
Megaphone: Latency-conscious state migration for
distributed streaming dataflows

Moritz Hoffmann Andrea Lattuada Frank McSherry
Vasiliki Kalavri John Liagouris Timothy Roscoe

Systems Group, ETH Zurich

first.last@inf.ethz.ch

ABSTRACT
We design and implement Megaphone, a data migration mechanism
for stateful distributed dataflow engines with latency objectives.
When compared to existing migration mechanisms, Megaphone has
the following differentiating characteristics: (i) migrations can be
subdivided to a configurable granularity to avoid latency spikes, and
(ii) migrations can be prepared ahead of time to avoid runtime coor-
dination. Megaphone is implemented as a library on an unmodified
timely dataflow implementation, and provides an operator interface
compatible with its existing APIs. We evaluate Megaphone on estab-
lished benchmarks with varying amounts of state and observe that
compared to naïve approaches Megaphone reduces service latencies
during reconfiguration by orders of magnitude without significantly
increasing steady-state overhead.

PVLDB Reference Format:
Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. Megaphone: Latency-conscious state migra-
tion for distributed streaming dataflows. PVLDB, 12(9): 1002–1015, 2019.
DOI: https://doi.org/10.14778/3329772.3329777

1 Introduction
Distributed stream processing jobs are long-running dataflows that
continually ingest data from sources with dynamic rates and must
produce timely results under variable workload conditions [1, 3].
To satisfy latency and availability requirements, modern stream

processors support consistent online reconfiguration, in which they
update parts of a dataflow computation without disrupting its exe-
cution or affecting its correctness. Such reconfiguration is required
during rescaling to handle increased input rates or reduce operational
costs [15, 16], to provide performance isolation across different
dataflows by dynamically scheduling queries to available workers, to
allow code updates to fix bugs or improve business logic [7, 9], and
to enable runtime optimizations like execution plan switching [30]
and straggler and skew mitigation [14].

Streaming dataflow operators are often stateful, partitioned across
workers by key, and their reconfiguration requires state migration:
intermediate results and data structures must be moved from one
set of workers to another, often across a network. Existing state
migrationmechanisms for stream processors either pause and resume

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3329772.3329777

100

101

102

103

104

105

 780  800  820  840

L
at

en
cy

 [
m

s]
Time [s]

All-at-once (prior work)

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (fluid)

 780  800  820  840

Time [s]

Megaphone (optimized)

Figure 1: A comparison of service latencies in prior coarse-grained
migration strategies (all-at-once) with two of Megaphone’s fine-
grained migration strategies (fluid and optimized), for a workload
that migrates one billion keys consisting of 8GiB of data.

parts of the dataflow (as in Flink [10], Dhalion [16], and SEEP [15])
or launch new dataflows alongside the old configuration (as for
example in ChronoStream [28] and Gloss [24]). In both cases state
moves “all-at-once,” with either high latency or resource usage
during the migration.

State migration has been extensively studied for distributed data-
bases [8, 11, 13, 12]. Notably, Squall [12] uses transactions to mul-
tiplex fine-grained state migration with data processing. These tech-
niques are appealing in spirit, but use mechanisms (transactions,
locking) not available in high-throughput stream processors and are
not directly applicable without significant performance degradation.

In this paper we present Megaphone, a technique for fine-grained
migration in a stream processor which delivers maximum latencies
orders of magnitude lower than existing techniques, based on the
observation that a stream processor’s structured computation and
logical timestamps allow the system to plan fine-grained migra-
tions. Megaphone can specify migrations on a key-by-key basis, and
then optimizes this by batching at varying granularities; as Figure 1
shows, the improvement over all-at-once migration can be dramatic.
This paper is an extended version of a preliminary workshop publi-
cation [19]. In this paper, we describe a more general mechanism,
further detail its implementation, and evaluate it more thoroughly
on realistic workloads.
Our main contribution is fluid migration for stateful streaming

dataflows: a state migration technique that enables consistent on-
line reconfiguration of streaming dataflows and smoothens latency
spikes without using additional resources (Section 3) by employing
fine-grained planning and coordination through logical timestamps.
Additionally, we design and implement an API for reconfigurable
stateful timely dataflow operators that enables fluid migration to be



controlled simply through additional dataflow streams rather than
through changes to the dataflow runtime itself (Section 4). Finally,
we show that Megaphone has negligible steady-state overhead and
enables fast direct state movement using the NEXMark benchmarks
suite and microbenchmarks (Section 5).

Megaphone is built on timely dataflow,1 and is implementedpurely
in library code, requiring no modifications to the underlying system.
We first review existing state migration techniques in streaming
systems, which either cause performance degradation or require
resource overprovisioning. We also review live migration in DBMSs
and identify the technical challenges to implement similar methods
in distributed stream processors (Section 2).

2 Background and Motivation
A distributed dataflow computation runs as a physical execution
plan which maps operators to provisioned compute resources (or
workers). The execution plan is a directed graph whose vertices are
operator instances (each on a specific worker) and edges are data
channels (within and across workers). Operators can be stateless
(e.g., filter, map) or stateful (e.g., windows, rolling aggregates). State
is commonly partitioned by key across operator instances so that
computations can be executed in a data-parallel manner. At each
point in time of a computation, each worker (with its associated
operator instances) is responsible for a set of keys and their associated
state.
State migration is the process of changing the assignment of

keys to workers and redistributing respective state accordingly. A
good state migration technique should be non-disruptive (minimal
increase in response latency during migration), short-lived (migra-
tion completes within a short period of time), and resource-efficient
(minimal additional resources required during the migration).

We present an overview of existing state migration strategies in
distributed streaming systems and identify their limitations. We then
review live state migration methods adopted by database systems
and provide an intuition into Megaphone’s approach to bring such
migration techniques to streaming dataflows.

2.1 State migration in streaming systems
Distributed stream processors, including research prototypes and
production-ready systems, use one of the following three state mi-
gration strategies.

Stop-and-restart A straight-forward way to realize state migra-
tion is to temporarily stop program execution, safely transfer state
when no computation is being performed, and restart the job once
state redistribution is complete. This approach is most commonly
enabled by leveraging existing fault-tolerance mechanisms in the
system, such as global state checkpoints. It is adopted by Spark
Streaming [29], Structured Streaming [7], and Apache Flink [9].

Partial pause-and-resume In many reconfiguration scenarios only
one or a small number of operators need to migrate state, and halting
the entire dataflow is usually unnecessary. An optimization first intro-
duced in Flux [26] and later adopted in variations by Seep [15], IBM
Streams [2], StreamCloud [17], Chi [21], and FUGU [18], pauses the
computation only for the affected dataflow subgraph. Operators not
participating in the migration continue without interruption. This
approach can use fault-tolerance checkpoints for state migration as
in [15, 21] or state can be directly migrated between operators as
in [17, 18].

1https://github.com/frankmcsherry/timely-dataflow

Dataflow Replication To minimize performance penalties, some
systems replicate the whole dataflow or subgraphs of it and execute
the old and new configurations in parallel until migration is complete.
ChronoStream [28] concurrently executes two or more computation
slices and can migrate an arbitrary set of keys between instances of a
single dataflow operator. Gloss [24] follows a similar approach and
gathers operator state during a migration in a centralized controller
using an asynchronous protocol.
Current systems fall short of implementing state migration in a

non-disruptive and cost-efficient manner. Existing stream processors
migrate state all-at-once, but differ in whether they pause the existing
computation or start a concurrent computation. As Figure 1 shows,
strategies that pause the computation can cause high latency spikes,
especially when the state to be moved is large. On the other hand,
dataflow replication techniques reduce the interruption, but at the
cost of high resource requirements and required support for input du-
plication and output de-duplication. For example, for ChronoStream
to move from a configuration with x instances to a new one with y
instances, x + y instances are required during the migration.

