
Privacy Preservation by Disassociation

Manolis Terrovitis
∗

IMIS, Research Center ‘Athena’
mter@imis.athena-innovation.gr

John Liagouris
†

Dept. of Electrical and Comp. Eng., NTUA
liagos@dblab.ece.ntua.gr

Nikos Mamoulis
Dept. of Comp. Sci., Univ. of Hong Kong

nikos@cs.hku.hk

Spiros Skiadopoulos
‡

Dept. of Comp. Sci., Univ. of Peloponnese
spiros@uop.gr

ABSTRACT
In this work, we focus on protection against identity disclosure in
the publication of sparse multidimensional data. Existing multi-
dimensional anonymization techniques (a) protect the privacy of
users either by altering the set of quasi-identifiers of the original
data (e.g., by generalization or suppression) or by adding noise
(e.g., using differential privacy) and/or (b) assume a clear distinc-
tion between sensitive and non-sensitive information and sever the
possible linkage. In many real world applications the above tech-
niques are not applicable. For instance, consider web search query
logs. Suppressing or generalizing anonymization methods would
remove the most valuable information in the dataset: the original
query terms. Additionally, web search query logs contain millions
of query terms which cannot be categorized as sensitive or non-
sensitive since a term may be sensitive for a user and non-sensitive
for another. Motivated by this observation, we propose an anonym-
ization technique termed disassociation that preserves the original
terms but hides the fact that two or more different terms appear in
the same record. We protect the users’ privacy by disassociating
record terms that participate in identifying combinations. This way
the adversary cannot associate with high probability a record with
a rare combination of terms. To the best of our knowledge, our pro-
posal is the first to employ such a technique to provide protection
against identity disclosure. We propose an anonymization algo-
rithm based on our approach and evaluate its performance on real
and synthetic datasets, comparing it against other state-of-the-art
methods based on generalization and differential privacy.

1. INTRODUCTION
The anonymization of sparse multidimensional data in the form

of transactional data (e.g., supermarket sales logs, credit card logs,
web search query logs) poses significant challenges. Adversaries
that have a part of a record as background knowledge are aided

∗Supported by the EU/Greece funded COOPERATION: CAP Project.
†Supported by the EU/Greece funded Heracleitus II Program
‡Supported by the EU/Greece funded Thalis Program.

by the dataset’s sparsity in identifying the original record. Con-
sider, for example, a dataset D which contains records that trace
web search query logs. Even without any direct identifier in the
data (user’s name or ID) the publication of D might lead to privacy
breaches, if an attacker has background knowledge that associates
some queries to a known user. Assume that John knows that Jane
was interested in buying air tickets to New York, so he has a back-
ground knowledge consisting of terms New York and air tickets. If
D is published without any modification then John can trace all
records that contain both terms New York and air tickets. If only
one such record exists, then John can easily infer that this record
corresponds to Jane.

To counter such privacy leaks, several anonymization techniques
have been proposed in the literature [5, 6, 11, 13, 14, 17, 19, 24,
27]. Most of these methods employ generalization [5, 13, 19, 27]
to reduce the original term domain and eliminate identifying com-
binations. For example, they would generalize New York to North
America, so that the infrequent combination would be replaced by
the more frequent {North America, air tickets}. Alternatively, other
methods which are based on suppression, simply remove infre-
quent terms or terms which participate in infrequent combinations.
Generalization and suppression have been mostly used to provide
protection against identity and attribute disclosure. There are few
works that rely on adding noise (fake records or terms) to offer dif-
ferential privacy [6, 14] or to hide the user intent in web search
engines [24]. The problem with existing methods is that a large
part of the the initial terms are usually missing from the anonymi-
zed dataset. There are only a few works [11, 18, 30] that preserve
all original terms, without adding noise, based on the Anatomy [30]
idea of separating quasi identifiers from sensitive values. Still, all
these methods can only protect against attribute disclosure.

The main contribution of this work is a novel method called dis-
association that preserves the original terms but hides identifying
combinations. The privacy model is based on km-anonymity [27]:
an adversary, who knows up to m items from any record, will not be
able to match his knowledge to less than k records in the published
data. Anonymization is achieved, not by hiding their constituent
terms (as done by earlier approaches), but instead by suppressing
the fact that some terms (like New York and air tickets) appear to-
gether in the same record. The disassociation transformation ex-
tends the idea of Anatomy [30] to provide for the first time protec-
tion against identity disclosure by separating terms of the original
data. We focus on protection against identity disclosure for three
reasons: (a) it is usually explicitly or implicitly required by law in
many countries and applications, (b) it is often the case that the sen-
sitivity of items cannot be accurately characterized, so protection
against attribute disclosure is not an option, and (c) differential pri-

vacy approaches [6, 14], which offer strong privacy protection, in-
cur a high information loss that is often not an acceptable trade-off.
Protecting identities using disassociation has already been identi-
fied as a complicated problem even for the case of simple relational
data [18], and no previous solution exists for our problem settings.
Finally, the proposed anonymization technique is equally capable
to existing state-of-the-art methods in providing protection against
attribute disclosure if sensitive terms have been identified.

In brief, the main contribution of the paper is the proposal of dis-
association, a new data transformation for sparse multidimensional
data that preserves the original terms of the dataset. We show how
this transformation can be used to anonymize a dataset and prove
that the resulting data adhere to our privacy guarantee. Moreover,
we present an anonymization algorithm that uses disassociation,
and we show that it achieves limited information loss, by evaluat-
ing it experimentally on real and synthetic datasets.

2. PROBLEM DEFINITION
The proposed anonymization method focuses on sparse multidi-

mensional data and provides protection against identity disclosure.
This section formally presents our assumptions about the data and
the attack model. In addition, we define the anonymity guarantee
our method targets to. Figure 1 summarizes our notation.

Data. We assume a collection D of records; each record is a set of
terms from a huge domain T . For example, a term can be a query
posed by a user in the context of web search logs, or a product
bought by a customer in the context of supermarket logs. As a
motivating example, consider a web search query log that traces the
queries posed by users over a period of time. Each record models
a different user and contains the set of queries posed by the user.
Figure 2a presents an exemplary web search query log consisting of
10 records (each being the web search history of a different user).
We do not distinguish between sensitive and non-sensitive terms;
we consider the general case, where any term might reveal sensitive
information for the user and any term can be used as part of a quasi-
identifier for a user. As we discuss in Section 5, having a clear
distinction between sensitive and identifying terms simplifies the
problem and our proposed technique can guarantee, in this case,
protection against attribute disclosure.

Attack model. The identification of a user in D is made possible
by tracing records that contain unique combinations of terms. For
example, if the database of Figure 2a is published and an adversary
A knows that a user U has searched for terms madonna and viagra,
he can infer that only record r2 contains both of them; therefore
A is certain that r2 is associated to U . We assume that the ad-
versary A may have background knowledge of up to m terms (i.e.,
queries) for any record (i.e., user) and that A does not have negative
background knowledge (i.e., the adversary does not know whether
a user did not pose a specific query). Moreover, we assume that
the adversary A does not have background knowledge for so many
individuals that it will allow her to infer negative knowledge about
U (see Section 5 for details).

Anonymity guarantee. The most popular guarantee for protec-
tion against identity disclosure is k-anonymity [26]. k-anonymity
makes each published record indistinguishable from other k−1 pub-
lished records. Applying k-anonymity on sparse multidimensional
data can result to a huge information loss, since groups of identi-
cal records must be created in a sparse data space [1, 13, 28]. For
this reason, we opt for km-anonymity [27], a conditional form of
k-anonymity, which guarantees that an adversary, who has partial
knowledge of a record (up to m items, according to our assumption

Symbol Explanation Symbol Explanation

D, DA Original, anonymized dataset T Domain
A, I Anonymization, inverse transf. s(a) Support of a

P / J . . . Clusters / Joint cluster TP cluster domain
C, C1, . . . Record Chunks TC Chunk domain

SC, SC1,. . . Shared chunks CT Term chunk

Figure 1: Notation

above), will not be able to distinguish any record from other k−1
records. More formally:

DEFINITION 1. An anonymized dataset DA is km-anonymous
if no adversary that has a background knowledge of up to m terms
of a record can use these terms to identify less than k candidate
records in DA.

For the original dataset D and its anonymized counterpart DA,
we define two transformations A and I. The anonymization trans-
formation A takes as input dataset D and results in the anonymized
dataset DA. The inverse transformation I takes as input the an-
onymized dataset DA and outputs all possible (non-anonymized)
datasets D′ that could produce DA, i.e., I(DA) = {D′ | DA =
A(D′)}. Obviously, D ∈ I(A(D)). For example, consider the
dataset

D(age, zip) = {(32, 14122), (39, 14122)}

and its corresponding anonymized dataset (using generalization)

DA(age, zip) = {(3x, 14xxx), (3x, 14xxx)},

we have: A(D) = DA and

I(DA) =

 {(30, 14000), (30, 14000)}, . . .
{(30, 14000), (31, 14000)}, . . .
{(32, 14122), (39, 14122)}, . . .

In this paper, to achieve km-anonymity (Definition 1), we en-

force the following privacy guarantee.

GUARANTEE 1. Consider an anonymized dataset DA and a
set S of up to m terms. Applying I(DA) will always produce
at least one dataset D′ ∈ I(DA), for which there are at least k
records that contain all terms in S.

