sources and simulates the internal operations of a stream
processing system to generate realistic state access work-
loads. Gadget operates in two modes: online and offline.
When operating online, Gadget generates and issues state
access requests to the KV store on-the-fly, while collect-
ing performance measurements on latency and throughput.
In offline mode, Gadget generates and stores a state access
stream that can be replayed on demand using a built-in trace
replayer. Gadget currently supports four KV stores with dif-
ferent design and performance characteristics: RocksDB [11],
Lethe [47], FASTER [28], and BerkeleyDB [5].

We implemented Gadget in C++ in 18K LOC. Figure 8
shows an overview of its architecture, which consists of
four core components: (i) the event generator that generates
streams of events according to a set of user-defined proper-
ties (e.g., key distribution, arrival rate, watermark frequency,
etc.), (ii) the driver that simulates the internal operations of
various streaming operators (e.g., windows, joins, aggrega-
tions) and drives the trace generation process, (iii) the work-
load generator that produces the actual state access streams,
and (iv) the performance evaluator that uses the generated
workloads to evaluate KV store performance. Next, we de-
scribe each component in detail.

5.1 Event generation

The event generator enables Gadget users to configure vari-
ous characteristics of the input stream, such as the arrival
rate and the distribution of event keys, values and their sizes.
In the example of Figure 8, event timestamps follow a Poisson
process (exponential) whereas event keys follow a Zipfian
distribution and the value size is constant (10 bytes).
Gadget keeps track of the input stream progress using
watermarks whose frequency can also be specified by the
user. To accurately simulate out-of-order events, Gadget ex-
poses parameters to specify the percentage of such events
and the allowed lateness period. In the example of Figure 8,
the generator is configured to send one watermark every 3
time units and 2% of the generated events will appear with
a (uniformly distributed) lateness of at most 3 time units
from their actual event time. In practice, Gadget maintains
an index of late events that is updated at every time step.
One salient feature of Gadget is that it decouples the event
generator from the actual workload generator by assigning

Figure 8. Gadget architecture overview. The event generator generates event streams according to a configuration file. Gadget’s driver
partitions the input stream horizontally and/or vertically, depending on the logic of the specified operator. Each partition is assigned to a
state machine. Gadget’s workload generator executes the state machines to generate the state access stream. The latter is forwarded to the
performance evaluator that sends requests to the specified KV store and collects measurements.

Algorithm 1: Gadget driver logic

1 Function driver():
// Pull and process the next batch of events
2 batch = getNext();

3 for event e in batch do

4 stateMachines = assignStateMachines(e);
5 for m in stateMachines do

6 ‘ m.run();

7 end

8 end

9 Function onWatermark():
stateMachines = collectExpiredStateMachines();
for m in stateMachines do

‘ m.terminate();

11
12

13 end

64-bit timestamps to events, which can then be replayed
using different time units. This allows Gadget to generate
highly dense event (and subsequent state access) streams
with a single thread. Besides built-in distributions (e.g., zip-
fian, exponential, uniform, etc.), the event generator can
also work with empirical cumulative distribution functions
(ECDFs) provided by the user or even with an existing event
trace like those we used in § 3. In the latter case, the event
stream is replayed using the input replayer of Figure 8.

5.2 Driver

The driver’s core task is to map input events to state ob-
jects and generate other necessary metadata. It maintains an
index (hIndex) that maps event keys to state keys and, for

567

window-based operators, it uses an additional index (vIndex)
that maps window expiration times to state keys. In general,
the event-to-state key mappings differ across operators and
depend on the actual implementation. Gadget’s default imple-
mentation follows that of built-in operators in Apache Flink,
however, users can provide alternative implementations as
we describe in § 5.4.

Windowing is implemented with the W-ID strategy [40].
When an event arrives, the driver uses an assigner function
that probes the hIndex to identify the list of windows the
event belongs to. Then, it assigns the event to the correspond-
ing state object(s) so that the workload generator can create
the necessary state access requests in a subsequent step. On
trigger, the driver identifies the expired windows using the
vIndex and instructs the workload generator accordingly.

We stress that Gadget maintains only the necessary meta-
data to drive the workload generation process. The driver
does not perform any computation on values and does not
issue requests to the store. More importantly, it does not
generate the actual operator state. To drive a window opera-
tor, for example, it keeps track of active window ids, their
expiration times, and their sizes in number of elements. This
information is sufficient to generate accurate state access
streams while keeping Gadget’s memory footprint low.

5.3 Workload generation

The workload generator is responsible for creating the state
access stream. The sequence of state accesses that an input
event produces depends on the operator logic. For exam-
ple, an event entering a continuous aggregation operator

switch(state) {

case PutState:
generateOp(PUT);
state = GetState;
done = TRUE;
break;

case GetState:
generateOp(GET);
trigger ? state =
break;

case DeleteState:
generateOp(DELETE);
done = TRUE;
break;

DeleteState : state = PutState;

Figure 9. State machine for incremental tumbling window.

incurs a pair of get-put requests to retrieve and update the
aggregated value associated with the event key.