2.2 Live migration in database systems
Database systems have implemented optimizations that explicitly
target limitations we have identified in the previous section, namely
unavailability and resource requirements. Even though streaming
dataflow systems differ significantly from databases in terms of data
organization, workload characteristics, latency requirements, and
runtime execution, the fundamental challenges of state migration
are common in both setups.
Albatross [11] adopts VM live migration techniques and is fur-

ther optimized in [8] with a dynamic throttling mechanism, which
adapts the data transfer rate during migration so that tenants in the
source node can always meet their SLOs. Prorea [25] combines
push-based migration of hot pages with pull-based migration of
cold pages. Zephyr [13] proposes a technique for live migration in
shared-nothing transactional databases which introduces no system
downtime and does not disrupt service for non-migrating tenants.

The most sophisticated approach is Squall [12], which interleaves
state migration with transaction processing by (in part) using transac-
tion mechanisms to effect the migration. Squall introduces a number
of interesting optimizations, such as pre-fetching and splitting recon-
figurations to avoid contention on a single partition. In the course
of a migration, if migrating records are needed for processing but
not yet available, Squall introduces a transaction to acquire the
records (completing their migration). This introduces latency along
the critical path, and the transaction locking mechanisms can im-
pede throughput, but the system is neither paused nor replicated. To
the best of our knowledge, no stream processor implements such a
fine-grained migration technique.

2.3 Live migration for streaming dataflows
Applying existing fine-grained live migration techniques to a stream-
ing engine is non-trivial. While systems like Squall target OLTP
workloads with short-lived transactions, streaming jobs are long-
running. In such a setting, Squall’s approach to acquire a global
lock during initialization is not a viable solution. Further, many of
Squall’s remedies are reactive rather than proactive (because it must
support general transactions whose data needs are hard to anticipate),
which can introduce significant latency on the critical path.

The core idea behind Megaphone’s migration mechanism is to
multiplex fine-grained state migration with data processing, coor-
dinated using logical time common in stream processors. This is a
proactive approach to migration that relies on the prescribed struc-
ture of streaming computations, and the ability of stream processors

https://github.com/frankmcsherry/timely-dataflow


Logical graph A H(m) B C

Worker 0 A0 B0 C0

Worker 1 A1 B1 C1

Worker 2 A2 B2 C2

Worker 3 A3 B3 C3

×

Pr
oc
es
s0

Pr
oc
es
s1

Figure 2: Timely dataflow execution model

to coordinate with high frequency using logical time. Such sys-
tems, including Megaphone, avoid the need for system-wide locks
by pre-planning the rendezvous of data at specific workers.

3 State migration design
Megaphone’s features rely on core streaming dataflow concepts
such as logical time, progress tracking, data-parallel operators, and
state management. Basic implementations of these concepts are
present in all modern stream processors, such as Apache Flink [10],
Millwheel [5], and Google Dataflow [6]. In the following, we rely
on the Naiad [22] timely dataflow model as the basis to describe
the Megaphone migration mechanism. Timely dataflow natively
supports a superset of dataflow features found in other systems in
their most general form.

3.1 Timely dataflow concepts
A streaming computation in Naiad is expressed as a timely dataflow:
a directed (possibly cyclic) graph where nodes represent stateful
operators and edges represent data streams between operators. Each
data record in timely dataflow bears a logical timestamp, and oper-
ators maintain or possibly advance the timestamps of each record.
Example timestamps include integers representing milliseconds or
transaction identifiers, but in general can be any set of opaque values
for which a partial order is defined. The timely dataflow system
tracks the existence of timestamps, and reports as processed time-
stamps no longer exist in the dataflow, which indicates the forward
progress of a streaming computation.
A timely dataflow is executed by multiple workers (threads) be-

longing to one or more OS processes, which may reside in one
or more machines of a networked cluster. Workers communicate
with each other by exchanging messages over data channels (shared-
nothing paradigm) as shown in Figure 2. Each worker has a local
copy of the entire timely dataflow graph and executes all operators in
this graph on (disjoint) partitions of the dataflow’s input data. Each
worker repeatedly executes dataflow operators concurrent with other
workers, sending and receiving data across data exchange channels.
Due to this asynchronous execution model, the presence of concur-
rent “in-flight” timestamps is the rule rather than the exception.
As timely workers execute, they communicate the numbers of

logical timestamps they produce and consume to all other workers.
This information allows each worker to determine the possibility
that any dataflow operator may yet see any given timestamp in its
input. The timely workers present this information to operators in
the form of a frontier:

Definition 1. A frontier F is a set of logical timestamps such that
1. no element of F is strictly greater than another element of F,
2. all timestamps on messages that may still be received are

greater than or equal to some element of F.

In many simple settings a frontier is analogous to a low water-
mark in streaming systems like Flink, which indicates the single
smallest timestamp that may still be received. In timely dataflow a
frontier must be set-valued rather than a single timestamp because
timestamps may be only partially ordered.
Operators in timely dataflow may retain capabilities that allow

the operator to produce output records with a given timestamp. All
receivedmessages comebearing sucha capability for their timestamp.
Each operator can choose to drop capabilities, or downgrade them
to later timestamps. The timely dataflow system tracks capabilities
held by operators, and only advances downstream frontiers as these
capabilities advance.
Timely dataflow frontiers are the main mechanism for coordina-

tion between otherwise asynchronousworkers. The frontiers indicate
when we can be certain that all messages of a certain timestamp
have been received, and it is now safe to take any action that needed
to await their arrival. Importantly, frontier information is entirely
passive and does not interrupt the system execution; it is up to op-
erators to observe the frontier and determine if there is some work
that cannot yet be performed. This enables very fine-grained coordi-
nation, without system-level intervention. Further technical details
of progress tracking in timely dataflows can be found in [22, 4].

We will use timely dataflow frontiers to separate migrations into
independent arbitrarily fine-grained timestamps and logically coordi-
nate data movement without using coarse-grained pause-and-resume
for parts of the dataflow.

3.2 Migration formalism and guarantees
To frame themechanismwe introduce for livemigration in streaming
dataflows, we first lay out some formal properties that define correct
and live migration. In the interest of clarity we keep the descriptions
casual, but each can be formalized.
We consider stateful dataflow operators that are data-parallel

and functional. Specifically, an operator acts on input data that are
structured as (key,val) pairs, each bearing a logical timestamp. The
input is partitioned by its key and the operator acts independently on
each input partition by sequentially applying each val to its state in
timestamp order. For each key, for each val in timestamp order, the
operator may change its per-key state arbitrarily, produce arbitrary
outputs as a result, and it may schedule further per-key changes at
future timestamps (in effect sending itself a new, post-dated val for
this key).

operatorkey : (state, val) → (state′, [outputs], [(vals, times)])

The output triples are the new state, the outputs to produce, and
future changes that should be presented to the operator.
For a specific operator, we can describe the correctness of an

implementation. We introduce the notation of in advance of as
follows.

Definition 2 (in advance of). A timestamp t is in advance of
1. a timestamp t ′ if t is greater than or equal to t ′;
2. a frontier F if t is greater than or equal to an element of F.

In-advance-of corresponds to the less-or-equal relation for par-
tially ordered sets. For example, a time 6 is in advance of 5.

Property 1 (Correctness). The correct outputs through time are
the timestamped outputs that result from each key from the time-
stamp-ordered application of input and post-dated records bearing
timestamp not in advance of time.



For each migrateable operator, we also consider a configuration
function, which for each timestamp assigns each key to a specific
worker.

configuration : (time, key) → worker

For example, the configuration function could assign a key a to
worker 2 for times [4,8) and to worker 1 for times [8,16).

With a specific configuration, we can describe the correctness of
a migrating implementation.

Property 2 (Migration). A computation ismigrated according to
configuration if all updates to keywith timestamp time are performed
at worker configuration(time, key).

A configuration function can be represented in many ways, which
we will discuss further. In our context we will communicate any
changes using a timely dataflow stream, in which configuration
changes bear the logical timestamp of their migration. This choice
allows us to use timely dataflow’s frontier mechanisms to coordinate
migrations, and to characterize liveness.

Property 3 (Completion (liveness)). A migrating computation is
completing if, once the frontiers of both the data input stream
and configuration update stream reach F, then (with no further
requirements of the input) the output frontier of the computation
will eventually reach F.