Intuitively, an adversary, who has limited background knowledge
(consisting of a set S of up to m terms) about a person, will have to
consider k distinct candidate records in a possible original dataset.

3. ANONYMIZATION BY DISASSOCIATION
In this paper, we propose an anonymization transformation A

that is based on disassociation. The proposed transformation parti-
tions the original records into smaller and disassociated subrecords.
The objective is to hide infrequent term combinations in the orig-
inal records by scattering terms in disassociated subrecords. To
illustrate the crux of the disassociation idea, we will use Figure
2. We have already seen that the dataset of Figure 2a is prone to
identity attacks (e.g., r2 can be identified by madonna and viagra).
The corresponding disassociated anonymized dataset is illustrated
in Figure 2b. Our approach, initially, divides the table into two
clusters P1 and P2 containing records r1−r5 and r6−r10 respec-
tively. In each cluster Pi, records are partitioned to smaller sub-
records, after dividing the terms in Pi into subsets. For example, in
P1, the terms are divided into subsets T1 ={itunes, flu, madonna},
T2 ={audi a4, sony tv}, and TT ={ikea, viagra, ruby}. Then, each
record is split into subrecords according to these subsets. The col-
lection of all subrecords of different records that correspond to the

ID Records
r1 {itunes, flu, madonna, ikea, ruby}
r2 {madonna, flu, viagra, ruby, audi a4, sony tv}
r3 {itunes, madonna, audi a4, ikea, sony tv}
r4 {itunes, flu, viagra}
r5 {itunes, flu, madonna, audi a4, sony tv}
r6 {madonna, digital camera, panic disorder, playboy}
r7 {iphone sdk, madonna, ikea, ruby}
r8 {iphone sdk, digital camera, madonna, playboy}
r9 {iphone sdk, digital camera, panic disorder}
r10 {iphone sdk, digital camera, madonna, ikea, ruby}

(a) Original dataset D

C
lu

st
er

P
1

|P
1
|=

5

Record chunks Term chunk
C1 C2 CT

r1 {itunes, flu, madonna}
r2 {madonna, flu} {audi a4, sony tv} ikea, viagra,
r3 {itunes, madonna} {audi a4, sony tv} ruby
r4 {itunes, flu}
r5 {itunes, flu, madonna} {audi a4, sony tv}

C
lu

st
er

P
2

|P
2
|=

5

Record chunk Term chunk
C1 CT

r6 {madonna, digital camera}
r7 {iphone sdk, madonna} panic disorder,
r8 {iphone sdk, digital camera, madonna} playboy, ikea, ruby
r9 {iphone sdk, digital camera}
r10 {iphone sdk, digital camera, madonna}

(b) Anonymized dataset DA

Figure 2: Disassociation example

same subset of terms is called a chunk. For example, r1 is split
into subrecords {itunes, flu, madonna}, which goes into chunk C1

(corresponding to T1), {}, which goes into chunk C2, and {ikea,
ruby}, which goes into chunk CT . CT is a special, term chunk; the
subrecords that fall into the last chunk (CT) are merged to a single
set of terms. In our example, CT contains set {ikea, viagra, ruby},
which represents the subrecords from all r1−r5 containing these
terms. In addition, the order of the subrecords that fall in a chunk
is randomized; i.e., the association between subrecords in differ-
ent chunks is hidden. According to this representation, the orig-
inal dataset could contain any record that could be reconstructed
by a combination of subrecords from the different chunks plus any
subset of terms from CT . For example, {itunes, madonna, viagra,
ruby} is a reconstructed record, which takes {itunes, madonna}
from C1, {} from C2, and {viagra, ruby} from CT . Observe that
this record does not appear in the original dataset.

Similarly to the generalization based techniques, the disassoci-
ated dataset DA models a set of possible original datasets I(DA).
However, in our case the possible datasets are not described in a
closed form captured by the generalization ranges, but by the possi-
ble combinations of subrecords. In other words, the original dataset
is hidden amongst the multiple possible datasets in I(DA) that can
be reconstructed by combining the subrecords and terms taken from
the disassociated dataset.

Overall, the anonymized dataset in Figure 2b satisfies Guarantee
1 for k = 3 and m = 2. We see in detail how this happens in
Section 5, but we can observe that an attacker who knows up to
m = 2 terms from a record r of the original database is not able
to reconstruct less that k = 3 records (by combining appropriate
subrecords) that might have existed in the original data.

In the following, we present the details of our technique, which
performs 3 steps: a horizontal partitioning, a vertical partitioning
and a refining. The horizontal partitioning brings similar records
together into clusters. The heart of the anonymization procedure
lies in the vertical partitioning which disassociates infrequent com-
binations of terms. Finally, to reduce information loss and improve
the quality of the anonymized dataset a refining step is executed.

Horizontal partitioning. Records of the original dataset D are
grouped into clusters according to the similarity of their contents
(e.g., Jaccard similarity). For instance, cluster P1 is formed by
records r1−r5 (Figure 2b). Horizontal partitioning reduces the an-
onymization of the original dataset to the anonymization of multi-
ple small and independent clusters. The benefits of this approach
are threefold. First, it limits the scope of the term disassociation to
the records that are contained in the cluster; two terms may be dis-
associated only within the local scope of a partition, limiting this
way the negative effect in the information quality of the published
dataset. Second, since clustering brings similar records together in

the same partition, the anonymity guarantee can be achieved with
reduced disassociation. Third, the anonymization process can be
done more efficiently and even in parallel.

Vertical partitioning. Intuitively, vertical partitioning leaves term
combinations that appear many times intact and disassociates terms
that create infrequent and, thus, identifying combinations. The dis-
association is achieved by concealing the fact that these terms ap-
pear together in a single record. Vertical partitioning applies on
each cluster and divides it into chunks. There are two types of
chunks: record and term chunks. Record chunks contain subrecords
of the original dataset; i.e., each chunk is a collection (with bag se-
mantics) of sets of terms, and they are km-anonymous. That is, ev-
ery m-sized combination of terms that appears in a chunk, appears
at least k times. Term chunks do not contain subrecords; they con-
tain the terms that appear in the cluster, but have not been placed to
record chunks. A term chunk is a simple collection of terms with
set semantics. Each cluster may contain an arbitrary number of
record chunks (≥ 0) and exactly one term chunk (which might be
empty). In Section 5, we explain how the term chunk can be used to
provide l-diversity some terms have been designated as sensitive.

Vertical partitioning is applied to each cluster independently. Let
us consider a cluster P and let TP be the set of terms that appear
in P . To partition P into v record chunks C1, . . . , Cv and a term
chunk CT , we divide TP into v+1 subsets T1, . . . , Tv, TT that are
pairwise disjoint (i.e., Ti ∩ Tj = ∅, i ̸= j) and jointly exhaustive
(i.e.,

∪
Ti = TP). Subsets T1, . . . , Tv are used to define record

chunks C1, . . . , Cv while subset TT , is used to define term chunk
CT . Specifically, CT = TT and record chunks Ci, 1 ≤ i ≤ v
are defined as Ci = {{ Ti ∩ r | for every record r ∈ P}} where
{{·}} denotes a collection with bag semantics (i.e., duplicate records
are allowed in Ci). Thus, chunks C1, . . . , Cv are collections of
records while chunk CT is a set of terms. The partitioning of TP to
T1, . . . , Tv, TT is performed in a way which ensures that all result-
ing record chunks C1, . . . , Cv are km-anonymous. In Figure 2b,
two 32-anonymous record chunks C1 and C2 are formed for P1, by
projecting the records of P1 to sets T1={itunes,flu,madonna} and
T2 = {audi a4, sony tv} respectively; the remaining terms {ikea,
viagra,ruby} of P1 form the term cluster CT .

Note that, for each published cluster, we explicitly show the
number of original records in it. Without this explicit information,
a data analyst may only infer that the cluster has at least as many
records as the cardinality of the chunk with the greatest number of
subrecords. Not knowing the cardinality of a cluster introduces sig-
nificant information loss; for instance, it is not feasible to estimate
the co-existence of terms in different chunks.

Finally, we remark that horizontal and vertical partitioning are
applied in reverse order from what is followed by approaches that
employ similar data transformations [11, 18, 30]. Thus, since verti-

Record Term Shared
P1 cluster

{ikea,ruby}
{ruby}
{ikea}

{ikea,ruby}

{ikea,ruby}

{itunes, flu, madonna}
{madonna, flu} {audi a4, sony tv} viagra
{itunes, madonna} {audi a4, sony tv}
{itunes, flu}
{itunes, flu, madonna} {audi a4, sony tv}
P2 cluster
{madonna, digital camera}
{iphone sdk, madonna} panic
{iphone sdk, digital camera, madonna} disorder,
{iphone sdk, digital camera} playboy
{iphone sdk, digital camera, madonna}

Figure 3: Disassociation with a shared chunk.

cal partitioning is applied independently in each horizontal partition
(i.e., cluster), our method follows a local anonymization approach.
This constitutes a significant difference from previous works that
anonymize datasets by performing a global partitioning between
terms (usually between sensitive terms and quasi-identifiers).

