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ABSTRACT
We present a demonstration of QueryShield, a service for stream-
lined, cryptographically secure data analytics in the cloud. With
QueryShield, data analysts can advertise analysis descriptions to
data owners, who may agree to participate in a computation for
profit or for the greater good, provided that their data remain pri-
vate. QueryShield supports relational and time series analytics with
provable data privacy guarantees using secure multi-party com-
putation (MPC). At the same time, it makes MPC accessible to
non-expert users by offering a familiar web interface and fully-
automated orchestration of cryptographic computations.

We devise three demonstration scenarios for conference atten-
dees: (i) an interactive survey of private employment information
to estimate the industry-academia wage gap in the data manage-
ment community, (ii) a relational analysis that identifies credit score
anomalies in sensitive customer data from multiple credit agencies,
and (iii) a medical use case that assesses the effectiveness of insulin
dose frequency in a patient cohort.

CCS CONCEPTS
• Security and privacy→ Cryptography; • Information sys-
tems → Data management systems.
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1 INTRODUCTION
We introduce QueryShield, a multi-party computation (MPC) ser-
vice for secure outsourced analytics in the cloud. MPC [5, 11] is a
cryptographic technique which allows multiple distrusting parties
to collaboratively compute functions of their private data without
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revealing any information other than the output of the computa-
tion. The need for secure collaborative analytics emerges in various
scenarios, where the societal or monetary benefit is magnified if
multiple – often competing – entities allow analyses on the union of
their sensitive data. As an example, consider a social scientist who
wishes to study the racial wage gap in their community. Unfortu-
nately, employers would be hesitant to reveal sensitive salary data
to an untrusted party, as they may lose their competitive advantage.
Other examples include medical institutions who may want to test
the efficacy of a new drug by analyzing health records across their
patient populations, or a group of banks that wish to perform fraud
detection in financial data of common customers.

Recently, systems like Secrecy [3], Senate [13], Conclave [6],
and TVA [4] have demonstrated that MPC can provide practical
performance for relational and time series analytics on large inputs.
Yet, deploying MPC computations currently requires cryptographic
technical expertise and significant manual effort. QueryShield ad-
dresses this challenge by offering secure relational and time series
analytics as-a-service on Secrecy and TVA. It features an easy-to-use
frontend that allows data analysts to publish analyses they want
to perform and data owners to join an analysis, after inspecting its
definition and security guarantees. Once data owners have agreed
to participate, the QueryShield backend automatically manages the
configuration, deployment, and orchestration of MPC computations
specified in the analysis.

We caution the reader that QueryShield is not a production-
ready system. Rather, it is a proof-of-concept of a future where
MPC analytics are accessible to non-expert users as a managed
service that leverages the emerging multi-cloud and hybrid cloud
environments. Our intention is to demonstrate the potentials of this
technology and incentivize cloud providers to create the necessary
services that wouldmake systems like QueryShield widely available.
To this end, we have devised three demonstration scenarios that
include a secure wage gap survey, a multi-agency credit score study,
and a mobile health analytics use case. We have made our code
available on Github [10] and our short video on YouTube.1

2 QUERYSHIELD OVERVIEW
QueryShield is a cloud service that enables users to access the Se-
crecy and TVA systems through a visual interface. Figure 1 provides
an overview of the workflow. QueryShield supports two types of
users: data owners and analysts. Analysts can create analysis tasks
and publish their descriptions in a catalog maintained by the service.

1https://www.youtube.com/watch?v=qcIhTWL8EKM
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(a) Phase 1: Analysis creation and secure data sharing (b) Phase 2: Query execution under MPC

Figure 1: QueryShield workflow overview: Phase 1 (left) starts with a data analyst creating and publishing an analysis in the analysis catalog
1○, followed by QueryShield setting up buckets for storing secret shares 2○. Data owners then browse the catalog, register for an analysis 3○,
receive pre-signed bucket URLs 4○, and upload secret shares of their data to buckets 5○. In Phase 2 (right), the data analyst submits an analysis
for processing 1○, QueryShield creates cloud virtual machines, and deploys the Secrecy/TVA software 2○ to start the secure computation 3○. On
completion, parties store the result shares in the output buckets 4○, the analyst is notified 5○, and retrieves shares of the result 6○.

Data owners can view the catalog to decide whether they want to
register for an analysis and contribute secret shares [11] of their
private data. Analysts can then schedule analysis jobs for execution
in available cloud providers, monitor the computation progress,
and view the results when the job is done. Below we describe each
step of the workflow in more detail.