Our goal is to produce a mechanism that satisfies each of these
three properties: Correctness, Migration, and Completion.

3.3 Configuration updates
State migration is driven by updates to the configuration function
introduced in 3.2. In Megaphone these updates are supplied as data
along a timely dataflow stream, each bearing the logical timestamp
at which they should take effect. Informally, configuration updates
have the form

update : (time, key, worker)

indicating that as of time the state and values associated with key
will be located at worker, and that this will hold until a new update
to key is observed with a greater timestamp. For example, an update
could have the form of (time: 16, key: a, worker: 0), which would
define the configuration function for times of 16 and beyond.

As configuration updates are simply data, the user has the ability
to drive a migration process by introducing updates as they see fit. In
particular, they have the flexibility to break down a large migration
into a sequence of smaller migrations, each of which have lower
duration and between which the system can process data records.
For example, to migrate from one configuration C1 to another C2,
a user can use different migration strategies to reveal the changes
from C1 to C2:
All-at-once migration To simultaneously migrate all keys from C1

toC2, a user could supply all changed (time,key,worker) triples
with one common time. This is essentially an implementation
of the partial pause-and-restartmigration strategy of existing
streaming systems as described in Section 2.1.

Fluid migration To smoothly migrate keys from C1 to C2, a user
could repeatedly choose one key changed from C1 to C2,
introduce the new (time, key, worker) triple with the current
time, and await the migration’s completion before choosing
the next key.

Batched migration To trade off low latency against high through-
put, a user can produce batches of changed (time, key,worker)
triples with a common time, awaiting the completion of the
batch before introducing the next batch of changes.

L
(time, key, value)

(a) Original L-operator in a dataflow.

F

S

L

re-configuration

(time, key, value)

Output 
Probe

state

routing table

data

(b) Megaphone’s operator structure in a dataflow.

Figure 3: Overview of Megaphone’s migration mechanism

We believe that this approach to reconfiguration, as user-supplied
data, opens a substantial design space. Not only can users perform
fine-grainedmigration, they can prepare future migrations at specific
times, and drive migrations based on timely dataflow computations
applied to system measurements. Most users will certainly need
assistance in performing effective migration, and we will evaluate
several specific instances of the above strategies.

3.4 Megaphone’s mechanism
We now describe how to create a migrateable version of an opera-
tor L implementing some deterministic, data-parallel operator as
described in 3.2. A non-migrateable implementation would have a
single dataflow operator with a single input dataflow stream of (key,
val) pairs, exchanged by key before they arrive at the operator.

Instead, we create two operators F and S. F takes the data stream
and the stream of configuration updates as an additional input and
produces data pairs and migrating state as outputs. The configu-
ration stream can be ingested from an external controller such as
DS2 [20] or Chi [21]. S takes as inputs exchanged data pairs and
exchanged migrating state, and applies them to a hosted instance of
L, which implements operator and maintains both state and pending
records for each key. Figure 3b presents a schematic overview of the
construction. Recall that in timely dataflow instances of all operators
in the dataflow are multiplexed on each worker (core). The F and S
on the same worker share access to L’s state.
This construction can be repeated for all the operators in the

dataflow that need support for migration. Separate operators can be
migrated independently (via separate configuration update streams),
or in a coordinatedmanner by re-using the same configuration update
stream. Operators withmultiple data inputs can be treated like single-
input operators where the migration mechanism acts on both data
inputs at the same time.

Operator F Operator F routes (key, val) pairs according to the
configuration at their associated time, buffering pairs if time is in
advance of the frontier of the configuration input. For times in
advance of this frontier, the configuration is not yet certain as further
configuration updates could still arrive. The configuration at times
not in advance of this frontier can no longer be updated. As the data
frontier advances, configurations can be retired.

Operator F is also responsible for initiating state migrations. For
a configuration update (time, key, worker), F must not initiate a
migration for key until its state has absorbed all updates at times
strictly less than time. F initiates a migration once time is present
in the output frontier of S, as this implies that there exist no records
at timestamps less than time, as otherwise they would be present in
the frontier in place of time.



(44, a, 3)

c: 3
d: 9

a: 7
b: 14

F0

F1

S0

S1

a,b→1
c,d→2

input queue

Routing table: State:

control input

asdf
44

44

42

42
43

(43, c, 5)

42

42

(a) Before migrating

(46, c, 8)

c: 8
d: 9

a: 10
b: 14

F0

F1

S0

S1

a,b→1
c,d→2

(45, b, 2)

asdf
44

50

45

45
50

(45, b, 5)

45

45

(b) Receiving a configuration update

(55, a, 6)

b:19
c: 16
d: 9

a: 10

F0

F1

S0

S1

a→1
b,c,d→2

asdf
44

56

55

55
53

53

53

(c) After migration

Figure 4: A migrating word-count dataflow executed by two workers. The example is explained in more detail in Section 3.5

Operator F initiates a migration by uninstalling the current state
for key from its current location in operator S, and transmitting it
bearing timestamp time to the instance of operator S on worker.
The state includes both the state for operator, as well as the list of
pending (val, time) records produced by operator for future times.

Operator S Operator S receives exchanged (key, val) pairs and
exchanged state as the result of migrations initiated by F. S immedi-
ately installs any received state. S applies received and pending (key,
val) pairs in timestamp order using operator once their timestamp
is not in advance of either the data or state inputs.

We provide details of Megaphone’s implementation of this mech-
anism in Section 4.

Proof sketch For each key, operatorkey defines a timeline corre-
sponding to a single-threaded execution, which assigns to each time
a pair (state, [(val, time)]) of state and pending records just before
the application of input records at that time. Let P(t) denote the
function from times to these pairs for key.
For each key, the configuration function partitions this timeline

into disjoint intervals, [ta, tb), each of which is assigned to one
operator instance Sa .

Claim: F migrates exactly P(ta) to Sa .
First, F always routes input records at time to Sa, and so routes

all input records in [ta, tb) to Sa . If F also presents Sa with P(ta),
it has sufficient input to produce P(tb). More precisely,

1. Because F maintains its output frontier at tb , in anticipation
of the need to migrate P(tb), Sa will apply no input records in
advance of tb . And so, it applies exactly the records in [ta, tb).

2. Until Sa transitions to P(tb), its output frontier will be strictly
less than tb , and so F will not migrate anything other than
P(tb).

3. Because F maintains its output frontier at tb , and Sa is able
to advance its output frontier to tb , the time tb will eventually
be in the output frontier of S.

3.5 Example
Figure 4 presents three snapshots of a migrating streaming word-
count dataflow. The figure depicts operator instances F0 and F1
of the upstream routing operator, and operator instances S0 and S1
of the operator instances hosting the word-count state and update
logic. The F operators maintain input queues of received but not yet
routable input data, and an input stream of logically timestamped
configuration updates. Although each F maintains its own routing
table, which may temporarily differ from others, we present one
for clarity. Input frontiers are represented by boxed numbers, and
indicate timestamps that may still arrive on that input.
In Figure 4a, F0 has enqueued the record (44, a, 3) and F1 has

enqueued the record (43, c, 5), both because their control input

frontier has only reached 42 and so the destination workers at their
associated timestamps have not yet been determined. Generally, F
instances will only enqueue records with timestamps in advance of
the control input frontier, and the output frontiers of the S instances
can reach the minimum of the data and control input frontiers.
In Figure 4b, both control inputs have progressed to 45. The

buffered records (44, a, 3) and (43, c, 5) have been forwarded to S1
and S2, and the count operator instances apply the state updates ac-
cordingly, shown in bold. Additionally, both operators have received
a configuration update for the key b at time 45. Should the configura-
tion input frontier advance beyond 45, both F0 and F1 can integrate
the configuration change, and then react. Operator F0 would observe
that the output frontier of S0 reaches 45, and initiate a state migration.
Operator F1 would route its buffered input at time 45, to S1 rather
than S0.
In Figure 4c the migration has completed. Although the configu-

ration frontier has advanced to 55, the output frontiers are held back
by the data input frontier of F1 at 53. According to Definition 1,
the frontier guarantees that no record with a time earlier than 53
will appear at the input. If the configuration frontier advances past
55 then operator F0 could route its queued record, but neither S
operator could apply it until they are certain that there are no other
data records that could come before the record at 55.