Refining. At this final step of the method, we focus on improving
the quality of the published result while maintaining the anonym-
ization guarantee. To this end, we examine the terms that reside
in term chunks. Consider the example of Figure 2b. Terms ikea
and ruby are in the term chunk of P1 because their support in P1

is low (each term appears in only 2 records). For similar reasons
these terms are also in the term chunk of P2. However, the sup-
port of these terms considering both clusters P1 and P2 is not small
enough to endanger user privacy (ikea and ruby appear as many
times as itunes and iphone that are in record chunks).

To address such situations, we introduce the notion of joint clus-
ters that offer greater flexibility in our partitioning scheme by al-
lowing different clusters to share record chunks. Given a set T s

of refining terms (e.g., ikea and ruby), which commonly appear in
the term chunks of two or more clusters (e.g., P1 and P2), we can
define a joint cluster by (a) constructing one or more shared chunks
after projecting the original records of the initial clusters to T s and
(b) removing all T s terms from the term chunks of the initial clus-
ters. Figure 3 shows a joint cluster, created by combining clusters
P1 and P2 of Figure 2b, based on T s={ikea,ruby}.

The idea of a joint cluster can be recursively generalized. We
may form higher-level joint clusters by combining simple and joint
clusters of a lower level (for example see Figure 5). In the general
case a joint cluster J , has as children the joint clusters J1, . . . , Jn

and at its leaves the simple clusters P1, . . . , Pm. Moreover it con-
tains the km-anonymous shared chunks SC1, . . . , SCw, which are
created over a domain T s. All terms of T s come from the term
chunks CT1 , . . . , CTm of P1, . . . , Pm. If T1, . . . , Tw are the do-
mains of SC1, . . . , SCw, T1 ∪ · · · ∪ Tw = T s and Ti ∩ Tj = ∅
for i ̸= j, then each shared chunk SCi is created by projecting
the records of every Pj to CTj ∩ Ti. Shared chunks are defined in
this way, in order to avoid having a record contributing the same
projection to shared or simple record chunks more than once.

Reconstruction of datasets. A disassociated dataset DA has the
original records of D partitioned into subrecords (residing in record
or shared chunks) and terms (residing in term chunks). An adver-
sary A can combine record, shared and term chunks in an effort to
reconstruct the world of all possible original datasets I(DA). Pos-
sible original datasets may be reconstructed by combining the sub-
records of record and term clusters padded with some terms from
the term chunks. Such datasets D′ are called reconstructed datasets
and by construction belong to I(DA). The adversary A may con-
sider only the reconstructed datasets that abide to his background
knowledge. Guarantee 1 requires that for every m terms that ex-
ist in a record of D, there will be a D′ that contains k records

with these terms. Thus, an adversary will always have k candidate
records that will match her background knowledge.

Reconstructed datasets are also useful to data analysts, since they
have similar statistical properties to the original one. We experi-
mentally evaluate this similarity in Section 7. The benefit of pro-
viding the disassociated form, instead of a reconstruction directly,
is threefold: (a) an analyst can work directly on the disassociated
dataset. The disassociated dataset reveals some information, i.e.,
itemset supports, that is certain to exist on the original data, (b) the
reconstruction procedure is transparent; an adversary cannot draw
incorrect conclusions about the identity of a user by considering the
reconstructed dataset as original or as ineffectively perturbated and
(c) an analyst can create an arbitrary set of reconstructed datasets
and average query results from all of them.

4. THE ANONYMIZATION ALGORITHM
The proposed algorithm uses heuristics to perform the partition-

ing (horizontal and vertical) and the refining step of Section 3.

Horizontal partitioning. Horizontal partitioning should bring to-
gether similar records that contain many common terms and few
uncommon ones. Similarity may be assessed using measures from
Information Theory (e.g., Jaccard coefficient). Related clustering
algorithms exist in the literature for set-valued data [29], but un-
fortunately they are not appropriate for our setting since: (a) they
are not efficient on large datasets and (b) they do not explicit con-
trol the size of the clusters. We employ Algorithm HORPART, a
lightweight heuristic that does not have these problems. The key
idea is to split the dataset into two parts: one with the records that
contain the most frequent term a in the dataset and another with the
remaining records. This procedure is recursively applied to the new
datasets until the final datasets are small enough to become clusters.
Terms that have been previously used for partitioning are recorded
in set ignore and are not used in subsequent splitting (Line 3).

Vertical partitioning. To vertically partition the clusters, we fol-
low a greedy strategy (Algorithm VERPART), executed indepen-
dently for each cluster. VERPART takes as input a cluster P and in-
tegers k and m; the result is a set of km-anonymous record chunks
C1, . . . , Cv and the term chunk CT of P .

Let TP be the set of terms of P . Initially, the algorithm com-
putes the number of appearances (support) s(t) of every term t and
orders TP with decreasing s(t). All terms that appear less than
k times are moved from TP to the term chunk TT . Since all the
remaining terms have support at least k, they will participate in
some record chunk. Next, the algorithm computes sets T1, . . . , Tv

(while loop). To this end, the algorithm uses set Tremain that con-
tains the non-assigned terms (ordered by decreasing support s) and
Tcur (that contains the terms that will be assigned to the current
set). To compute Ti (1 ≤ i ≤ v), Algorithm VERPART considers
all terms of set Tremain . A term t is inserted into Tcur only if the
Ctest chunk constructed from Tcur ∪ {t} remains km-anonymous
(Line 12). Note that the first execution of the for loop (Line 10) will
always add a term t to Tcur since Ctest = {t} is km-anonymous

Algorithm: HORPART
Input : Dataset D, set of terms ignore (initially empty)
Output : A HORizontal PARTitioning of D
Param. : The maximum cluster size maxClusterSize

1 if |D| < maxClusterSize then return {{D}};
2 Let T be the set of terms of D;
3 Find the most frequent term a in T − ignore;
4 D1 = all records of D having term a;
5 D2 = D −D1;
6 return HORPART(D1, ignore ∪ a)∪HORPART(D2, ignore)

Algorithm: VERPART
Input : A cluster P , integers k and m
Output : A km-anonymous VERtical PARTitioning of P

1 Let TP be the set of terms of P ;
2 for every term t ∈ TP do
3 Compute the number of appearances s(t);

4 Sort TP with decreasing s(t);
5 Move all terms with s(t) < k into TT ; //TT is finalized
6 i = 0;
7 Tremain = TP − TT ; //Tremain has the ordering of TP

8 while Tremain ̸= ∅ do
9 Tcur = ∅;

10 for every term t ∈ Tremain do
11 Create a chunk Ctest by projecting to Tcur ∪ {t} ;
12 if Ctest is km-anonymous then Tcur = Tcur ∪ {t};

13 i++;
14 Ti = Tcur ;
15 Tremain = Tremain − Tcur ;

16 Create record chunks C1, . . . , Cv by projecting to T1, . . . , Tv ;
17 Create term chunk CT using TT ;
18 return C1, . . . , Cv , CT

(s(t) ≥ k). If the insertion of a term t to Tcur renders Tcur ∪ {t}
non km-anonymous, t is skipped and the algorithm continues with
the next term. After having assigned to Tcur as many terms from
Tremain as possible, the algorithm (a) assigns Tcur to Ti, (b) re-
moves the terms of Tcur from Tremain and (c) continues to the next
set Ti+1. Finally, Algorithm VERPART constructs record chunks
C1, . . . , Cv using T1, . . . , Tv and the term chunk CT using TT .

Refining. The result of the vertical partitioning is a set P of km-
anonymous clusters. The refining step improves the quality of the
anonymized dataset by iteratively creating joint clusters until no
further improvement is possible. A naı̈ve method to perform this
step consists of computing the information loss (e.g., using a metric
of Section 6) for all possible refinement scenarios and choosing the
one with the best effect on data quality. Since such an option is
very inefficient, we define a refining criterion. Let us consider two
clusters J1 and J2. These cluster are joined into cluster Jnew if the
following inequality holds:

s(t1) + · · ·+ s(tn)

|Jnew |
≥

u1 + · · ·+ um

|P1|+ · · ·+ |Pm|
(1)

where (a) t1, . . . , tn are the refining terms T s (Section 3), (b) s(t1),
. . . , s(tn) are the supports of t1, . . . , tn respectively in the shared
chunks of Jnew , (c) P1, . . . , Pm are the simple clusters of J1 and
J2 that contain t1, . . . , tn and (d) v1, . . . , vm are the number of
terms t1, . . . , tn that appear in the term chunk of each of P1, . . . , Pm

respectively. For instance, if J1 and J2 are clusters P1 and P2 of
Figure 2b and Jnew is the joint cluster of Figure 3 then the refin-
ing terms are ruby and ikea and we have: s(ruby)+s(ikea)

|Jnew | = 4+4
10

≥
2+2
10

= u1+u2
|P1|+|P2|

. Thus, J1 and J2 are replaced by Jnew .
Note that the left part of Equation 1 estimates the probability

of attributing one of t1, . . . , tn to the records of the joint Jnew

while the its right part expresses the probability of attributing one
of t1, . . . , tn to the initial records of J1 and J2.