Gadget models operator logic as a finite state machine
and provides built-in implementations for various windows,
joins, and aggregations. The workload generator instantiates
one state machine per state key and executes it according to
the inputs provided by the driver. At each step, all KV store
requests triggered by an event are generated and added to a
FIFO queue before the control flow moves to the next event.
Recall from § 2.3 that KV store requests are represented as
tuples of the form a = (p, k, v, t). The request type p and the
key k are given by the state machine and the event-to-state
key mappings, respectively, whereas v and ¢ are generated
according to user-defined distributions.

Figure 8 shows an example state machine for incremental
tumbling window (FGet represents the final get operation
that retrieves the window contents upon expiration). Each
state (node) in the state machine generates a KV store request
and the transitions are controlled by the Gadget driver.

5.4 Extending Gadget with new streaming operators

Algorithm 1 shows the driver logic in Gadget. For every
batch of events, the driver makes key assignments and oper-
ates the state machines. On watermark, it retrieves expiring
keys from the vIndex, generates final KV store requests,
and cleans up state. To add a new operator, Gadget users
need to implement three methods shown in Algorithm 1: (i)
assingState Machines(), which generates the necessary
mappings of event keys to state keys, run(), which defines
the state machine transitions and request generation, and
terminate(), which “closes” a state machine and cleans up
state. Implementing run() is as simple as defining the state
transitions in a switch statement, like the one shown in
Figure 9 for the incremental tumbling window. All three
methods can contain arbitrarily complex logic and have ac-
cess to hIndex, vIindex, and latest seen watermark.

Based on our experience implementing Flink’s operators
with the Gadget API, we believe extending Gadget with a new

568

state machine is considerably easier than adding instrumen-
tation to a stream processing system. Recording traces from
a stream processing system requires significant development
effort and the expertise to identify all classes and interfaces
in the source code where operators communicate with the
state store. Further, collecting the traces requires configuring
and deploying the full system, possibly multiple times, for
each input source and operator of interest. Instrumenting
the KV store could be another option, though information
about the event keys and their relationship to state keys
is not available at that layer. On the contrary, Gadget can
generate traces in a lightweight manner on the user’s laptop.
The state machines we implemented for most operators were
written in 30 lines of code or less.

5.5 State store performance evaluation

The performance evaluator uses the state access stream to
assess the performance of KV stores in terms of latency and
throughput. The evaluator includes a built-in trace replayer
that replays the state access stream and sends the respective
requests to the underlying store. Besides Gadget-generated
traces, the replayer can also replay workloads generated with
other benchmarks, such as YCSB, and can be configured with
a service rate to speed up or slow down the trace arbitrarily.

By default, state access streams in Gadget include four
types of operations p = {get, put,merge,delete}, which
correspond to the operations supported by RocksDB (and
Lethe). Other KV stores have a different set of operations,
for example, BerkeleyDB and FASTER do not support merge
requests and they instead have implementations for in-place
updates (respectively update and rmw). The performance
evaluator is responsible for translating the requests in the
state access stream to the requests supported by the underly-
ing KV store. To add a new KV store to Gadget, a user needs
to implement a C++ wrapper that maps get, put, merge,
delete operations to the corresponding operations in the
KV store. For example, the RocksDB API has direct calls for
all Gadget operations, while FASTER maps get to read, put
to upsert, and merge to rmw.

6 Evaluation

Our evaluation is structured into three parts. In § 6.1, we
empirically show that Gadget can generate realistic stream-
ing state access workloads that exhibit the same temporal
and spatial characteristics as those observed in real traces. In
§ 6.2, we examine how the trace characteristics can impact
the measured KV store performance. We demonstrate that
when using Gadget workloads for evaluation, the through-
put and latency results are close to those obtained with real
traces. In § 6.3, we use Gadget to evaluate the performance
of four KV stores for eleven streaming workloads. Finally, in
§ 6.4 we evaluate RocksDB with concurrent operators.

Experimental setup. We run all experiments on a dual-
socket machine equipped with 12-core Intel Xeon 4116 CPU
running at 2.1 GHz, 32GB of RAM, and a 512G B PC400 NVMe
(SK hynix). We use Ubuntu 20.04 (Linux kernel version 5.4).
We configure the memory portion of the various KV stores as
follows. Lethe and RocksDB have two 128 M B write buffers
(memtables) and a 64MB cache. We further set the Lethe
delete threshold to 10s. We use the B*Tree version of Berke-
leyDB with a 256 M B cache. The FASTER log and hash index
use 256M B and 64MB respectively. We use the default values
for all other configuration options. We repeat all experiments
at least three times and report mean values.