4 Implementation
Megaphone is an implementation of the migration mechanism de-
scribed in Section 3. In this section, we detail specific choices made
in Megaphone’s implementation, including the interfaces used by
the application programmer, Megaphone’s specific choices for the
grouping and organization of per-key state, and howwe implemented
Megaphone’s operators in timely dataflow. We conclude with some
discussion of how one might implement Megaphone in other stream
processing systems, as well as alternate implementation choices one
could consider.

4.1 Megaphone’s operator interface
Megaphone presents users with an operator interface that closely
resembles the operator interfaces timely dataflow presents. In several
cases, users can use the same operator interface extended only with
an additional input stream for configuration updates. More generally,
we introduce a new structure to help users isolate and surface all
information that must be migrated (state, but also pending future
records). These additions are implemented strictly above timely
dataflow, but their structure is helpful and they may have value in
timely dataflow proper.
The simplest stateful operator interface Megaphone and timely

provide is the state_machine operator, which takes one input
structured as pairs (key, val) and a state update function which can



fn state_machine(
control: Stream<ControlInstr>,
input: Stream<(K, V)>,
exchange: K -> Integer
fold: |Key, Val, State| -> List<Output>

) -> Stream<Output>;
fn unary(
control: Stream<ControlInstr>,
input: Stream<Data>,
exchange: Data -> Integer,
fold: |Time, Data, State, Notificator| -> List<Output>

) -> Stream<Output>;
fn binary(
control: Stream<ControlInstr>,
input1: Stream<Data1>, input2: Stream<Data2>,
exchange1: Data1 -> Integer,
exchange2: Data2 -> Integer,
fold: |Time, Data1, Data2, State, Notificator1,

Notificator2| -> List<Output>
) -> Stream<Output>;

Listing 1: Abstract definition of the Megaphone operator interfaces.
Arguments State and Notificator are provided as mutable
references which can be operated upon.

produce arbitrary output as it changes per-key state in response
to keys and values. In Megaphone, there is an additional input
for configuration updates, but the operator signature is otherwise
identical.
More generally, timely dataflow supports operators of arbitrary

numbers and types of inputs, containing arbitrary user logic, and
maintaining arbitrary state. In each case a user must specify a func-
tion from input records to integer keys, and the only guarantee timely
dataflow provides is that records with the same key are routed to the
same worker. Operator execution and state are partitioned by worker,
but not necessarily by key.
For Megaphone to isolate and migrate state and pending work

we must encourage users to yield some of the generality timely
dataflow provides. However, timely dataflow has already required
the user to program partitioned operators, each capable of hosting
multiple keys, and we can lean on these idioms to instantiate more
fine-grained operators, partitioned not only by worker but further
into finer-grained bins of keys. Routing functions for each input are
already required by timely dataflow, and Megaphone interposes to
allow the function to change according to reconfiguration. Timely
dataflowper-worker state is defined implicitly by the state capturedby
the operatorclosure,andMegaphone onlymakes itmore explicit. The
use of a helper to enqueue pendingwork is borrowed from an existing
timely dataflow idiom (the Notificator). While Megaphone’s
general API is not identical to that of timely dataflow, it is just a
more crisp framing of the same idioms.

Listing 1 shows howMegaphone’s operator interface is structured.
The interface declares unary and binary stateful operators for single
input or dual input operators as well as a state-machine operator.
The logic for the state-machine operator has to be encoded in the
fold-function. Megaphone presents data in timestamp order with
a corresponding state and notificator object. Here, migration is
transparent and performed without special handling by the operator
implementation.

Example Listing 2 shows an example of a stateful word-count
dataflow with a single data input and an additional control input.
Thestateful_unary operator receives thecontrol input, the state
type, and a key extraction function as parameters. The control input
carries information about where data is to be routed as discussed in

worker.dataflow(|scope| {
// Introduce configuration and input streams.
let conf = conf_input.to_stream(scope);
let text = text_input.to_stream(scope);
// Update per-word accumulate counts.
let count_stream = megaphone::unary(
conf,
text,
|(word, diff)| hash(word),
|time, data, state, notificator| {
// map each (word, diff) pair to the accumulation.
data.map(|(word, diff)| {
let mut count = state.entry(word).or_insert(0);
*count += diff;
(word, count)

})
}

);
});

Listing 2: A stateful word-count operator. The operator reads (word,
diff )-pairs and outputs the accumulated count of each encountered
word. For clarity, the example suppresses details related to Rust’s
data ownership model.

the previous section. During migration, the state object is converted
into a stream of serialized tuples, which are used to reconstruct the
object on the receiving worker. State is managed in groups of keys,
i.e. many keys of input data will be mapped to the same state object.
The key extraction function defines how this key can be extracted
from the input records.

4.2 State organization
State migration as defined in Section 3.2 is defined on a per-key
granularity. In a typical streaming dataflow, the number of keys can
be large in the order of million or billions of keys. Managing each
key individually can be costly and thus we selected to group keys
into bins and adapt the configuration function as follows:

configuration : (time, bin) → worker.

Additionally, each key is statically assigned to one equivalence class
that identifies the bin it belongs to.

InMegaphone, the number of bins is configurable in powers of two
at startup but cannot be changed during run-time. A stateful operator
gets to see a bin that holds data for the equivalence class of keys
for the current input. Bins are simply identified by a number, wich
corresponds to the most significant bits of the exchange function
specified on the operator.2
Megaphone’s mechanism requires two distinct operators, F and

S. The operator S maintains the bins local to a worker and passes
references to the user logic L. Nevertheless, the S-operator does not
have a direct channel to its peers. For this reason, F can obtain a
reference to bins bymeans of a shared pointer. During a migration,F
serializes the state obtained via the shared pointer and sends it to the
new owning S-operator via a regular timely dataflow channel. Note
that sharing a pointer between two operators requires the operators to
be executed by the same process (or thread to avoid synchronization),
which is the case for timely dataflow.

2Otherwise, keys with similar least-significant bits are mapped to the
same bin; Rust’s HashMap-implementation suffers from collisions
for keys with similar least-significant bits.



4.3 Timely instantiation
In timely dataflow, data is exchanged according to an exchange func-
tion, which takes some data and computes an integer representation:

exchange : data→ Integer.

Timely dataflow uses this value to decide where to send tuples.
In Megaphone, we introduce an indirection layer where bins are
assigned toworkers. Thatway, the exchange function for the channels
from F to S is by a specific worker identifier.

Monitoring output frontiers Megaphone tiesmigrations to logical
time and a computation’s progress. A reconfiguration at a specific
time is only to be applied once all data up to that time has been
processed. The F operators access this information by monitoring
the output frontier of the S operators. Specifically, timely dataflow
supports probes as a mechanism to observe progress on arbitrary
dataflow edges. Each worker attaches a probe to the output stream
of the S operators, and provides the probe to its F operator instance.

Capturing timely idioms For Megaphone to migrate state, it re-
quires clear isolation of per-key state and pending records. Although
timely dataflow operators require users to write operators that can be
partitioned across workers, they do not require the state and pending
records to be explicitly identified. To simplify programming mi-
grateable operators, we encapsulate several timely dataflow idioms
in a helper structure that both manages state and pending records
for the user, and surfaces them for migration.

Timely dataflow has a Notificator type that allows an operator
to indicate future times at which the operator may produce output,
but without encapsulating the keys, states, or records it might use.
We implemented an extended notificator that buffers future triples
(time, key, val) and can replay subsets for times not in advance of an
input frontier. Internally the triples are managed in a priority queue,
unlike in timely dataflow, which allows Megaphone to efficiently
maintain large numbers of future triples. By associating data (keys,
values) with the times, we relieve the user from maintaining this
information on the side. As we will see, Megaphone’s notificator
can result in a net reduction in implementation complexity, despite
eliciting more information from the user.