Even with the criterion of Equation 1, we still need to exhaus-
tively explore all the combinations of clusters (simple or joint) in
order to choose the best ones. This is computationally infeasible.
Thus, we have opted for a heuristic that merges each time only
two existing clusters (simple or joint) to form a new joint cluster.
The sketch of this method is illustrated in Algorithm REFINE. The
algorithm takes as input a collection of simple clusters P and trans-
forms it to a collection of joint clusters. The algorithm orders the

Algorithm: REFINE
Input : A set P of km-anonymous clusters
Output : A refinement of P

1 repeat
2 Add to every joint cluster a virtual term chunk as the union of the

term chunks of its simple clusters;
3 Order (joint) clusters in P according to the contents of their

(virtual) term chunks;
4 Modify P by joining adjacent pairs of clusters (simple or joint)

based on Equation 1;
5 until there are no modifications in P;
6 return P

clusters of P as follows: a) each term t is given a term chunks sup-
port tcs(t); i.e., the number of term chunks in clusters of P where
t appears; b) the terms in term chunks are ordered in descending
order of their tcs; and c) clusters are ordered by comparing lexico-
graphically their term chunks. After the first iteration, joint clusters
are introduced in P . To each joint cluster J , we add a virtual term
chunk, which is the union of the term chunks of its simple clusters,
and we use it in the ordering step. REFINE modifies P by merging
adjacent pairs of clusters and repeats the process until P does not
change. The merging is done only if the criterion of Equation 1 is
satisfied, and produces a joint cluster as defined in Section 3.

Correctness of the algorithm. Disassociation performs the parti-
tioning (vertical and horizontal) and refining steps detailed in the
previous sections. The proposed method is correct; it succeeds for
any input and it always produces a disassociated km-anonymous
dataset. It is not hard to verify that the algorithm terminates and
produces a disassociated result. The proof that a disassociated
dataset is km-anonymous is provided in Section 5. In a nutshell
notice that (a) horizontal partitioning does not alter the original
dataset and always produces clusters, (b) vertical partitioning cre-
ates km-anonymous clusters since Algorithm VERPART will put
every term that has support over k to the record chunks (Lines 10-
17) and the rest of the terms in the term chunk (Lines 6 and 18) and
(c) refining has the trivial solution of not merging any clusters and
if a joint cluster is created (i.e., if shared chunks are added), then
km-anonymity is preserved as we prove in Section 5.

Complexity. The most expensive part of disassociation is the hor-
izontal partitioning that has a worst case complexity of O(|D|2)
time. The horizontal partitioning can be seen as a version of quick-
sort, which instead of a pivot uses the most frequent term to split
each partition; in the worst case it will do |D| partitionings and at
each partitioning it has to re-order |D| records. The complexity of
vertical partitioning depends on the domain TP of the input clus-
ter P , and not on the characteristics of the complete dataset. The
most expensive operation in the vertical partitioning is to establish
whether a clunk is km-anonymous or not. This task requires ex-
amining

(|TP |
m

)
combinations, thus it takes O(|TP |!) time. Since

we regulate the size of clusters, the behavior of the overall algo-
rithm, as the dataset size grows, is dominated by the behavior of the
horizontal partitioning. Finally, the refining algorithm has again a
O(|D|2) time complexity, since in the worst case it will perform as
many passes over the clusters as the number of the clusters. Note
that this a worst case analysis; in practice, the behavior of our algo-
rithm is significantly better; this is also verified by the experimental
evaluation of Section 7, which shows a linear increase of the com-
putational cost with the input dataset size |D|.

5. ANONYMIZATION PROPERTIES
In Section 3, we described our disassociation transformation tech-

nique, which is implemented by the algorithm presented in Section

Records

a
a
b, c
b, c
a, b, c

(a) Original dataset

Record chunks Term chunk
C1 C2 CT

a
a
a b, c

b, c
b, c

(b) Anonymized dataset

Figure 4: Illustration of Example 1, Original cluster size = 5

4. In this section, we prove how the disassociated result can guar-
antee km-anonymity, by showing how the transformed data can be
used to reconstruct a possible initial dataset that contains k times
any combination of m terms. In this proof we define two additional
properties that must be preserved in a disassociated dataset.

Cluster anonymity. First, we prove that each disassociated cluster
is km-anonymous, by constructing an initial cluster that contains k
times any m terms of the disassociated cluster.

Let P be an arbitrary cluster of the anonymized dataset which is
vertically partitioned into km anonymous record chunks C1, . . . , Cv

and a term chunk CT . Then the following Lemma holds:

LEMMA 1. For any m terms S = t1, . . . , tm that appear in P ,
at least k distinct records that contain S can be reconstructed by
combining subrecords from the chunks C1, . . . , Cv and terms from
CT , or no record can be reconstructed that contains S.

PROOF. We first prove that Lemma 1 holds if all m terms fall
inside the record chunks. In this case the m terms S = t1, . . . , tm
are scattered in n, (n ≤ m,n ≤ v) record chunks C1, . . . , Cn. Let
S1, . . . , Sn be the subsets of S that appear in each of C1, . . . , Cn.
Since each chunk is km anonymous, Si will appear in the respec-
tive record chunk Ci at least k times together or none at all. The
latter case happens if the Si terms exist in disjoint groups of sub-
records inside Ci. If there is even one of S1, . . . , Sn whose terms
do not appear together at all in the respective chunk, then the S
terms cannot appear together in any reconstructed record. If ev-
ery set of S1, . . . , Sn appears together in the respective chunk,
then it has to appear in at least k subrecords in each chunk. Let
SR1, . . . , SRn be these sets of subrecords, one from each record
chunk. We can then create a record by combining 1 subrecord from
each of SR1, . . . , SRn, i.e., r = sr1 ∪ · · · ∪ srn, where sri is
a subrecord, sri ∈ SRi. Since each SRi contains at least k sub-
records, we remove the used subrecord and repeat the process at
least k − 1 more times. This results to at least k distinct records
that contain all S terms. Assume now that only g, g < m terms fall
inside the record chunks and m − g terms fall in the term chunk.
The previous proof holds for the g terms too, since g < m, thus
k records can be reconstructed from the record chunks that contain
the g items. We can then directly pad these k records with the rest
of m−g terms from the term chunk. We are free to do so, since the
multiplicity and the correlations of these terms are not disclosed in
the disassociated cluster.

Lemma 1 shows that k records can be constructed from a disassoci-
ated cluster; still, this is not sufficient for providing km-anonymity
as defined in Guarantee 1 as the following example illustrates.

EXAMPLE 1. Let us consider the dataset of Figure 4a. Assume
that we want to publish it as 32-anonymous and that we create two
record chunks C1 and C2 with domains T1 = {a}, T2 = {b,c} and
TT = ∅, as illustrated in Figure 4b. It is not hard to verify that all
chunks are 32-anonymous and that Lemma 1 holds.

Let us now consider an adversary A that knows: (a) the anony-
mized dataset of Figure 4b, (b) that the size of the original cluster
is 5 and (c) that a user had used terms a and b, i.e., {a, b} is a

subrecord of the original dataset. Adversary A also knows that the
original dataset is composed by a combination of the records stored
in chunks C1 and C2.

While the subrecords from C1 and C2 can be combined to create
k = 3 records that contain a and b, these records cannot appear in
any original dataset, which must contain 5 records. It is not hard
to verify that the only combination that results in a dataset with 5
records is the one presented in Figure 4a. Thus, no dataset that
contains {a,b} 3 times can be the initial dataset of the example of
Figure 4a. This way, the user’s record {a,b,c} is revealed.

Example 1 demonstrates that Lemma 1 is not sufficient to guar-
antee km-anonymity. Lemma 1 guarantees that k records that con-
tain any m terms can be constructed, but it does not guarantee that
these records can appear in a valid dataset of a predefined size. The
sparsity of the original data, often leads to empty subrecords inside
different chunks. Since there cannot be empty records, a record that
is created as a result of combining empty subrecords is not valid.
An initial dataset that contains an empty record is also not valid,
thus and adversary can discard it. To enforce Guarantee 1, we must
require not only that Lemma 1 holds, but also that these records
can appear in a valid initial dataset. Fortunately, we do no need
to reconstruct all possible original datasets to see if this condition
is satisfied. It suffices to enforce the condition of the following
lemma.

LEMMA 2. Let C1, . . . , Cv be the record chunks that corre-
spond to the anonymization of a cluster P with size s. If (a) chunks
C1, . . . , Cv are km-anonymous and (b) the total number of sub-
records in all chunks

∑
(|Ci|) is greater than or equal to s + k ·

(h − 1), h = min(m, v) or the term chunk is not empty, then
Guarantee 1 holds.

PROOF. To prove this lemma, it suffices to show that for every
different combination of m items: (a) no record that contains the
m terms can be constructed or (b) a valid initial cluster Pr of size s
where the m terms appear in at least k records can be reconstructed.