6.1 How close are Gadget traces to real traces?

In this section, we show that Gadget faithfully simulates
streaming state accesses and can produce workloads that
exhibit the characteristics of real traces. We configure Gadget
to generate workloads for the three representative operators
of § 3.2.3 (continuous aggregation, tumbling incremental
window, and sliding join). In these experiments, we use Borg
as the input stream and configure Gadget with the same
parameters we used for Flink in § 3.1.2. Next, we analyze the
generated traces and compare them to the real ones in terms
of temporal and spatial locality. Figure 10 plots the histogram
of stack distances and the number of unique sequences.

For all operators, Gadget produces a trace that consists of
an almost identical number of unique sequences as the real
trace. The distribution of stack distances in Gadget traces is
also very close to that of real traces. In the case of sliding
join, generating the exact sequence of keys found in the
real trace is challenging, due to non-deterministic source
scheduling. Specifically, the order of state accesses that a
join generates depends on the order the events arrive from
its sources. When simulating a two-input operator, Gadget
pulls events from each source in a round-robin fashion but
in the real stream processing system source tasks might be
scheduled by the OS or by custom scheduling methods.

We repeated this experiment for all operators of § 3 and
the results are similar to those in Figure 10. These results
indicate that Gadget can generate workloads that exhibit the
same degree of temporal and spatial locality as real traces.

6.2 Are Gadget workloads valuable in practice?
While Gadget can closely approximate locality in real state
access traces, in § 4 we empirically demonstrated that YCSB
cannot. In this section, we examine how differences in trace
locality affect the KV store performance in practice. We ex-
pect that a representative workload will produce performance
results close to those achieved when using a real trace.

We use the YCSB workloads of § 4 that are manually tuned
to be as close as possible to those generated by continuous
aggregation, tumbling incremental window, and sliding join
operators. These are the YCSB workloads with sequential,

569

=
% B Gadget X 250
5
q: 10 =1 Real Trace s —*— Gadget
= 8 —=— Real Trace
2] o
2 Tt]
o T 5150
=] 3
S 2100 »
3 g o
i $
o 102 g 50
[=
O ST T S
0 10002000300040005000600070008000 ¥ 3
) 1 5 7
Stack distance
Sequence length
¥
B Gadget &L
Ho o = RealTace | D Sadae
S 3 5300
S g c
Y :
= g 3200
= 2 o
= g o
Q & S
E 102 o100
j=
= 2
0 10000 20000 30000 40000 1 3 5 7
Stack distance
Sequence length
10% X
B Gadget =< — Gadget
= Real Trace n 450
o s Q —— Real Trace
S
B -] c
& Z100 % 350
2
%D : @ 250
I [
T S z
7] = 150
o
0 20000 40000 60000 80000 100000 ¥

1 3 5 7
Sequence length

Stack distance

Figure 10. Stack distances (overlapping bars) and unique sequences
in Gadget and real workloads. Gadget’s traces exhibit very similar
spatial and temporal locality with the real traces.

o
v 102
< g mn B
S = m—YCSB Hot =
5 = = YCSB Latest @10t
= S10° mmm YCSBSeq 3
= m
£ 2 2
S om0 £, |
g ¢ Ll Kin ol
= © e
&) ’_w,c*"o NEL g(?- v&\,go oc\(.9° \'e"“ p{,"a ‘\‘e\e\lo
e
w 8
£ 2 B
op 5108 =
=0z 910!
= 2 >
= £ o |
4 o
E 3 2
= £ |] l] i "
Bl L
0® e < 9“
) e >)
0¥ 5 P e v&o ,d@ .—,16"“ e\@,o“'
et
- g
B ©w10° -
s " e
@ g 3
2 5 2107
= S0 510
= gl 2 I I
S e — lxl lxm xl
0 e <e® 0
XN
o(,Vé \e o e\e\l v&‘yfp \,’c‘(\ g(ﬁ ,406

Figure 11. Throughput and latency measured with Gadget, YCSB,
and real traces. Gadget results are close to those obtained with
real traces. On the contrary, when using manually tuned YCSB
workloads, the reported performance differs by up to an order of
magnitude.

hotspot, and latest distributions. For each operator, we con-
figure the YCSB request ratio, key/value sizes, and number of
keys to be equal to those of the respective real trace. We then
use the real and Gadget traces to drive experiments with all

N RocksDB = Lethe MMM Faster MM BerkeleyDB WM RocksDB S Lethe MM Faster MMM BerkeleyDB

106

6x 10>

Throughput (log)
Latency P99.9(us) (log)

- E
E E
B B
A D

4x10% A D F
Figure 12. Performance evaluation results for all KV stores in
Gadget using three core YCSB workloads.

four KV stores. We replay the workloads with the Gadget
trace replayer on all KV stores and measure throughput and
tail latency (p99.9) for 2M operations.