4.4 Discussion
Up to now, we explained how to map the abstract model of Mega-
phone to an implementation. The model leaves many details to the
implementation, several of which have a large effect on an imple-
mentation’s run-time performance. Here, we want to point out how
they interact with other features of the underlying system, what pos-
sible alternatives are and how to integrate Megaphone into a larger,
controller-based system.

Other systems We implemented Megaphone in timely dataflow,
but the mechanisms could be applied on any sufficiently expressive
stream processor with support for event time, progress tracking, and
state management. Specifically,Megaphone relies on the ability of F
operators to 1. observe timestamp progress at other locations in the
dataflow, and 2. to extract state from downstream S operators for mi-
gration. With regard to first requirement, systems with out-of-band
progress tracking like Millwheel [5] and Google Dataflow [6] also
provide the capability to observe dataflow progress externally, while
systems with in-band watermaks like Flink would need to provide
an additional mechanism. Extracting state from downstream oper-
ators is straight-forward in timely dataflow where workers manage
multiple operators. In systems where each thread of control man-
ages a single operator external coordination and communication
mechanisms could be used to effect the same behavior.

Fault tolerance Megaphone is a library built on timely dataflow
abstractions, and inherits fault-tolerance guarantees from the sys-
tem. For example, the Naiad implementation of timely dataflow
provides system-wide consistent snapshots, and a Megaphone im-
plementation on Naiad would inherit fault tolerance. At the same
time, Megaphone’s migration mechanisms effectively provide pro-
grammable snapshots on finer granularities, which could feed back
into finer-grained fault-tolerance mechanisms.

Alternatives to binning Megaphone’s implementation uses bin-
ning to reduce the complexity of the configuration function. An
alternative to a static mapping of keys to bins could be achieved by
the means of a prefix tree (e.g., a longest-prefix match as in Inter-
net routing tables). Runtime-reconfiguration of the binning strategy
could be enabled by splitting and merging bins.

Migration controller We implemented Megaphone as a system
that provides an input for configuration updates to be supplied by an
external controller. The only requirement Megaphone places on the
controller is to adhere to the control command format as described in
Section 3.3. A controller could observe the performance character-
istics of a computation on a per-key level and correlate this with the
input workload. For example, the recent DS2 [20] system automati-
cally measures and re-scales streaming systems to meet throughput
targets. Megaphone can also be driven by general re-configuration
controllers and is not restricted to elasticity policies. For instance, the
configuration stream could be provided by Dhalion [16] or Chi [21].

Independently, we have observed and implemented several details
for effective migration. Specifically, we can use bipartite matching to
group migrations that do not interfere with each other, reducing the
number of migration steps without much increasing the maximum
latency. We can also insert a gap between migrations to allow the
system to immediately drain enqueued records, rather than during
the next migration, which reduces the maximum latency from two
migration durations to just one.

5 Evaluation
Our evaluation of Megaphone is in three parts. We are interested
in particular in the latency of streaming queries, and how they are
affected by Megaphone both in a steady state (where no migration
is occuring) and during a migration operation.

First, in Section 5.1 we use the NEXMark benchmarking suite [23,
27] to compare Megaphone with prior techniques under a realistic
workload. Next, in Section 5.2we look at the overhead ofMegaphone
when no migration occurs: this is the cost of providing migration
functionality in stateful dataflow operators, versus using optimized
operators which cannot migrate state. Finally, in Section 5.3 we use
a microbenchmark to investigate how parameters like the number of
bins and size of the state affect migration performance.
We run all experiments on a cluster of four machines, each with

four Intel Xeon E5-4650 v2 @2.40GHz CPUs (each 10 cores with
hyperthreading) and 512GiB of RAM, running Ubuntu 18.04. For
each experiment, we pin a timely process with four workers to a
single CPU socket. Our open-loop testing harness supplies the input
at a specified rate, even if the system itself becomes less responsive
(e.g., during a migration). We record the observed latency every
250ms, in units of nanoseconds, which are recorded in a histogram
of logarithmically-sized bins.
Unless otherwise specified, we migrate the state of the main

operator of each dataflow. We first migrate half of the keys on half of
the workers to the other half of the workers (25% of the total state),
resulting in an imbalanced assignment. We then perform and report
the details of a second migration back to the balanced configuration.



Table 1: NEXMark query implementations lines of code.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Native 12 14 58 128 73 130 55 58
Megaphone 16 18 41 74 46 74 54 29

5.1 NEXMark Benchmark
The NEXMark suite models an auction site in which a high-volume
stream of users, auctions, and bids arrive, and eight standing queries
are maintained reflecting a variety of relational queries including
stateless streaming transformations (e.g., map and filter in Q1 and
Q2 respectively), a stateful record-at-a-time two-input operator (in-
cremental join in Q3), and various window operators (e.g., sliding
window in Q5, tumbling window join in Q8), and complex multi-
operator dataflows with shared components (Q4 and Q6).
We have implemented all eight of the NEXMark queries in both

native timely dataflowandusingMegaphone. Table 1 lists the lines of
code for queries 1–8. Native is a hand-tuned implementation,Mega-
phone is implemented using the stateful operator interface. Note
that the implementation complexity for the native implementation
is higher in most cases as we include optimizations from Section 4
which are not offered by the system but need to be implemented for
each operator by hand.

To test our hypothesis thatMegaphone supports efficientmigration
on realistic workloads, we run each NEXMark query under high
load and migrate the state of each query without interrupting the
query processing itself. Our test harness uses a reference input data
generator and increases its rate. The data generator can be played at
a higher rate but this does not change certain intrinsic properties. For
example, the number of active auctions is static, and so increasing
the event rate decreases auction duration. For this reason, we present
time-dilated variants of queries Q5 and Q8 containing large time-
based windows (up to 12 hours). We run all queries with 4 × 106
updates per second. For stateful queries, we perform a first migration
at 400 s and perform and report a second re-balancing migration at
800 s. We compare all-at-once, which is essentially equivalent to the
partial pause-and-restart strategy adopted by existing systems, and
batched, Megaphone’s optimized migration strategy which strikes
a balance between migration latency and duration (cf. Section 3.3).
We use 212 bins for Megaphone’s migration; in Section 5.2 we study
Megaphone’s sensitivity to the bin count.

Figures 7 through 12 show timelines for the second migration of
stateful queries Q3 throughQ8. Generally, the all-at-oncemigrations
experience maximum latencies proportional to the amount of state
maintained,whereas the latencies ofMegaphone’s batchedmigration
are substantially lower when the amount of state is large.

Query 1 and Query 2 maintain no state. Q1 transforms the
stream of bids to use a different currency, while Q2 filters bids
by their auction identifiers. Despite the fact that both queries do
not accumulate state to migrate, we demonstrate their behavior to
establish a baseline for Megaphone and our test harness. Figures 5
and 6 show query latency during two migrations where no state is
thus transferred; any impact is dominated by system noise.

Query 3 joins auctions and people to recommend local auctions
to individuals. The join operator maintains the auctions and people
relations, using the seller and person as the keys, respectively. This
state grows without bound as the computation runs. Figure 7 shows
the query latency for both Megaphone, and the native timely imple-
mentation. We note that while the native timely implementation has
some spikes, they are more pronounced in Megaphone, whose tail
latency we investigate further in Section 5.2.

Query 4 reports the average closing prices of auctions in a cate-
gory relying on a stream of closed auctions, derived from the streams

100

101

102

103

104

 0  10  20

L
at

en
cy

 [
m

s]

Time [s]

max p: 0.99 p: 0.5 p: 0.25

Figure 5: NEXMark query latency for Q1, 4 × 106 requests per
second, reconfiguration at 10 s and 20 s. No latency spike occurs
during migration as the query does not accumulate state.

100

101

102

103

104

 0  10  20

L
at

en
cy

 [
m

s]

Time [s]

max p: 0.99 p: 0.5 p: 0.25

Figure 6: NEXMark query latency for Q2, 4 × 106 requests per
second, reconfiguration at 10 s and 20 s. No latency spike occurs
during migration as the query does not accumulate state.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

(a) Query 3 implemented with Megaphone.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

p: 1 p: 0.99 p: 0.5 p: 0.25

(b) Query 3 native implementation.