Assume m random terms t1, . . . , tm from TP . According to
Lemma 1, given a disassociated cluster Pa, no record that contains
these m terms can be created or at least k records can be recon-
structed. In the former case, the km anonymity trivially holds (this
case corresponds to a combination of m terms that did not appear
in the initial dataset1) and it covers case (a). In the latter case, to
prove (b) we need to show that these k records can appear in at
least one valid reconstruction of the disassociated cluster Pa. A
valid reconstruction of cluster Pa is a possible initial cluster that
has s non-empty records. We construct a cluster that contains s
records in total, where at least k of them contain t1, . . . , tm as fol-
lows. We first construct the k records, denoted as Rk that contain
the m terms as described in Lemma 1. If the m terms are scattered
in h chunks, then to construct each of these records we need h sub-
records; one form each chunk, thus k · h subrecords. To create a
valid initial dataset of size s that contains the Rk records we only
need to populate it with s − k additional records Ro that are valid
i.e., non-empty. If the term chunk is non-empty then the s − k
records can be populated by randomly combining terms from the
term chunk. If the term chunk is empty, we can create such records
by assigning 1 subrecord that has not been used in the construction
of Rk, from any of the C1, . . . , Cv chunks,. The total number of
subrecords needed is h · k + s − k = s + k · (h − 1). The worst
1If a combination of terms cannot be created by combining subrecords, it
holds that it did not appear in the original data. The reverse is not true; if a
combination can be created, it does not mean that it existed in the original
data.

case, i.e., the maximum number of subrecords that are required for
constructing a valid cluster, is when we need to combine one dif-
ferent subrecord for each of t1, . . . , tm to create a record of Rk. In
this case, h = m or if the cluster has less than m record chunks
h = v. Thus, having s + k · (h − 1), h = min(m, v) subrecords
is sufficient to create a valid initial cluster.

Joint cluster anonymity. An example which demonstrates that
careless creation of shared chunks can lead to cases where combi-
nations of m terms might not appear k times in any reconstructed
dataset is depicted in Figure 5a. Although every chunk (i.e., verti-
cal partition) in the illustrated dataset is 32-anonymous, the overall
dataset is not. Since each record has set semantics, an adversary
can discard initial datasets that contain records with two identical
terms. An attacker A knowing that a user U asked for terms x
and o can only find one matching record in every possible origi-
nal dataset using the following reasoning. Term x appears only in
the 1st cluster (always together with a) and o appears in the shared
chunk. Thus, to construct U ’s record, A has to combine {a,x} with
any of {a,x}, {a} and {o}; but, by the semantics of shared chunks,
the only allowed combination is {a,x,o} which appears just once.
In order to avoid these conflicts we enforce the following property.

PROPERTY 1. Let J be a joint cluster and T r be the set of
terms that appear in the record and shared chunks of the clusters
(joint or not) forming J . A shared chunk of J that does not con-
tain terms from T r must be km-anonymous; if it does, it must be
k-anonymous.

For example in Figure 5a, Property 1 does not hold since T r =
{a,b,c,d,e,f,x}, term a appears on the shared chunk, a ∈ T r and the
shared chunk is not k-anonymous. On the other hand, the property
holds for Figure 5b. T r contains all terms that appear in J except
those that are placed in term chunks and those that appear only in
J’s shared chunks (only o in the previous example). Let us now
consider the following lemma.

LEMMA 3. A joint cluster for which Property 1 holds, is km-
anonymous.

PROOF. We will prove the Lemma by induction. Lemma 2
shows that simple clusters are km-anonymous. It is also easy to
see why joint clusters who contain only simple clusters are km-
anonymous, since no conflicts between the terms of the record and
shared chunks appear there. In the following we will prove the
inductive step; a joint cluster J that is formed by existing km-
anonymous joint clusters is km-anonymous too.

Let J be a joint cluster with domain T J , the km-anonymous
joint clusters J1, . . . , Jq be its children and the simple clusters km-
anonymous P1, . . . , Pw be its leaves. Let SC be the set of the
shared chunks of J that all satisfy Property 1. Moreover, let T r

be the set of terms that appear in the record and shared chunks of
J1, . . . , Jq . Since J1, . . . , Jq are km anonymous we only have to
check how the introduction of the shared chunks SC affects ano-
nymity. Because Lemma 2 holds for each cluster independently,
there is no need to set a new bound for the number of subrecords
contained in SC. We only have to show that the addition of SC al-
lows the creation of k records (or no record at all) that contain any
m-sized combination of terms from T J .

Assume a random combination of m terms t1, . . . , tm from T J

where terms t1, . . . , ti appear in J1, . . . , Jq (in either record or
term chunks) and ti+1, . . . , tm appear in the shared chunks SC.
If i = m, i.e., all terms belong to J1, . . . , Jq , then km anonym-
ity holds since we assumed that J1, . . . , Jq are km-anonymous. If

i = 0, i.e., all terms belong to the shared chunks, then by following
the same constructive proof as we did in Lemma 1 we can cre-
ate k records that contain t1, . . . , tm. This is sufficient for proving
km-anonymity since there is no requirement for the number of sub-
records in the shared chunks. Finally, if some of the m terms cannot
appear together by any combination of subrecords, i.e., they did not
appear together in the original data at all, then the km-anonymity
trivially holds. It remains to prove that J is km-anonymous for
0 < i < m.

Let SC1, . . . , SCn, n ≤ m , with domains T 1, . . . , Tn be the
shared chunks of SC that contain ti+1, . . . , tm. Using the recon-
structed clusters of J1, . . . , Jq we partially reconstruct a joint clus-
ter Jr that contains at least k records with the terms t1, . . . , ti.
Let PR be the partially reconstructed records of J that contain
t1, . . . , ti, |PR| ≥ k. We expand the PR with subrecords from
each SCi of SC1, . . . , SCn to create records that contain all m
terms. For each of SCi with domain T i we have two cases:

T r ∩ T i = ∅ holds: In this case, SCi is km-anonymous and no
term from SCi appears in any of the PR records. We can then
select k subrecords that contain the terms from ti+1, . . . , tm that
fall in T i and concatenate them to k records of PR.

T r ∩ T i ̸= ∅ holds: In this case, SCi is k-anonymous. Let SRi

be the records of SCi that contain the terms of t1, . . . , tm that fall
in T i, |SRi| ≥ k. We want to append k subrecords from SRi to
k records of PR to create records that contain all m terms. Still,
not all combinations of PR × SRi are valid due to conflicts. The
conflicts are caused by terms that appear both in the subrecords
of SCi and the records of Jr that have partially been constructed
until now. Assume that the conflict is based on a term a. a is in-
dependent of t1, . . . , tm. Assume that a appears in the record or
shared chunks of the simple or joint clusters Ja, which are descen-
dants of J . The existence of a in these record chunks means that
SRa did not exist in any of Ja, thus the records of SRa cannot be
combined with any of the records of Ja. Let JRa be the partially
reconstructed records of Ja. Because of the conflict, the adversary
knows that if any record of PR belongs to JRa too, then it cannot
be combined with SRa to create the k records we need. To guar-
antee km anonymity, we must be able to combine at least k records
from PR′ = PR \ JRa and SR′

i = SRi \ SRa or none at all.
We will prove this by showing that either all records of PR′ and
all subrecords of SR′

i are disqualified, or that at least k remain in
each set. Since each joint cluster is anonymized independently, it
contributes at least k records to PR. Any conflict with even one
record of a cluster from Ja disqualifies all the records from the
same cluster, thus JRa will be equal to PR or they will differ at
least by k records, i.e., all the records contributed by a cluster that
has no conflict. Thus |PR′| = 0∨ |PR′| ≥ k. Moreover, since we
required that Si is k-anonymous, there will be at least k duplicates
of each record. A conflict over term a will disqualify at least k
records, and if records without a exist in SR′ there will be at least
k of them. So, after eliminating conflicts, |SR′| = 0 ∨ |SR′| ≥ k.
Since both PR′ and SR′ will have either more than k records or
none after eliminating conflicting records, we can either create k
records that contain all t1, . . . , tm or no such record.

The proof is similar for conflicts based on more than one item.
Since a disassociated dataset consists of either joint or simple

clusters, Lemmas 2 and 3 are sufficient to prove that the whole
dataset is km-anonymous. We only have to show that the properties
required by the previous Lemmas can be guaranteed by the algo-
rithm of Section 4. To guarantee the property required by Lemma
2 we only need to add a check at the end of VERPART that verifies
that the cluster contains enough subrecords. If the size limit is not

1st cluster

{e}
{e}
{e}

{a,o}
{a,o}
{a}
{o}

{a,x}
{a,x}
{a,x}
2nd cluster
{b}
{b}
{b}
3rd cluster

{f}
{f}
{f}

{c}
{c}
{c}
4th cluster
{d}
{d}
{d}

(a)

1st cluster

{e}
{e}
{e}

{a}
{a}
{a}

{o}
{o}
{o}

{a,x}
{a,x}
{a,x}
2nd cluster
{b}
{b}
{b}
3rd cluster

{f}
{f}
{f}

{c}
{c}
{c}
4th cluster
{d}
{d}
{d}

(b)

Figure 5: Unsafe (a) vs. safe (b) creation of a shared chunk

met, then by moving the least frequent item of the record chunks
to the term chunk, we guarantee that the conditions set by Lemma
2 are satisfied. This solution is always feasible; at least one term
will exist to populate the term chunk in each cluster. To satisfy
Lemma 3 the refining algorithm has to check in the creation of a
shared chunk, if any of its terms appears in the record chunk of
any descendant joint or simple cluster. If this holds, then the chunk
must be k-anonymous, else it can be km-anonymous. Since there
is always the trivial solution of a record chunk that contains only 1
term, which is both k-anonymous and km-anonymous, the refining
algorithm always produces a km-anonymous dataset.