Figure 11 plots the results. We observe that the perfor-
mance achieved with Gadget workloads is very close to
that measured using the real traces, for all operators and
KV stores. On the contrary, when using the tuned YCSB
workloads, the reported throughput and latency vary signif-
icantly. For BerkeleyDB, YCSB workloads result in 7x lower
throughput for the aggregation and the tumbling window
operators. Further, using YCSB-latest leads to 80x higher tail
latency for FASTER on continuous aggregation. In the case
of sliding join, the same workload causes a major perfor-
mance degradation for all KV stores. Another notable result
is that, according to YCSB workloads, BerkeleyDB offers the
worst throughput for the two incremental operators (contin-
uous aggregation and tumbling window). In reality, however,
BerkeleyDB outperforms both RocksDB and Lethe, which is
consistent with the result we get when using Gadget traces.

These results demonstrate that Gadget is a valuable tool for
accurate performance evaluation of streaming state stores.

6.3 Gadget in action: Evaluating streaming state
stores

Finally, we demonstrate Gadget in action to evaluate the
suitability of four KV stores for streaming state manage-
ment. Without access to Gadget, a developer looking for a
store tailored to streaming workloads might resort to YCSB,
which has been used by several studies for other applica-
tion scenarios [20, 28, 36, 54, 56, 57]. We adopt this approach
as our baseline and use the YCSB core workloads A (50%
reads, 50% writes), D (read latest), and F (read-modify-write).
For this experiment, the key size is 8 bytes (the default key
size of YCSB), the value size is 256 bytes, and we configure
all workloads with 1K keys and 2M operations. Figure 12
shows throughput and latency results for zipfian key dis-
tribution (using uniform distribution produces comparable
results). FASTER achieves higher throughput than all other
KV stores across workloads but exhibits high tail latency
for the read-heavy workload. RocksDB and Lethe outper-
form BerkeleyDB for the read-heavy workload (D), whereas
BerkeleyDB has superior performance for the update-heavy
workloads (A, F).

570

I RocksDB [Lethe [N Faster W BerkeleyDB

106-

105'§

Throughput(ops/s) (log)

o
o e

104—;

‘% o ——
% ETrrrEEEEE
O Tririrrrrirrn

O TIrrrrrrrrn

" [CLITITIIIIIIIIIID
* [Irrrrirrrrrrrn
lsssssssssnsnnnna

>,

» & o & @
* \oo Q \oo o
& O
F &S
ISEIE S

&
&
&0

&
\0

&

O O
S’ N
&“’ & .o\‘ 8\(9 &@
& C \0\ "\\ (9\\

I RocksDB [Lethe [Faster W BerkeleyDB

Latency P99.9(us) (log)
=
o

[usy
o
-

O Tiiiiiiiiiiirs

-
>,
————

> &
° Q\“ &@ °
o‘& .o\(‘ .o\o 5°
& & &
N

<
«
&

-0

P P

(90 90

<
«

O
“»

O
éo\\o R
PR
\6‘0 2

&
é\b

<O
& &

&

Figure 13. Performance evaluation of streaming state stores using
Gadget. RocksDB is outperformed in six out of eleven workloads
but offers robust performance for all operators.

Next, we repeat the experiment using all Gadget work-
loads. For window operators, we configure the length to
5s, the slide to 1s, and the session gap to 2min. Figure 13
plots throughput and tail latency for all KV stores. We see
that RocksDB, the de facto KV store in stream processing
systems, is significantly outperformed in six out of eleven
workloads by both FASTER and BerkeleyDB. The rest five
workloads, where RocksDB and Lethe provide considerably
higher throughput and lower latency than other stores, are
all generated by holistic window-based operators (the only
exception is the holistic session window for which Berke-
leyDB achieves the best throughput). Recall that holistic
window operators collect their input events into buckets
and apply the aggregation function on trigger. As a result, if
the KV store does not support lazy updates (such as merge
in RocksDB), inserting an event to a window requires read-
ing and copying a growing vector. This is the reason why
FASTER and BerkeleyDB cannot achieve high throughput
for holistic operators.

Overall, RocksDB and Lethe provide robust results: their
tail latency does not exceed 100us for any workload and
remains below 10us in many cases. If we can only select a
single store for streaming state management, RocksDB is
indeed the most sensible choice available today.

6.4 Evaluating concurrent operators

Gadget is designed according to the principles of the dataflow
computation model, which guarantees a single writer task
per key in the input stream. Even so, the model does not re-
strict the store’s physical deployment and it permits multiple
tasks concurrently accessing the same store. This setting can
be easily evaluated by running multiple Gadget instances
concurrently and configuring them all to access the same
store instance. We perform a simple experiment to demon-
strate this scenario.