2.1 Creating an analysis
To create a new analysis, the data analyst must provide some meta-
data (e.g., name, description, etc.), the schema of the private data
needed for the analysis, the actual computation task, and the threat
model. QueryShield supports tabular and time series data with at-
tributes of four types: INTEGER, VARCHAR, STRING, and CATEGORY
(for predefined lists of values). Analysts can express computations
in SQL (for relational analytics) or using TVA’s dataflow API [4]
(for time series analytics). They also have the option to select cloud
providers and threat models. QueryShield currently supports four
cloud providers (AWS, Microsoft Azure, Google Cloud, Chameleon
Open Cloud) and two threat models: one for semi-honest and one
for malicious security (§2.4).

When an analysis is created, the next step is to request cloud
storage for the secret-shared input and output data. The supported
object stores are S3 (for AWS), Azure Blob Storage, Google Cloud
Storage, and Ceph (for Chameleon). QueryShield requests one in-
put bucket (for the data owners’ shares) and one output bucket
(for the result shares) per cloud provider in the analysis specifica-
tion, both with write-once permissions. This configuration ensures
that buckets are append-only and protects against malicious at-
tempts to tamper the uploaded data (e.g., by external adversaries
or even QueryShield users). Each new analysis gets its own dedi-
cated buckets (initially empty) and input buckets are automatically
discarded when the analysis is done. After all buckets have been
created, QueryShield adds the analysis specification to the catalog
and makes it available to data owners for registration.

2.2 Registering private data
Data owners can browse the analysis catalog to find information
about analyses, including the requested data, threat model, and the
actual task (e.g., a SQL query). When a data owner registers for

an analysis, QueryShield generates one pre-signed URL for each
input bucket created in the previous step. These pre-signed URLs
are unique to the data owner and have an expiration time. All URLs
provide write-only access to input buckets to guarantee that no one
with the URL can read bucket contents (not even the data owner).
The only parties that have read access to input buckets are the
computing machines that run in the same cloud where the bucket
lives (and this happens only after the analysis begins). Using pre-
signed URLs, QueryShield simplifies the workflow by enabling data
owners to safely upload secret shares of their data without the need
to create accounts in the respective clouds.

Data owners can provide secret shares of their private data using
CSV files or an online spreadsheet. In both cases, the input data
schema must match the schema in the analysis specification, oth-
erwise the frontend will throw an error. The QueryShield client
generates secret shares of all input data locally, using boolean or
arithmetic sharing (the choice depends on the computation). For
example, to create a 3-party arithmetic sharing of the number 42,
the client can generate three random shares {-52, 39, 55} that
together add up to 42, but individually reveal no information about
the original number. Similarly, to secret-share the ASCII charac-
ter ‘@’=0x40, the client can generate the random shares {0x71,
0x49, 0x78}whose bitwise XOR equals to 0x40 2. Secret shares are
distributed among cloud providers so that no single provider can
reconstruct the original data. We emphasize that the QueryShield
backend does not store any data; all shares are uploaded directly
from the data owner’s client to the respective bucket over HTTPS.

When uploading completes, QueryShield triggers an additional
check to verify that each bucket contains all necessary secret shares
from each data owner and, if not, it throws an error. This is to ensure
the integrity of the input data before starting the execution.

2.3 Job scheduling and execution
Analysts can view the number of registered users and start the
analysis on demand. To do so, QueryShield initiates a sequence
of operations: it instructs cloud providers to provision computing
resources (e.g., VMs), deploys the Secrecy/TVA software, performs

2In practice, QueryShield uses a ℓ-bit data representation (e.g., ℓ = 64) and individual
secret shares are uniformily distributed over all possible ℓ-bit strings.
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query optimization [3], and starts execution. Computing parties
perform the entire analysis under MPC, i.e., they operate directly
on their shares and exchange messages with each other following a
cryptographic protocol to end up with shares of the result. During
execution, the analyst can monitor the job status and also gets
notified when the job is done. Status updates on job submission,
completion, or failure are also sent to registered data owners.

When execution finishes, each computing party adds its result
shares to the output bucket. To reconstruct the true output of the
computation, the analyst must pull the shares from the output
buckets and combine them locally in the QueryShield client. There
is also an option to keep results encrypted in the cloud.

2.4 Threat model
QueryShield’s goal is to enable end-to-end secure computations on
private data using untrusted infrastructure. To this end, the service
acts as an orchestrator of the Secrecy and TVA systems and inherits
their security guarantees, that is, it protects against computing
parties and external (possibly malicious) adversaries in the honest-
majority setting [3, 4]. Protecting against inference attacks from
analysts (e.g., using Differential Privacy) is an orthogonal problem
that is left as future work.

To the best of our knowledge, no cloud provider currently offers
support for MPC computations. As a result, we have inevitably de-
veloped QueryShield as a centralized service. We acknowledge that
this design choice is at odds with the decentralized trust model of
MPC. To protect data from QueryShield itself, the backend function-
ality should be distributed among the participating cloud providers
through separate managed services. In that case, each cloud service
would be responsible for creating its local buckets and QueryShield
would only be in charge of maintaining the analysis catalog. No
other changes are required in the service architecture.