Protection against stronger adversaries. km-anonymity is a con-
ditional guarantee and the protection it offers is reduced against
adversaries with background knowledge that exceeds the attack
model assumptions. The most common case is to have adversaries
that have more knowledge than m terms about a user or adver-
saries that have background knowledge about all users that contain
certain m terms. In both cases, the adversary’s background knowl-
edge consists of enough information to accurately associate some
records to a known group of users U . This allows the adversary
to remove these records from the groups of candidate records that
match her background knowledge for any user who does not be-
long to U . Still, this attack does not lead automatically to complete
re-identification of the additional users, but reduces the number of
candidates according to their overlap with the records that are as-
sociated with U . This type of attacks has been studied in other con-
texts [2, 32] and their effect on disassociation and generalization
based methods is similar. Disassociation has an additional weak-
ness that is related to Lemma 2; if a record of a user is identified
and the remaining terms violate Lemma 2, then the probability of
identifying additional records might be reduced to less than k-1.

Diversity. So far we have discussed an anonymization framework
offering protection against identity disclosure. In this section, we
discuss how the proposed framework may also offer protection against
attribute disclosure and achieve l-diversity.

Former works that guarantee l-diversity, separate sensitive at-
tributes from quasi identifiers [11, 18, 30]. Following the same
idea, we can enforce l-diversity in our framework by (a) ignoring
all sensitive values in the horizontal partitioning and (b) placing all
sensitive values in the term chunk at the vertical partitioning stage.
In the resulting data, all sensitive values will reside at the term
chunk and no association between them and any other subrecord
or value can be done with probability over than 1/|C|, where |C|
is the size of the cluster. By adjusting the size of the clusters, the
anonymization method achieves the desired degree of l-diversity.

The proposed anonymization framework offers protection against
both identity and attribute disclosure. We focus on the former be-

cause to the best of our knowledge there is no other work that em-
ploys a similar to disassociation transformation to guarantee pro-
tection against identity disclosure (works enforcing l-diversity do
not consider re-identification dangers [11, 18, 30]). We expect that
in practice both protection against identity and attribute disclosure
(for the recognized sensitive values) are needed.

6. INFORMATION LOSS
By definition, disassociation incurs a different information loss

compared to classic anonymization methods. The disassociated
dataset preserves all the initial terms and many of the initial item-
sets. An analyst can work directly on the disassociated dataset or
reconstruct a possible initial one. In the former case, the analyst
can compute lower bounds of the supports of all terms and item-
sets. These bounds can be computed by counting all the appear-
ances of terms and itemsets in the record chunks of the simple and
joint clusters and by adding one to the support of each term that
appears in a term chunk. Moreover, the analyst can employ models
for answering queries in probabilistic databases to directly query
the anonymization result [9]. Using such a model, one can assume
that the contents of each record chunk are possible assignments to
every record of the cluster with probability (1/|P |). Still, existing
work on uncertain data management is not tailored to the disasso-
ciated dataset and does not take advantage of the constraints in the
reconstruction procedure that we detailed in Section 3 to increase
the quality of the estimations. Moreover, working directly on the
disassociated dataset requires adjusting existing tools and models
for analyzing data. Because of this, we believe that it is easier to
apply most analysis tasks on a reconstructed dataset. During hori-
zontal partitioning, clusters are created by bringing similar records
together; thus, the statistical properties of a reconstructed dataset
are quite close to the original one. A way to further increase the
accuracy of the analysis on reconstructed data is to create more
than one reconstructed datasets and average the query results on
them. We experimentally evaluate the similarity between the re-
constructed datasets and the original one in Section 7.

Disassociation hides infrequent term combinations, therefore the
incurred information loss is related to term combinations that exist
in the original dataset but are lost in the disassociated dataset. To
assess the impact of the information loss, we examine the behav-
ior of common mining and querying operations on the transformed
data. We employ metrics that are generic and can be used as a
comparison basis with anonymization methods that employ differ-
ent data transformations (such as generalization, suppression and
differential privacy). More specifically, we examine how many of
the frequent itemsets that exist in the original data are preserved in
the published data, and we also measure the relative error in the
estimation of the supports of pairs of items.

Top-K deviation (tKd). The tKd metric measures how the top-
K frequent itemsets of the original dataset change in the published
anonymized data. Let FI (respectively, FI ′) be the top-K fre-
quent itemsets in the original dataset (respectively, the anonymized
dataset); tKd is defined as follows:

tKd = 1− |FI ∩ FI ′|
|FI| (2)

Intuitively, tKd expresses the ratio of the top-K frequent itemsets
of the original dataset that appear in the top-K frequent itemsets of
the anonymized data.

To compare disassociation with generalization-based methods,
we define an appropriate version of tKd, called the top-k multiple
level mining loss tKd-ML2, which is based on the ML2 metric

Dataset |D| |T | max rec. size avg rec. size

POS 515,597 1,657 164 6.5
WV1 59,602 497 267 2.5
WV2 77,512 3,340 161 5.0

Figure 6: Experimental datasets

defined in [27]. Mining a dataset at multiple levels of a general-
ization hierarchy is an established technique [12], which allows de-
tecting frequent association rules and frequent itemsets that might
not appear in the most detailed level of the data. If a generalization
hierarchy that allows the anonymization of the data exists, then we
can assume that the same hierarchy can be used to mine frequent
itemsets from the published (and the original) data at different lev-
els of abstraction. tKd-ML2 is given again by Equation 2, but in
this case FI and FI ′ are the sets of generalized frequent itemsets
that can be traced in the original and anonymized data, respectively.
In the case of generalized datasets, a generalized frequent itemset is
lost if it contains terms that have been generalized at a higher level
during the anonymization process. Reconstructed datasets do not
contain any generalized items, but given a generalization hierarchy
generalized frequent itemsets can be mined.

Relative error (re). This metric (used also in [6]) is used to mea-
sure the relative error in the support of term combinations in the
published data. Since there is a huge number of possible combi-
nations, we limit ourselves to combinations of size two as an in-
dication of the dataset quality. Larger combinations are usually
infrequent, and the case of very frequent ones is already covered
by tKd. The relative error is defined as follows:

re =
|so(a, b)− sp(a, b)|

AV G(so(a, b), sp(a, b))
, (3)

where so(a, b) and sp(a, b) is the support of the combination of
terms (a, b) in the original and in the published data, respectively.
Reconstructing anonymized datasets might introduce new item com-
binations in the published data, which did not exist in the original
data. In order to take them into account in the definition of the rel-
ative error, we use the average of the two supports as denominator,
instead of using the original support so(a, b). The average has a
smoothing effect on the metric, since it normalizes re to [0, 2], and
avoids divisions by 0.

7. EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is to demonstrate the ad-

vantages that disassociation in preserving data quality and to show
that disassociation has a robust behavior in different settings.

7.1 Experimental Settings
Datasets. In the experiments, we use the 3 real datasets described
in Figure 6, which were introduced in [33]. Dataset POS is a trans-
action log from an electronics retailer. Datasets WV1 and WV2
contain click-stream data from two e-commerce web sites, col-
lected over a period of several months. Synthetic datasets were
created with IBM’s Quest market-basket synthetic data generator
(http://www.almaden.ibm.com/cs/quest/syndata.html). Unless oth-
erwise stated, the default characteristics for the synthetic datasets
are 1M records, 5k term domain and 10 average record length.

Evaluation metrics. We measure the information loss incurred by
our method with respect to the following: (a) the tKd, tKd-ML2,
and re measures defined in Section 6 and (b) the percentage of
terms tlost that have support more than k in the original dataset
D but they are placed in term chunks by our method. We report
tKd and re for the disassociated datasets calculated in two differ-
ent ways: (a) one on a single random reconstructed dataset, labeled

as tKd and re, and (b) one calculated only by taking into account
the subrecords that appear inside the record and shared chunks, la-
beled as tKd-a and re-a. In the latter case, we do not take into
account the probability that an itemset can be created by combin-
ing subrecords. tKd-a and re-a trace the itemsets that would exist
in any reconstructed dataset, thus they are based on lower bounds
of itemset supports in the original dataset. tKd and tKd-ML2 are
measured for the 1000 most frequent itemsets. Finally, computing
an average re on all combinations of size 2 is not very informative
in cases of skewed distributions and large domains. The major-
ity of combinations would be rare or would not exist at all in the
original data, but they would dominate the result. To avoid this, we
ordered the domain of each dataset by descending term support and
we used a small range of consecutive terms to trace their re. After
some testing we chose the 200th-220th most frequent terms. re in
this case is an indicator of how well less frequent but not utterly
rare combinations are preserved in the anonymized dataset.

Evaluation parameters. We compared performance by varying
the following parameters: (a) k, (b) the size of the dataset, (c) the
size of the dataset’s domain, (d) the average size of the records,
(e) the terms we use to calculate re and (f) the number of recon-
structed datasets we use to calculate re and tKd. We do not present
a detailed evaluation for m, because in all the available datasets its
effect for values m > 2 is negligible. The explanation for this
is that most record clusters are km-anonymous for any m either
because they have gathered very frequent terms or because they
contain small subrecords. The experiments are all performed with
k = 5, m = 2 unless explicitly stated otherwise.