We generate two workloads of 1M operations for (i) an in-
cremental sliding window and (ii) a holistic sliding window
operator. We configure both operators with a 5s window
length and a 1s slide. Figure 14 shows operator performance
when RocksDB is accessed by a single streaming operator
and when it is concurrently accessed by two operators of
the same (Concurrent-A) and different types (Concurrent-B).
We observe that the incremental window operator has 1.7x
lower throughput and 1.5X higher latency when sharing
the store with another operator of the same type, while the
impact is less significant when it is co-located with a holis-
tic window. For the holistic window, co-location results in
~ 1.4x lower throughput and ~ 1.03x higher latency com-
pared to when accessing the KV store instance in isolation.

6.5 Discussion

Our experimental results reveal some interesting patterns
in the behavior of KV stores when used for streaming work-
loads. We find that LSM-trees perform well for holistic aggre-
gates because they support lazy updates. Recall that holistic
operators need to collect window contents in a data structure
of variable size. RocksDB can efficiently append new values
to the log and lazily collect the window contents on trigger.
On the other hand, FASTER and BerkeleyDB can only sup-
port such an operation by reading, updating, and writing
vectors of growing size. Hash-based and B*-trees support in-
place updates and are better for incremental operations. For
example, FASTER outperforms RocksDB by an order of mag-
nitude for such operators due to efficient O(1) lookups and
in-place updates. These results suggest there is a wide gap
between the current performance of streaming state man-
agement and what could be achieved with workload-aware
approaches. Streaming systems could improve throughput
and latency by an order of magnitude if they switch to hash-
based or B*-tree based stores for incremental operations.
This is an interesting research direction for future work.

7 Related work

Workload Characterization. Even though the literature
in workload characterization is rich, streaming state access

571

Single operator Single operator

le5
I B Concurrent-A - B Concurrent-A
@ s Concurrent-B 260 W Concurrent-B
Q6 >
= o
=
o
34 a 40
< >
= [9)
22 $20
2" o £
Fo i S, N £
Holistic Incremental Holistic Incremental

Figure 14. Performance of concurrent operators on the same
RocksDB instance. Concurrent-A shows performance when co-
locating two operators of the same type. Concurrent-B shows per-
formance when co-locating two operators of different types.

traces have not been analyzed before. Past studies have con-
sidered the characteristics of web requests [15], social net-
work services [24, 55], distributed file systems [21], VM de-
ployments in cloud platforms [32], in-memory KV stores [19],
and others. Various metrics have been used to understand
and optimize performance, including request composition,
KV-pair hotness distribution, key-space locality and tem-
poral patterns, key and value sizes, working set sizes, and
TTL. For example, Cao et al. [24] show that Facebook work-
loads exhibit high key-space locality, while Wires et al. [53]
estimate miss ratio with an optimized stack distance data
structure. In this work, we additionally consider metrics that
are unique to streaming state store workloads, such as event
and key space amplification. Further, we study how stream
and operator properties, such as watermark frequency and
window length, affect the corresponding metrics.

KV store benchmarks. YCSB [31] is the most widely-used
benchmark for KV stores. It provides various workloads with
different request ratios and key distributions. Many previous
studies have shown that YCSB workloads do not exhibit the
characteristics of real workloads for several application ar-
eas [22, 24, 45]. Our results are in agreement with and extend
previous findings for streaming state access workloads. We
also show that YCSB can be tuned to produce workloads with
either spatial or temporal locality but not both and not close
to the degree exhibited in streaming traces. Cao et al. [24]
propose a new benchmark to generate request traces that
preserve the key-space locality and temporal patterns of real
traces at Facebook, but their tool is tailored around RocksDB
and cannot be used to evaluate other KV stores. Pitchumani
et al. [45] extend YCSB to support configurable inter-arrival
times between requests, a functionality that is also provided
by Gadget. Other benchmarks, such as LinkBench [18] and
BigDataBench [51], do not consider temporal patterns and,
thus, cannot generate realistic state access streams. Most
importantly, none of the aforementioned tools can be used
to assess the impact of the input stream characteristics (such
as watermark frequency, window sizes, late events, etc.) to
the KV store performance.

8 Discussion and future work

The results of our characterization study and our experience
from building and using Gadget reveal many interesting
opportunities for future work. Gadget facilitates deeper ex-
perimental analysis of streaming state stores and can enable
automatic KV store configuration, evaluation of novel store
designs, and optimization of stateful operators. For instance,
our temporal locality analysis could be used to provide au-
tomatic cache size tuning in state stores and our spatial
locality findings can guide the design of novel prefetching
mechanisms. Another interesting direction is to control the
frequency of compactions in LSM-based stores by leverag-
ing the fact that delete operations in streaming workloads
are highly predictable. Finally, even though we have consid-
ered embedded state in this paper, some streaming frame-
works, such as MillWheel [13] and Pravega [10], rely on
distributed KV stores. We believe that Gadget can be easily
extended to support evaluation of external state management
approaches [49] by running multiple concurrent instances
of the workload generator and implementing the respective
KV store wrappers.