Figure 7: NEXMark query latency for Q3. A small latency spike
can be observed at 800 s for both all-at-once and batched migration
strategies, reaching more than 100ms for all-at-once and 10ms for
batched migration. Although the state for query 3 grows without
bounds, this did not bear significance after 800 s.



of bids and auctions, which we compute and maintain, and contains
one operator keyed by auction id which accumulates relevant bids
until the auction closes, at which point the auction is reported and
removed. The NEXMark generator is designed to have a fixed num-
ber of auctions at a time, and so the state remains bounded. Figure 8
shows the latency timeline during the second migration. The all-
at-once migration strategy causes a latency spike of more than
two seconds whereas the batched migration strategy only shows an
increase in latency of up to 100ms.

Query 5 reports, each minute, the auctions with the highest num-
ber of bids taken over the previous sixty minutes. It maintains up to
sixty counts for each auction, so that it can both report and retract
counts as time advances. To elicit more regular behavior, our imple-
mentation reports every second over the previous minute, effectively
dilating time by a factor of 60. Figure 9 shows the latency timeline
for the second migration; the all-at-once migration is an order of
magnitude larger than the per-second events, whereas Megaphone’s
batched migration is not distinguishable.

Query 6 reports the average closing price for the last ten auctions
of each seller. This operator is keyed by auction seller, and maintains
a list of up to ten prices. As the computation proceeds, the set of
sellers, and so the associated state, grows without bound. Figure 10
shows the timeline at the second migration. The result is similar to
query 4 because both share a large fraction of the query plan.

Query 7 reports the highest bid each minute, and the results are
shown in Figure 11. This query has minimal state (one value) but
does require a data exchange to collect worker-local aggregations to
produce a computation-wide aggregate. Because the state is so small,
there is no distinction between all-at-once and batched migration.

Query 8 reports a twelve-hourwindowed join between newpeople
and new auction sellers. This query has the potential to maintain a
massive amount of state, as twelve hours of auction and people data
is substantial. Once reached, the peak size of state is maintained. To
show the effect of twelve-hour windows, we dilate the internal time
by a factor of 79. The reconfiguration time of 800 s corresponds to
approximately 17.5 h of event time.
These results show that for NEXMark queries maintaining large

amounts of state, all-at-once migration can introduce significant
disruption, which Megaphone’s batched migration can mitigate. In
principle, the latency could be reduced still further with the fluid
migration strategy, which we evaluate in Section 5.3.

5.2 Overhead of the interface
We now use a counting microbenchmark to measure the overhead
of Megaphone, from which one can determine an appropriate trade-
off between migration granularity and this overhead. We compare
Megaphone to native timely dataflow implementations, as we vary
the number of bins that Megaphone uses for state. We anticipate that
this overhead will increase with the number of bins, as Megaphone
must consult a larger routing table.
The workload uses a stream of randomly selected 64-bit integer

identifiers, drawn uniformly from a domain defined per experiment.
The query reports the cumulative counts of the number of times
each identifier has occurred. In these workloads, the state is the per-
identifier count, intentionally small and simple so that we can see the
effect of migration rather than associated computation. We consider
two variants, an implementation that uses hashmaps for bins (“hash
count”), and an optimized implementation that uses dense arrays to
remove hashmap computation (“key count”).
Each experiment is parameterized by a domain size (the number

of distinct keys) and an input rate (in records per second), for which
we then vary the number of bins used by Megaphone. We pre-load
one instance of each key to avoid state re-allocation at runtime.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

Figure 8: NEXMark query latency for Q4, 4 × 106 requests per
second, reconfiguration at 800 s.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]
Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

Figure 9: NEXMark query latency for Q5, 4 × 106 requests per
second, reconfiguration at 800 s with time dilation.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

Figure 10: NEXMark query latency for Q6, 4 × 106 requests per
second, reconfiguration at 800 s.

100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

Figure 11: NEXMark query latency for Q7, 4 × 106 requests per
second, reconfiguration at 800 s.



100

101

102

103

104

 780  800  820  840

L
at

en
cy

 [
m

s]

Time [s]

all-at-once

max p: 0.99 p: 0.5 p: 0.25

 780  800  820  840

Time [s]

Megaphone (batched)

Figure 12: NEXMark query latency for Q8, 4 × 106 requests per
second, reconfiguration at 800 s with time dilation.

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies
Experiment 90% 99% 99.99% max
4 4.46 7.60 18.87 25.17
6 4.46 6.55 13.11 26.21
8 4.46 6.03 9.96 16.78
10 4.19 6.82 16.25 23.07
12 4.98 7.08 19.92 24.12
14 8.13 11.53 23.07 30.41
16 20.97 27.26 60.82 83.89
18 159.38 192.94 209.72 226.49
20 1140.85 1409.29 1476.40 1543.50
Native 1.64 2.88 12.06 19.92

(b) Selected percentiles and their latency in ms

Figure 13: Hash-count overhead experiment with 256 × 106 unique
keys and an update rate of 4 × 106 per second. Experiment numbers
in (a) and (b) indicate log bin count.

Figure 13 shows the complementary cumulative distribution func-
tion (CCDF) of per-record latency for the hash-count experiment
with 256 × 106 distinct keys and a rate of 4 × 106 updates per second.
Figure 14 shows the CCDF of per-record latency for the key-count ex-
periment with 256 × 106 distinct keys and a rate of 4 × 106 updates
per second. Figure 15 shows the CCDF of per-record latency for the
key-count experiment with 8192 × 106 distinct keys and a rate of
4 × 106 updates per second. Each figure reports measurements for
a native timely dataflow implementation, and for Megaphone with
geometrically increasing numbers of bins.

For small bin counts, the latencies remain a small constant factor
larger than the native implementation, but this increases noticeably
once we reach 216 bins. We conclude that while a performance
penalty exists, it can be an acceptable trade-off for stateful dataflow
reconfiguration. A bin-count parameter of up to 212 leads to largely
indistinguishable results, and we will use this number when we need
to hold the bin count constant in the rest of the evaluation.

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies
Experiment 90% 99% 99.99% max
4 1.64 3.67 12.58 19.92
6 1.64 2.75 11.01 20.97
8 1.70 2.49 9.44 19.92
10 1.70 2.36 7.08 15.20
12 1.77 2.88 9.96 20.97
14 2.49 4.46 7.86 19.92
16 22.02 26.21 32.51 46.14
18 234.88 268.44 301.99 335.54
20 838.86 1610.61 1879.05 1946.16
Native 1.51 1.70 4.46 14.16

(b) Selected percentiles and their latency in ms

Figure 14: Key-count overhead experiment with 256 × 106 unique
keys and an update rate of 4 × 106 per second. Experiment numbers
in (a) and (b) indicate log bin count.

5.3 Migration micro-benchmarks

We now use the counting benchmark from the previous section to
analyse how various parameters influence the maximum latency and
duration of Megaphone during a migration. Specifically,

1. In Section 5.3.1 we evaluate the maximum latency and dura-
tion of migration strategies as the number of bins increases.
We expect Megaphone’s maximum latencies to decrease with
more bins, without affecting duration.

2. In Section 5.3.2 we evaluate the maximum latency and dura-
tion of migration strategies as the number of distinct keys
increases. We expect all maximum latencies and durations to
increase linearly with the amount of maintained state.

3. In Section 5.3.3 we evaluate the maximum latency and dura-
tion of migration strategies as the number of distinct keys
and bins increase proportionally. We expect that with a
constant per-bin state size Megaphone will maintain a fixed
maximum latency while the duration increases.

4. In Section 5.3.4 we evaluate the latency under load during
migration and steady-state. We expect a smaller maximum
latency for Megaphone migrations.

5. In Section 5.3.5 we evaluate the memory consumption dur-
ing migration. We expect a smaller memory footprint for
Megaphone migrations.

Each of our migration experiments largely resembles the shapes
seen in Figure 1, where each migration strategy has a well defined
duration and maximum latency. For example, the all-at-once migra-
tion strategy has a relatively short duration with a large maximum
latency, whereas the bin-at-a-time (fluid) migration strategy has a
longer duration and lower maximum latency, and the batched mi-
gration strategy lies between the two. In these experiments we
summarize each migration by the duration of the migration, and the
maximum latency observed during the migration.