Comparison to state-of-the-art. Comparing disassociation to other
methods is not straightforward; no other method offers the same
privacy guarantee while introducing the same type of information
loss. We chose to compare disassociation to the generalization-
based Apriori approach [27], since it offers the same privacy guar-
antee and it is the most closely related method. This comparison
allows us to see how the different data transformations, generaliza-
tion and disassociation, affect the quality of the anonymized dataset
in a similar privacy framework. Furthermore, we compare disas-
sociation to DiffPart [6], which offers differential privacy for set-
valued data by suppressing infrequent terms and adding noise. The
comparison with DiffPart demonstrates the gains disassociation of-
fers in terms of information quality, when a more relaxed guarantee
like km-anonymity is chosen over differential privacy. All methods
were implemented in C++ (g++ 4.3.2).

7.2 Experimental Results
The first experiment (Figures 7a-d) investigates the information

loss by our method on the real datasets. In Figure 7a, we see the
result of disassociation in the quality of all datasets and in Figures
7b-d just for the POS dataset. The tKd-a in Figure 7a is similar for
all datasets, showing that the most frequent combinations are pre-
served for different data characteristics. Still, when we trace tKd
on the reconstructed datasets, the results significantly improve only
for the POS dataset, which is the largest of the 3 and its records have
the longest average length. This reflects the fact that disassociation
managed to create multiple record chunks for POS. The combina-
tions of their contents results to a significantly better reconstructed
dataset. Disassociation produces significantly different results for
the 3 datasets, when looking to the re and re-a metrics. The sup-
ports of the combinations traced by re are preserved better when
the ratio of the dataset size to the dataset domain is high. This ratio
is higher for POS and WV1, where re has significantly superior re-
sults to re-a. This indicates the gains from combining terms from

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tKd-a tKd re-a re tlost

POS

0.05

0.15

0.25

0.35

4 6 8 10 12 14 16 18 20

k (POS)

tKd-a

tKd

0.3

0.4

0.5

0.6

0.7

4 6 8 10 12 14 16 18 20

k (POS)

re-a

re

tlost

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

re range (POS)

re-a

re-1
re-2
re-5
re-10

Figure 7: Information loss on real data (a-d)

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

Millions of records

tKd-a

tKd

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

Millions of records

tlost

re-a

re

0

0.2

0.4

0.6

2 3 4 5 6 7 8 9 10

Domain size in (*1000)

tlost

re

tKd-a

tKd

0

0.2

0.4

0.6

6 8 10 12 14

Record length

tlost

re

tKd-a

tKd

Figure 8: Information loss on synthetic data (a-d)

0

10

20

POS WV1 WV2

Millions of records

20

22

24

26

28

30

4 6 8 10 12 14 16 18 20

k (POS)

Figure 9: Performance on real data (a-b)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

Millions of records

50

100

150

200

250

300

2 4 6 8 10

Domain size in (*1000)

Figure 10: Performance on synthetic data (a-b)

0

0.2

0.4

0.6

0.8

1

1.2

POS WV1 WV2

tK
d

Disassociation
DiffPart

0

0.1

0.2

0.3

0.4

0.5

0.6

POS WV1 WV2

tK
d
-M
L
2

Disassociation
Apriori

0

0.5

1

1.5

2

POS WV1 WV2

re

Disassociation
DiffPart

Figure 11: Comparison with other methods (a-c)

different record chunks in the reconstructed datasets. Finally, the
same ratio affects how many terms are placed in the record chunk,
as reported by tlost, but to a lesser degree. In Figures 7b and 7c, we
see how information loss escalates as the power of the guarantee,
expressed by the k parameter, grows. The measures that depend
on the most frequent items and itemsets are only slightly affected
(Figure 7b), since the disassociation algorithm preserves them in
record chunks. On the other hand, re, which does not depend on
the most frequent items, increases linearly with k, but with a low
rate (Figure 7c). In Figure 7d we explore the gain in information
quality by creating several reconstructed datasets and averaging the
itemset supports on them. We created 10 random reconstructions of
the anonymized POS dataset, and we traced re taking this time into
account the average supports of the itemsets in 2 (re-r2), 5 (re-r5)
and 10 (re-r5) of the reconstructed datasets. We do not report re-
sults for tKd since they were already close to 0 and did not benefit
substantially from multiple reconstructions. We measure the re on
the combinations of the 0-20, 100-120, 200-220, 300-320 and 400-
420 most frequent terms in POS. In the x-axis of Figure 7d, we
depict the frequency order of the terms; e.g. a point over 100 refers

to the re of the combinations of the 100th-120th most frequent
terms in POS. When the terms are frequent, the support of their
combinations is reported accurately in any reconstructed dataset,
so taking the average does not provide any benefit. As the com-
binations become less frequent, using more than one reconstructed
datasets allows for more accurate estimations. In the previous ex-
periments we also examined separately how frequent itemsets of
size less or equal to m and of size greater than m (m = 2) are pre-
served. We did not notice any systematic behavior; depending on
the dataset, any of the aforementioned frequent itemset classes may
be preserved better. For example, frequent itemsets smaller than m
were preserved better in POS and in WV2 and worse in WV1. We
do not report detailed results due to space limitations.

In the experiments of Figure 8 we used synthetic data to see how
the information loss is affected, when the dataset characteristics
variate. Since the anonymization is applied independently on each
cluster, the database size does not have a significant effect on the
quality of the results as demonstrated in Figures 8a and 8b. Only
the re and re-a are positively affected, because the terms it traces
become more frequent and they end up in record chunks more of-

ten. Moreover, in Figure 8c we see that increasing the domain when
the distribution is skewed, basically affects the tail of the distribu-
tion, thus it does not have a significant effect on frequent combi-
nations of terms traced by tKd, whereas re slightly deteriorates.
The effect of record length is depicted in Figure 8d. Having larger
records results in more record chunks and more rare terms in each
cluster, thus tKd-a and tlost increase. On the other hand, when we
keep the dataset and domain size constant and we only increase the
record size, the support of the terms in the dataset increases and this
explains how re benefits from larger records. Finally, tKd remains
close to 0 for all record sizes, since the multiple record chunks re-
construct most of the frequent itemsets in the reconstructed dataset.

Figures 9 and 10 illustrate the performance of the proposed al-
gorithm in terms of CPU time (results in seconds). Disassociation
is not significantly affected by the value of k, and at the same time
it scales linearly to the dataset and the domain size.

Figure 11 shows how disassociation performs compared to Diff-
Part and the Apriori algorithm. The graphs illustrate the impact of
all algorithms on the quality of the anonymized dataset for k = 5
and m = 2 (DiffPart is unaffected by this parameter). For the Diff-
Part algorithm we used privacy budgets ranging from 0.5 to 1.25,
using a step 0.25 with the same parameters as in [6] and we report
the best results. In Figure 11a we see how disassociation compares
to DiffPart in terms of tKd. Since in both cases the anonymized
datasets contain only original terms (the differential private one has
only a subset of them) tKd is computed in exactly the same way.
The trade-off for using a stronger privacy guarantee like differential
privacy is quite important; in the best case 75% of the top frequent
items have been lost, whereas disassociation loses only 5% in the
same experiment. In Figure 11b we see how disassociation com-
pares to Apriori in terms of tKd-ML2, since no original frequent
itemset appears in the generalized dataset. Disassociation performs
again significantly better than Apriori especially for POS which is
the largest dataset and has more frequent terms than WV1 and WV2.
A problem of Apriori is that few uncommon terms cause the gener-
alization of several common ones. Finally, Figure 11c shows how
all algorithms compare in terms of re. re in the generalized dataset
is calculated by uniformly dividing the support of a generalized
term to the original terms that map to it. DiffPart has suppressed
all the 200-220th most frequent terms in POS (less that 100 of the
original 1657 terms are left), so in order to make the comparison
meaningful we report the re for the (0-20th) most frequent terms.
The re for both DiffPart and Apriori is over 1, which indicates that
the supports of the term combinations have limited usefulness for
analysis, whereas disassociation provides 0.18 re in the worst case.

In summary, the experiments on both real and synthetic datasets
demonstrate that disassociation offers an anonymized dataset of
significantly superior quality compared to other state-of-the-art meth-
ods. Moreover, the information loss does not increase aggressively
as k increases. Finally, disassociation is not computationally ex-
pensive and it is practical for large datasets.

8. RELATED WORK
Privacy preservation was first studied in the relational context

and focused on protection against identity disclosure. In [25, 26]
the authors introduce k-anonymity and use generalization and sup-
pression as their two basic tools for anonymizing a dataset. Incog-
nito [15] and Mondrian [16] are two well known algorithms that
guarantee k-anonymity for a relation table by transforming the orig-
inal data using global (full-domain) and local recoding, respec-
tively. [21] demonstrates that the information loss, when providing
k-anonymity, can be reduced by using natural domain generaliza-
tion hierarchies (as opposed to user-defined ones).