Acknowledgements

We thank the anonymous EuroSys reviewers for their in-
sightful comments and our shepherd Jean-Pierre Lozi for his
guidance in improving the paper. This work was partially
supported by a Google DAPA award.

References

[1] Alibaba Realtime Compute. https://www.alibabacloud.com/product/r
ealtime-compute. Last access: October 2021.

[2] Amazon Kinesis. https://aws.amazon.com/kinesis/. Last access: Octo-
ber 2021.

[3] Apache Flink. https://flink.apache.org/. Last access: October 2021.

[4] Azure Stream Analytics. https://azure.microsoft.com/en-us/services/

stream-analytics/. Last access: October 2021.

Berkeley DB. https://www.oracle.com/database/technologies/related

/berkeleydb.html. Last access: October 2021.

Google Cloud Dataflow. https://cloud.google.com/dataflow. Last

access: October 2021.

How to manage your RocksDB memory size in Apache Flink.

https://www.ververica.com/blog/manage-rocksdb-memory-size-ap

ache-flink. Last access: October 2021.

Kafka Streams Internal Data Management. https://cwiki.apache.org

/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Mana

gement. Last access: October 2021.

NYC TLC Trip Record Data. https://www1.nyc.gov/site/tlc/about/tlc-

trip-record-data.page. Last access: October 2021.

Pravega. https://pravega.io. Last access: October 2021.

RocksDB. https://rocksdb.org/. Last access: October 2021.

The RocksDB State Backend. https://ci.apache.org/projects/f

link/flink-docs-release-1.9/ops/state/state_backends.html#the-

rocksdbstatebackend. Last access: October 2021.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. MillWheel: Fault-

tolerant Stream Processing at Internet Scale. Proceedings of the the

VLDB Endowment, 6(11):1033-1044, Aug. 2013.

[5

—

572

[14] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-
order Data Processing. Proceedings of the VLDB Endowment, 2015.

V. Almeida, A. Bestavros, M. Crovella, and A. De Oliveira. Character-
izing reference locality in the www. In Fourth International Conference
on Parallel and Distributed Information Systems, pages 92-103. IEEE,
1996.

A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts. Linear road: A stream data manage-
ment benchmark. In M. A. Nascimento, M. T. Ozsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, editors, (e)Proceedings of the
Thirtieth International Conference on Very Large Data Bases, VLDB 2004,
Toronto, Canada, August 31 - September 3 2004, pages 480-491. Morgan
Kaufmann, 2004.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
1. Stoica, and M. Zaharia. Structured streaming: A declarative api
for real-time applications in apache spark. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD 18, pages
601-613, New York, NY, USA, 2018. ACM.

T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
Linkbench: A database benchmark based on the facebook social graph.
In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD 13, page 1185-1196, New York, NY,
USA, 2013. Association for Computing Machinery.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE jJoint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS °12,
page 53-64, New York, NY, USA, 2012. Association for Computing
Machinery.

M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. SPEICHER: Securing lsm-based key-value stores using
shielded execution. In 17th USENIX Conference on File and Storage
Technologies (FAST 19), pages 173-190, Boston, MA, Feb. 2019. USENIX
Association.

M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout. Measurements of a distributed file system. In Proceedings
of the thirteenth ACM symposium on Operating systems principles, pages
198-212, 1991.

B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu,
M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter, and G. R. Ganger.
The cachelib caching engine: Design and experiences at scale. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 753-768. USENIX Association, Nov. 2020.

L. Bol’'Shev and N. Smirnov. Tables in mathematical statistics. Tables
in Mathematical Statistics [in Russian, 1965.

Z. Cao, S. Dong, S. Vemuri, and D. H. Du. Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies (FAST 20), pages
209-223, Santa Clara, CA, Feb. 2020. USENIX Association.

P. Carbone, S. Ewen, G. Fora, S. Haridi, S. Richter, and K. Tzoumas.
State management in Apache Flink®: Consistent Stateful Distributed
Stream Processing. Proceedings of the VLDB Endowment, 10(12):1718-
1729, Aug. 2017.

P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos. Beyond
analytics: the evolution of stream processing systems. In Proceedings
of the 2020 ACM SIGMOD international conference on Management of
data, pages 2651-2658, 2020.