10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C

D
F

Latency [ms]

4
6
8

10
12
14
16
18
20

Native

(a) CCDF of per-record latencies
Experiment 90% 99% 99.99% max
4 1.90 3.28 4.72 7.34
6 1.84 3.28 6.03 18.87
8 1.84 3.54 5.24 12.58
10 1.84 3.28 5.77 13.11
12 1.90 3.67 5.24 9.44
14 7.34 16.78 75.50 100.66
16 30.41 35.65 41.94 50.33
18 268.44 318.77 335.54 385.88
20 1006.63 1610.61 1811.94 1879.05
Native 1.57 2.36 4.98 14.68

(b) Selected percentiles and their latency in ms

Figure 15: Key-count overhead experiment with 8192 × 106 unique
keys and an update rate of 4 × 106 per second. Experiment numbers
in (a) and (b) indicate log bin count.

5.3.1 Number of bins vary. We now evaluate the behavior of
different migration strategies for varying numbers of bins. As we
increase the number of bins we expect to see fluid and batched
migration achieve lower maximum latencies, though ideally with
relatively unchanged durations. We do not expect to see all-at-once
migration behave differently as a function of the number of bins, as
it conducts all of its migrations simultaneously.
Holding the rates and bin counts fixed, we will vary the number

of bins from 24 up to 214 by factors of four. For each configuration,
we run for one minute to establish a steady state, and then initiate a
migration and continue for one another minute. During this whole
time the rate of input records continues uninterrupted.
Figure 16 reports the latency-vs-duration trade-off of the three

migration strategies as we vary the number of bins. The connected
lines each describe one strategy, and the common shapes describe
a common number of bins. We see that all all-at-once migration
experiments are in a low duration high latency cluster. Both fluid and
batched migration achieve lower maximum latency as we increase
the number of bins, without negatively impacting the duration.

5.3.2 Number of keys vary. We now evaluate the behavior of
different migration strategies for varying domain sizes. Holding the
rates and bin counts fixed, we will vary the number of keys from
256 × 106 up to 8192 × 106 by factors of two. For each configuration,
we run for one minute to establish a steady state, and then initiate a
migration and continue for one another minute. During this whole
time the rate of input records continues uninterrupted.
Figure 17 reports the latency-vs-duration trade-off of the three

migration strategies as we vary the number of distinct keys. The
connected lines each describe one strategy, and the common shapes
describe a common number of distinct keys. We see that for any
experiment, all-at-once migration has the highest latency and lowest
duration, fluid migration has a lower latency and higher duration,
and batched migration often has the best qualities of both.

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

M
ax

 la
te

nc
y 

[s
]

Duration [s]

bins
16
64

256
1024
4096

16384

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

 

 

migration
batched

fluid
all-at-once

Figure 16: Key-count migration latency vs. duration, varying bin
count for a fixed domain of 4096 × 106 keys. The vertical lines
indicate that increasing the granularity of migration can reduce max-
imum latency for fluid and batched migrations without increasing
the duration. The all-at-oncemigration datapoints remain in a cluster
independent of the migration granularity.

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

M
ax

 la
te

nc
y 

[s
]

Duration [s]

domain
256M
512M

1024M
2048M
4096M
8192M

16384M
32768M

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

 

 

migration
batched

fluid
all-at-once

Figure 17: Key-countmigration latency vs. duration, varying domain
for a fixed rate of 4 × 106. As the domain size increases the migra-
tion granularity increases, and the duration and maximum latencies
increase proportionally.

5.3.3 Number of keys and bins vary proportionally. In the pre-
vious experiments, we either fixed the number of bins or the number
of keys while varying the other parameter. In this experiment, we
vary both bins and keys together such that the total amount of data
per bin stays constant. This maintains a fixed migration granularity,
which should have a fixed maximum latency even as the number of
keys (and total state) increases. We run the key count experiment
and fix the number of keys per bin to 4 × 106. We then increase the
domain in steps of powers of two starting at 256 × 106 and increase
the number of bins such that the keys per bin stays constant. The
maximum domain is 32 × 109 keys.

Figure 18 reports the latency-versus-duration trade-off for the
three migration strategies as we increase domain and number of
bins while keeping the state per bin constant. The lines describe one
migration strategy and the points describe a different configuration.
We can observe that for fluid and batched migration the latency stays
constant while only the duration increases as we increase the domain.
For all-at-once migration, both latency and duration increase.

We conclude that fluid and batched migration bound the latency
impact on a computation during a migration while increasing the
migration duration, whereas all-at-once migration does not.



 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

M
ax

 la
te

nc
y 

[s
]

Duration [s]

bins
64

128
256
512

1024
2048
4096
8192

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

 

 

migration
batched

fluid
all-at-once

Figure 18: Latency and duration of key-count migrations for fixed
state per bin. By holding the granularity of migration fixed, the
maximum latencies of fluid and batched migration remain fixed
even as the durations of all strategies increase.

 0.01

 0.1

 1

 10

 100

 1000

 0.25  0.5  1  2  4  8  16  32

M
ax

 la
te

nc
y 

[s
]

Throughput [million records/s]

batched
fluid

all-at-once
non-migrating

Figure 19: Offered load versus max latency for different migration
strategies for key-count. The migration is invariant of the rate up to
16 million records per second.

5.3.4 Throughput versus processing latency. In this experiment,
we evaluate what throughput Megaphone can sustain for specific
latency targets. As we increase the offered load,we expect the steady-
state and migration latency to increase. For a spcific throughput
target, we expect the all-at-once migration strategy to show a higher
latency than batched, which itself is expected to be higher than fluid.
To analyze the latency, we keep the number of keys and bins

constant, at 16 384 × 106 and 4096, and vary the offered load from
250 × 103 to 32 × 106 in powers of two. We measure the maximum
latency observed during both steady-state and migration for each of
the three migration strategies described earlier.
Figure 19 shows maximum latency observed when the system is

sustaining a certain throughput. All three migration strategies and
non-migrating show a similar pattern: Up to 16 × 106 records per
second they do not showa significant increase in latency. At 32 × 106,
the latency increases significantly, indicating that the system is now
overloaded.
We conclude that the system’s latency is mostly throughput-in-

variant until the system saturates and eventually fails to keep up with
its input. Both fluid and batched migration sustain a throughput of
up to 4 × 106 per second for a latency target of 1 s: Megaphone’s
migration strategies can satisfy latency targets 10-100x lower than
all-at-once migration with similar throughput.

5.3.5 Memory consumption during migration. In Section 5.3.3
we analyzed the behavior of different migration strategies when
increasing the total amount of state in the system while leaving
the state per bin constant. Our expectation was that the all-at-once
migration strategy would always offer the lowest duration when

0.0 B

10.0GB

20.0GB

30.0GB

40.0GB

50.0GB

60.0GB

70.0GB

80.0GB

90.0GB

 0  200  400  600  800  1000  1200

R
S

S

Time [s]

batched
fluid

all-at-once

Figure 20: Memory consumption of key-count per process over time
for different migration strategies. The fluid and batched strategies
require less additional memory in each migration step than the
all-at-once migration, which migrates all state at once.

compared to batched and fluid migrations. Nevertheless, we observe
for large amounts of data beingmigrated the duration for a all-at-once
migration is longer than for batched migration.
To analyze the cause for this behavior we compared the memory

consumption for the three migration strategies over time. We run the
key count dataflow with 16 × 109 keys and 4096 bins. We record the
resident set size (RSS) as reported by Linux over time per process.
Figure 20 shows the RSS reported by the first timely process

for each migration strategy. Batched and fluid migration show a
similar memory consumption of 35GiB in steady state and do not
expose a large variance during migration at times 400 s and 800 s. In
contrast to that, all-at-once migration shows significant allocations
of approximately additional 30GiB during the migrations.
The experiment gives us evidence that a all-at-once migration

causes significant memory spikes in addition to latency spikes. The
reason for this is that during a all-at-once migration, each worker
extracts and serializes the data to be migrated and enqueues it for
the network threads to send. The network thread’s send capacity
is limited by the network throughput, limiting the throughput at
which data can be transferred to the remote host. Batched and fluid
migration patterns only perform anothermigration once the previous
is complete and thus provide a simple form of flow-control effectively
limiting the amount of temporary state.