To address the problem of attribute disclosure, where a person
can be associated with a sensitive value, the concept of ℓ-diversity
[20] was introduced. Anatomy [30] provides ℓ-diversity and lies
closer to our work, in the sense that it does not generalize or sup-
press the data, but instead it disassociates them by publishing them
separately. Still, the anonymization approach is restricted to rela-
tional data and it does not protect against identity disclosure. Slic-
ing, a more flexible version of Anatomy appears in [18]. Slicing
guarantees l-diversity as Anatomy, but instead of completely sep-
arating sensitive attributes from quasi-identifies, it might publish
some quasi-identifiers without disassociating them from sensitive
values, if the diversity guarantee is not violated. Moreover, Slicing,
disassociates quasi-identifiers to increase protection from member-
ship disclosure. By disassociating quasi identifiers, an adversary
is faced with several options for reconstructing each record, thus
she cannot be certain that a specific record existed in the origi-
nal data. The data transformation is similar to the approach of our
work, but there are significant differences: a) there is no protection
against identity disclosure and b) the disassociation between quasi-
identifiers does not provide any privacy guarantee, and it takes
place only if the impact on information loss is limited. Protection
against membership disclosure is facilitated, but not guaranteed; it
is roughly estimated using the number of attribute combinations,
and not guaranteed by considering the possible initial datasets as
in our work. The issues of empty and duplicate records are not
addressed. Our work differs from Slicing mainly because it uses
the disassociation of quasi-identifiers to provide a guarantee against
identity, and because it addresses sparse multidimensional values.2.

A similar idea, the vertical fragmentation of relational tables,
is employed in a different context to guarantee user anonymity in
[7]. The proposed technique distributes a relational table to dif-
ferent servers. In each server, only a subset of the relation’s at-
tributes are available unencrypted. The subsets that are available
without encryption are chosen so that sensitive associations be-
tween attributes, captured by confidentiality constraints, are bro-
ken. Fragmentation is similar to the basic idea in our work and
in [30, 18], but the anonymization model is very different since
it focuses on known confidentiality constraints; attacks based on
background knowledge are not considered.

More recently, a stronger privacy preservation paradigm, differ-
ential privacy, has been proposed [10]. Differential privacy is in-
dependent of adversary’s background knowledge and it roughly re-
quires that the existence of every single record in the data does not
have a significant impact in any query. Finally, the work of [8], al-
though focusing at the protection of associations in sparse bipartite
graphs, is related to our work because of the way they define their
semantics. The anonymization technique of [8] replaces each node
of the graph with a safe group of labels, allowing in this way the
anonymized graph to be matched to multiple possible initial graphs.

Privacy on set-valued data. The works that lie closer to this paper
are those for privacy on set-valued data. Most works that provide
protection against identity disclosure rely on generalization. An ef-
ficient algorithm for classical k-anonymity in a set-value context
appears in [13]. [27, 28] introduce the km anonymity guarantee,
which is used and extended in this paper. The authors provide al-
gorithms for anonymizing the data that, unlike our approach, are
based on generalization, employing both local and global recod-
ing. In [4] an algorithm for providing km-anonymity using only

2In [18] there is an application of Slicing to the Netflix data [23], which
are sparse. This is achieved by padding all null values with the average of
the corresponding attribute values. This technique works only for specific
types of data processing and cannot address of sparse data in general.

suppression is proposed. The authors have a similar motivation to
our work and focus on web search query logs, which they anony-
mize by removing terms that violate km-anonymity. The proposed
method preserves original terms, but due to the large tail of the term
support distribution in such logs, it removes 90% of the terms even
for low k and m values. In a different setting, [22] studied multire-
lational k-anonymity, which can be translated to a problem similar
to the one studied here, but the anonymization procedure still relies
on generalization. [31] provide protection both against identity and
attribute disclosure by relying on suppression.

Protection against attribute disclosure is provided both by gen-
eralization and disassociation transformations. The work of [11]
extends [30] to provide ℓ-diversity for transactional datasets with a
large number of items per transaction, but it does not depart from
the anonymization framework of [30]; it still has a separate set of
quasi-identifiers and sensitive values. The basic idea of [11] is to
create equivalence classes where the quasi-identifiers are published
separately from the sensitive values and their supports. [5] provides
a more elaborate ℓ-diversity guarantee for sparse multidimensional
data, termed ρ-uncertainty, where sensitive items can act as quasi-
identifiers too. Still, unlike our approach, generalization and sup-
pression are employed to anonymize the data.

There have been few works that investigate the publication of
set-valued data under differential privacy guaranties. [14] focuses
on the anonymization of web search logs, using the AOL data [3].
The proposed method that guarantees differential privacy but it only
publishes query terms and not records. Moreover, the anonymiza-
tion procedure completely hides all terms that are infrequent, which
are the majority of terms in AOL data. In [6] a method for publish-
ing itemsets instead of isolated terms from a set-valued collection
of data is proposed. The DiffPart algorithm follows a top down ap-
proach, which starts from the unification of the whole domain and
refines it by partitioning it to subdomains, if the item combinations
can be published without breaching differential privacy.

Our work lies closer to [11, 30, 18] in the sense that it does not
suppress or generalize the data but instead it severs the links be-
tween values attributed to the same entity. Unlike [11, 30, 18] we
focus on identity protection, and not simply on separating sensitive
values from quasi-identifiers. The work of [18] has the most sim-
ilar data transformation, but it solves a different problem and does
not address the peculiarities of sparse multidimensional data. Our
privacy guarantee comes from [27], but we follow a completely dif-
ferent path with respect to the data transformation and the type of
targeted data utility.

9. CONCLUSIONS
In this paper, we proposed a novel anonymization method for

sparse multidimensional data. Our method guarantees km-anonymity,
for the published dataset using a novel data transformation called
disassociation. Instead of eliminating identifying information by
not publishing many original terms, either by suppressing or gen-
eralizing them, we partition the records so that the existence of cer-
tain terms in a record is obscured. This transformation introduces
a different type of information loss from existing methods, making
it a valuable alternative when the original terms are important.

10. REFERENCES
[1] C. Aggarwal. On k-anonymity and the curse of dimensionality. In

VLDB, pp. 901-909, 2005.
[2] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. Anonymity

preserving pattern discovery. VLDB Journal, 17(4):703-727, 2008.
[3] M. Barbaro and T. Zeller. A face is exposed for AOL searcher no.

4417749. New York Times, 2006.

[4] T. Burghardt, K. Böhm, A. Guttmann, and C. Clifton. Anonymous
search histories featuring personalized advertisement - balancing
privacy with economic interests. TDP, 4(1):31-50, 2011.

[5] J. Cao, P. Karras, C. Raissi, and K.-L. Tan. ρ-uncertainty:
inference-proof transaction anonymization. PVLDB,
3(1-2):1033-1044, 2010.

[6] R. Chen, M. Noman, B. C. Fung, B. C. Desai, and L. Xiong.
Publishing set-valued data via differential privacy. PVLDB,
4(11):1087-1098, 2011.

[7] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati. Combining fragmentation and encryption to protect
privacy in data storage. TISSEC, 13(3):1-33, 2010.

[8] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing
bipartite graph data using safe groupings. PVLDB, 1(1):833-844,
2008.

[9] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, pp. 864-875, 2004.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. TCC, pp. 265-284, 2006.

[11] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse
high-dimensional data. In ICDE, pp. 715-724, 2008.

[12] J. Han and Y. Fu. Discovery of multiple-level association rules from
large databases. In VLDB, pp. 420-431, 1995.

[13] Y. He and J. F. Naughton. Anonymization of set-valued data via
top-down, local generalization. PVLDB, 2(1):934-945, 2009.

[14] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. Releasing
search queries and clicks privately. In WWW, pp. 171-180, 2009.

[15] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient
full-domain k-anonymity. In SIGMOD, pp. 49-60, 2005.

[16] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. In ICDE, pp. 25, 2006.

[17] J. Li, R. C.-W. Wong, A. W.-C. Fu, and J. Pei. Anonymization by
local recoding in data with attribute hierarchical taxonomies. TKDE,
20(9):1181-1194, 2008.

[18] T. Li, N. Li, J. Zhang, and I. Molloy. Slicing: a new approach to
privacy preserving data publishing. TKDE, 24(3):561-574, 2012.

[19] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Anonymization of
electronic medical records for validating genome-wide association
studies. PNAS, 17:7898-7903, 2010.

[20] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: privacy beyond k-anonymity.
In ICDE, pp. 24, 2006.

[21] M. Nergiz and C. Clifton. Thoughts on k-anonymization. DKE,
63(3):622-645, 2007.

[22] M. Nergiz, C. Clifton, and A. Nergiz. Multirelational k-anonymity.
In ICDE, pp. 1417-1421, 2007.

[23] Netflix Prize FAQ. http://www.netflixprize.com/faq, 2009.
[24] H. Pang, X. Ding, and X. Xiao. Embellishing text search queries to

protect user privacy. PVLDB, 3(1-2):598-607, 2010.
[25] P. Samarati. Protecting respondents’ identities in microdata release.

TKDE, 13(6):1010-1027, 2001.
[26] L. Sweeney. k-anonymity: a model for protecting privacy. IJUFKS,

10(5):557-570, 2002.
[27] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving

anonymization of set-valued data. PVLDB, 1(1):115-125, 2008.
[28] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global recoding

methods for anonymizing set-valued data. VLDB Journal,
20(1):83-106, 2010.

[29] K. Wang, C. Xu, and B. Liu. Clustering transactions using large
items. In CIKM, pp. 483-490, 1999.

[30] X. Xiao and Y. Tao. Anatomy: simple and effective privacy
preservation. In VLDB, pp. 139-150, 2006.

[31] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing transaction
databases for publication. In KDD, pp. 767-775, 2008.

[32] R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang.
Anonymizing moving objects: how to hide a mob in a crowd? In
EDBT, pp. 72-83, 2009.

[33] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of
association rule algorithms. In KDD, pp. 401-406, 2001.