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Integrating Scale out and Fault Tolerance in Stream Processing Using
Operator State Management. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD °13, pages
725-736, New York, NY, USA, 2013. ACM.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

https://www.alibabacloud.com/product/realtime-compute
https://www.alibabacloud.com/product/realtime-compute
https://aws.amazon.com/kinesis/
https://flink.apache.org/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://cloud.google.com/dataflow
https://www.ververica.com/blog/manage-rocksdb-memory-size-apache-flink
https://www.ververica.com/blog/manage-rocksdb-memory-size-apache-flink
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://pravega.io
https://rocksdb.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.9/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-release-1.9/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-release-1.9/ops/state/state_backends.html#the-rocksdbstatebackend

(28]

[29]

(30

[t

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter,
and M. Barnett. FASTER: A Concurrent Key-Value Store with In-
Place Updates. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 275-290, New York, NY, USA,
2018. ACM.

G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang,
K. Wilfong, T. Williamson, and S. Yilmaz. Realtime data processing
at facebook. In Proceedings of the 2016 International Conference on
Management of Data, pages 1087-1098. ACM, 2016.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. Peng, et al. Benchmarking streaming
computation engines at yahoo! Tech. Rep., 2015.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 10, pages 143-154,
New York, NY, USA, 2010. ACM.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini. Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 153-167, 2017.

M. Dayarathna and S. Perera. Recent advancements in event process-
ing. ACM Computing Surveys (CSUR), 51(2):1-36, 2018.

A.Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion:
self-regulating stream processing in heron. Proceedings of the VLDB
Endowment, 10(12):1825-1836, 2017.

M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris, and
T. Roscoe. Megaphone: Latency-conscious state migration for dis-
tributed streaming dataflows. Proceedings of the VLDB Endowment,
12(9), 2019.

O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y. ri Choi. Slm-db:
Single-level key-value store with persistent memory. In 17th USENIX
Conference on File and Storage Technologies (FAST 19), pages 191-205,
Boston, MA, Feb. 2019. USENIX Association.

V. Kalavri and J. Liagouris. In support of workload-aware streaming
state management. In 12th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 20). USENIX Association, July 2020.

J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl. Benchmarking distributed stream data processing systems.
In 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16-19, 2018, pages 1507-1518. IEEE Computer Soci-
ety, 2018.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.
Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at
scale. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 239-250, 2015.

J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics
and evaluation techniques for window aggregates in data streams.
In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 311-322, 2005.

R. L. Mattson, J. Gecsei, D. R. Slutz, and L. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78-117,
1970.

F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential dataflow.
In CIDR, 2013.

573

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Y. Mei, L. Cheng, V. Talwar, M. Y. Levin, G. Jacques-Silva, N. Simha,
A. Banerjee, B. Smith, T. Williamson, S. Yilmaz, et al. Turbine: Face-
book’s service management platform for stream processing. In 2020
IEEE 36th International Conference on Data Engineering (ICDE), pages
1591-1602. IEEE, 2020.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
1. Gupta, and R. H. Campbell. Samza: stateful scalable stream process-
ing at linkedin. Proceedings of the VLDB Endowment, 10(12):1634-1645,
2017.

R. Pitchumani, S. Frank, and E. L. Miller. Realistic request arrival
generation in storage benchmarks. In 2015 31st Symposium on Mass
Storage Systems and Technologies (MSST), pages 1-10, 2015.

C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces:
format+ schema. Google Inc., White Paper, pages 1-14, 2011.

S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis. Lethe: A
Tunable Delete-Aware LSM Engine. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20,
page 893-908, New York, NY, USA, 2020. Association for Computing
Machinery.

U. Srivastava and J. Widom. Flexible time management in data stream
systems. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 263-274,
2004.

Q.-C. To, J. Soto, and V. Markl. A survey of state management in big
data processing systems. The VLDB Journal, 27(6):847-872, Dec. 2018.
P. Tucker, K. Tufte, V. Papadimos, and D. Maier. NEXMark—A Bench-
mark for Queries over Data Streams. Technical report, OGI School of
Science & Engineering at OHSU, 2002.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. Bigdatabench:
A big data benchmark suite from internet services. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), pages 488-499, 2014.

J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, and A. Warfield. Charac-
terizing storage workloads with counter stacks. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
14), pages 335-349, 2014.

J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield. Char-
acterizing storage workloads with counter stacks. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pages 335-349, Broomfield, CO, Oct. 2014. USENIX Association.
X. Wu, F. Ni, L. Zhang, Y. Wang, Y. Ren, M. Hack, Z. Shao, and S. Jiang.
Nvmcached: An nvm-based key-value cache. In Proceedings of the 7th
ACM SIGOPS Asia-Pacific Workshop on Systems, APSys "16, New York,
NY, USA, 2016. Association for Computing Machinery.

J. Yang, Y. Yue, and K. V. Rashmi. A large scale analysis of hundreds
of in-memory cache clusters at twitter. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages
191-208. USENIX Association, Nov. 2020.

S. Zheng, M. Hoseinzadeh, and S. Swanson. Ziggurat: A tiered file
system for non-volatile main memories and disks. In 17th USENIX
Conference on File and Storage Technologies (FAST 19), pages 207-219,
Boston, MA, Feb. 2019. USENIX Association.