6 Conclusion
We presented the design and implementation of Megaphone, which
provides efficient, minimally disruptive migration for stream pro-
cessing systems. Megaphone plans fine-grained migrations using
the logical timestamps of the stream processor, and interleaves the
migrations with regular streaming dataflow processing. Our evalu-
ation on realistic workloads shows that migration disruption was
significantly lower than with prior all-at-once migration strategies.
We implemented Megaphone in timely dataflow, without any

changes to the host dataflow system. Megaphone demonstrates that
dataflow coordination mechanisms (timestamp frontiers) and data-
flow channels themselves are sufficient to implement minimally
disruptive migration. Megaphone’s source code is available on
https://github.com/strymon-system/megaphone.

Acknowledgments
We thank Nicolas Hafner for an initial implementation of the NEX-
Mark queries and the anonymous VLDB reviewers for their com-
ments. This work was partly supported by Google, VMware, and
the Swiss National Science Foundation. Andrea Lattuada is sup-
ported by a Google PhD fellowship and Vasiliki Kalavri by an ETH
postdoctoral fellowship.

https://github.com/strymon-system/megaphone


7 References
[1] Bringing Pokemon GO to life on Google Cloud.

https://cloudplatform.googleblog.com/2016/09/
bringing-Pokemon-GO-to-life-on-Google-Cloud.
html.

[2] IBM Streams (accessed: November 2017). https://www.
ibm.com/ch-en/marketplace/stream-computing.

[3] New Tweets per second record, and how! https:
//blog.twitter.com/engineering/en_us/a/2013/
new-tweets-per-second-record-and-how.html.

[4] M. Abadi, F. McSherry, D. G. Murray, and T. L. Rodeheffer.
Formal analysis of a distributed algorithm for tracking
progress. In D. Beyer and M. Boreale, editors, Formal
Techniques for Distributed Systems - Joint IFIP WG 6.1
International Conference, FMOODS/FORTE 2013, Held as
Part of the 8th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2013, Florence,
Italy, June 3-5, 2013. Proceedings, volume 7892 of Lecture
Notes in Computer Science, pages 5–19. Springer, 2013.

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle. Millwheel: Fault-tolerant stream processing at
internet scale. PVLDB, 6(11):1033–1044, 2013.

[6] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
PVLDB, 8(12):1792–1803, 2015.

[7] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin,
A. Ghodsi, I. Stoica, and M. Zaharia. Structured streaming: A
declarative API for real-time applications in apache spark. In
G. Das, C. M. Jermaine, and P. A. Bernstein, editors,
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 601–613. ACM, 2018.

[8] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, and P. J.
Shenoy. "Cut me some slack": latency-aware live migration
for databases. In E. A. Rundensteiner, V. Markl, I. Manolescu,
S. Amer-Yahia, F. Naumann, and I. Ari, editors, 15th
International Conference on Extending Database Technology,
EDBT ’12, Berlin, Germany, March 27-30, 2012,
Proceedings, pages 432–443. ACM, 2012.

[9] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and
K. Tzoumas. State management in apache flink®: Consistent
stateful distributed stream processing. PVLDB,
10(12):1718–1729, 2017.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache Flink: Stream and batch processing
in a single engine. Data Engineering, 38(4), 2015.

[11] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight elasticity in shared storage databases
for the cloud using live data migration. PVLDB,
4(8):494–505, 2011.

[12] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and
A. El Abbadi. Squall: Fine-grained live reconfiguration for
partitioned main memory databases. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 299–313, New
York, NY, USA, 2015. ACM.

[13] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:

Live migration in shared nothing databases for elastic cloud
platforms. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’11, pages 301–312, New York, NY, USA, 2011. ACM.

[14] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and J. Zhu.
Parallel stream processing against workload skewness and
variance. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing,
HPDC ’17, pages 15–26, 2017.

[15] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In Proceedings
of the 2013 ACM SIGMOD international conference on
Management of data, pages 725–736, 2013.

[16] A. Floratou, A. Agrawal, B. Graham, S. Rao, and
K. Ramasamy. Dhalion: Self-regulating stream processing in
heron. PVLDB, 10(12):1825–1836, 2017.

[17] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez,
C. Soriente, and P. Valduriez. StreamCloud: An elastic and
scalable data streaming system. IEEE Transactions on
Parallel and Distributed Systems, 2012.

[18] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer.
Latency-aware elastic scaling for distributed data stream
processing systems. In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems,
DEBS ’14, pages 13–22, New York, NY, USA, 2014. ACM.

[19] M. Hoffmann, F. McSherry, and A. Lattuada.
Latency-conscious dataflow reconfiguration. In Proceedings
of the 5th ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond, page 1. ACM, 2018.

[20] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova,
M. Forshaw, and T. Roscoe. Three steps is all you need: fast,
accurate, automatic scaling decisions for distributed streaming
dataflows. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 783–798, 2018.

[21] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh,
S. Venkataraman, P. Costa, T. Kim, S. Muthukrishnan,
V. Kuppa, S. Dhulipalla, and S. Rao. Chi: A scalable and
programmable control plane for distributed stream processing
systems. PVLDB, 11(10):1303–1316, 2018.

[22] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A Timely Dataflow System. In
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP). ACM, Nov 2013.

[23] NEXMark benchmark.
http://datalab.cs.pdx.edu/niagaraST/NEXMark.

[24] S. Rajadurai, J. Bosboom, W.-F. Wong, and S. Amarasinghe.
Gloss: Seamless live reconfiguration and reoptimization of
stream programs. In ASPLOS, pages 98–112, 2018.

[25] O. Schiller, N. Cipriani, and B. Mitschang. Prorea: Live
database migration for multi-tenant rdbms with snapshot
isolation. In Proceedings of the 16th International Conference
on Extending Database Technology, EDBT ’13, pages 53–64,
New York, NY, USA, 2013. ACM.

[26] M. A. Shah, M. A. Shah, S. Chandrasekaran, J. M.
Hellerstein, J. M. Hellerstein, S. Ch, S. Ch, M. J. Franklin,
and M. J. Franklin. Flux: An adaptive partitioning operator
for continuous query systems. In ICDE, pages 25–36, 2002.

[27] P. Tucker, K. Tufte, V. Papadimos, and D. Maier.
NEXMark—A Benchmark for Queries over Data Streams
DRAFT. Technical report, OGI School of Science &
Engineering at OHSU, 2002.

https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-Cloud.html
https://www.ibm.com/ch-en/marketplace/stream-computing
https://www.ibm.com/ch-en/marketplace/stream-computing
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
http://datalab.cs.pdx.edu/niagaraST/NEXMark


[28] Y. Wu and K. Tan. Chronostream: Elastic stateful stream
computation in the cloud. In J. Gehrke, W. Lehner, K. Shim,
S. K. Cha, and G. M. Lohman, editors, 31st IEEE
International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, pages 723–734. IEEE
Computer Society, 2015.

[29] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at

scale. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 423–438. ACM,
2013.

[30] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic
plan migration for continuous queries over data streams. In
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages
431–442, 2004.


	Introduction
	Background and Motivation
	State migration in streaming systems
	Live migration in database systems
	Live migration for streaming dataflows

	State migration design
	Timely dataflow concepts
	Migration formalism and guarantees
	Configuration updates
	Megaphone's mechanism
	Example

	Implementation
	Megaphone's operator interface
	State organization
	Timely instantiation
	Discussion

	Evaluation
	NEXMark Benchmark
	Overhead of the interface
	Migration micro-benchmarks
	Number of bins vary
	Number of keys vary
	Number of keys and bins vary proportionally
	Throughput versus processing latency
	Memory consumption during migration


	Conclusion
	References