T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch. Saving cash
by using less cache. In Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Ccomputing, HotCloud’12, page 3, USA, 2012. USENIX
Association.

A Artifact Appendix
A.1 Abstract

Gadget is a benchmark for accurate and easy evaluation of
KV stores used for stream processing systems. Gadget digests
event stream(s) and simulates the internals of a stream pro-
cessing system to generate realistic state access workloads.
It then issues state access requests to KV stores and collects
performance measurements on latency and throughput.

A.2 Access links & Requirements

A.2.1 Access links. Gadget is accessible at the following
GitHub link:

https://github.com/CASP-Systems-BU/Gadget or using the
following DOI:

10.5281/zenodo. 6347736

(https://zenodo.org/record/6347736).

A.2.2 Hardware dependencies. We run all our experi-
ments on a dual-socket machine equipped with a 12-core
Intel Xeon 4116 CPU running at 2.1 GHz, 32 GB of RAM, and
512GB PC400 NVMe (SK Hynix) hard disk.

A.2.3 Software dependencies. We ran the experiments
on Ubuntu 20.04 (Linux kernel version 5.4). To evaluate a
KV store with Gadget, the KV store must be installed on the
system. We provide a container (Gadget container), which
hosts all KV stores evaluated in this project (RocksDB, Lethe,
Faster, and BerkeleyDB).

A.3 Reproducing the Paper Results
Please take the following steps to reproduce the paper results:
1. Instantiate the following public profile on CloudLab:
https://www.cloudlab.us/p/easyabi/gadget50
This profile gets an m510 machine from the Cloud-
Lab Utah cluster, downloads docker, and installs all

574

required software. Note that the CloudLab m510 ma-
chine does not match the hardware used in the evalu-
ation of this paper, but it is close enough to reproduce
the main paper claims.

2. Inside the machine, perform the following commands
to download the Gadget container from the docker
hub and run the container:

cd /local
sudo sh init.sh
3. Inside the container, perform the following commands
to conduct the experiments:
cd /home/gadget/build/src/
./runAllExprs.sh
This command runs all experiments. Once finished, the
results will be in the following folders: firstExpr/
secondExpr/ thirdexpr/. The experiments should
take around eight hours to complete.
More detailed instructions for reproducing the paper re-
sults can be found at: https://github.com/CASP-Systems-
BU/Gadget/tree/main/reproduceEuroSysResults.

A.4 Install and Run Gadget

Please see https://github.com/CASP-Systems-BU/Gadget
for detailed instructions of installing and running Gadget.

A.4.1 Configure Gadget. Please see https://github.com
/CASP-Systems-BU/Gadget/blob/main/configs for a detailed
description of Gadget configuration.

A.4.2 Experiments with Gadget. Please see https://gith
ub.com/CASP-Systems-BU/Gadget/blob/main/experiments
for a detailed description of performing experiments with
Gadget.

A.4.3 Gadget Source Code. Please see https://github.c
om/CASP-Systems-BU/Gadget/blob/main/src for a detailed
description of the Gadget source code.

https://github.com/CASP-Systems-BU/Gadget
https://zenodo.org/record/6347736
https://www.cloudlab.us/p/easyabi/gadget50
https://github.com/CASP-Systems-BU/Gadget/tree/main/reproduceEuroSysResults
https://github.com/CASP-Systems-BU/Gadget/tree/main/reproduceEuroSysResults
https://github.com/CASP-Systems-BU/Gadget
https://github.com/CASP-Systems-BU/Gadget/blob/main/configs
https://github.com/CASP-Systems-BU/Gadget/blob/main/configs
https://github.com/CASP-Systems-BU/Gadget/blob/main/experiments
https://github.com/CASP-Systems-BU/Gadget/blob/main/experiments
https://github.com/CASP-Systems-BU/Gadget/blob/main/src
https://github.com/CASP-Systems-BU/Gadget/blob/main/src

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Streaming dataflow concepts
	2.2 Streaming operators
	2.3 Streaming state management

	3 Characterizing state access workloads
	3.1 Methodology and setup
	3.2 Analysis of streaming state access workloads

	4 Limitations of YCSB workloads
	5 The Gadget benchmark harness
	5.1 Event generation
	5.2 Driver
	5.3 Workload generation
	5.4 Extending Gadget with new streaming operators
	5.5 State store performance evaluation

	6 Evaluation
	6.1 How close are Gadget traces to real traces?
	6.2 Are Gadget workloads valuable in practice?
	6.3 Gadget in action: Evaluating streaming state stores
	6.4 Evaluating concurrent operators
	6.5 Discussion

	7 Related work
	8 Discussion and future work
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Access links & Requirements
	A.3 Reproducing the Paper Results
	A.4 Install and Run Gadget