3 IMPLEMENTATION
Full details about our implementation are available on our project
GitHub repository [10]. More details about the underlying MPC
systems can be found in our prior work [3, 4].

Frontend. We have built the QueryShield frontend using React
with Bootstrap. Secret sharing functionality is implemented with
Axios and the JavaScript Web Crypto API. Both secret sharing and
output reconstruction are done locally by the frontend via direct
communication with the cloud providers. This way, plaintext input
data never leave the data owner’s machine and output data are only
revealed to the designated analyst.

Backend. The QueryShield backend consists of two discrete com-
ponents. The first one is a Google Firebase database that stores
analysis metadata, e.g., the schema, name, and query provided by
a data analyst. The second component is a scheduler that hosts
the QueryShield API and coordinates a series of tasks (such as VM
creation, job execution, and status updates) throughout the course
of an analysis. The QueryShield API is implemented as a Python
Flask RESTful service. It provides several key endpoints:

/create_job: Upon receiving a request, the QueryShield backend
uses each cloud provider’s SDK (AWS’s Boto3, GCP’s Client Library,
and Azure’s Python SDK) to create buckets for the analysis job.

/register_data_owner: The backend obtains pre-signed URLs for
each bucket and provides them to the data owner. Each data owner
receives their own set of URLs, preventing malicious activity or
re-use by other data owners.

/submit_job: The backend generates an Ansible playbook for the
specified query, which we employ to automate the creation of EC2,
Google Compute Engine, and Azure VM instances. Once created,
these instances access their respective secret shares from the cloud
buckets and execute the query under MPC.

/get_status: The service checks the current status of the analysis
and provides detailed updates. Possible statuses include Creating
VMs, Deploying TVA Core, Running Experiment, etc. Once com-
plete, this endpoint will return either Success or Fail. Data ana-
lysts can view these status updates on the QueryShield frontend.

4 DEMONSTRATION SCENARIOS
Attendees will have the opportunity to interact with QueryShield
and choose to act either as data analysts or data owners. First, we
will provide the attendees with an overview of MPC and we will
showcase QueryShield’s functionality. After log in, the attendees
will be able to participate in one of the predefined demonstration
scenarios we describe next or create their own data analysis tasks.
The predefined scenarios include (i) a secure analysis of the wage
gap between attendees working in industry and those working in
academia, (ii) a relational credit score analysis query, and (iii) a time
series analysis use case on mobile health data.

4.1 Live Survey of Industry-Academia Wage Gap
Our first scenario is inspired by a real-world use case of MPC that
concerns quantifying the gender and racial wage gap in the Boston
area [1]. The 2021 analysis was performed on private data con-
tributed by 156,000 employees and its results are publicly available
in a report by the Boston Women’s Workforce Council. In our
scenario, we will solicit private information from conference at-
tendees to compute the industry-academia wage gap in the data
management community, as represented by SIGMOD participants.
In particular, our survey will ask attendees to act as data owners
and contribute their salary, highest academic degree earned, years
since graduation, work location, and whether they are employed in
industry or academia. Since the answers to some of these questions
may be sensitive, the frontend will locally create secret shares of re-
sponses and distribute them among computing parties. As a result,
the sensitive data will never leave the participant’s device in the
clear. Attendees will further be able to inspect the contents of the
generated cloud buckets and verify that their data are converted to
random shares. Once enough attendees have agreed to participate,
we will run a statistical analysis to calculate the wage gap between
academics and practitioners, grouped by years of experience, edu-
cation levels, and location. We will make the results of the analysis
available online on the last day of the conference.

4.2 Relational Analytics: Credit Score Anomaly
Our second scenario will guide attendees to perform relational
analytics with QueryShield and compute a SQL query against a
secret-shared database. In particular, we will use the Credit Score
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query that has been included in various relational MPC works [3,
13]. The analysis finds people who have a large discrepancy in
credit score across different reporting agencies in a given year.
We provide this example to demonstrate a query that – if not for
MPC – would be extremely difficult to practically implement. The
only information the query returns is a list of user IDs meeting
the selection criteria. Neither their actual credit score from any
particular agency nor any intermediate values (MIN, MAX) are
revealed. The query is shown below.

SELECT S.ID FROM (
SELECT ID, MIN(CS) as cs1, MAX(CS) as cs2
FROM R
WHERE R.year=TARGET_YEAR
GROUP-BY ID ) as S

WHERE S.cs2 - S.cs1 > THRESHOLD

In this scenario, attendees will first act as the data analyst who
wants to perform the credit score analysis. They will create the data
schema, provide the SQL query, select the threat model, indicate
the Cloud providers they want to use, and publish the analysis in
the catalog. Next, they will switch role and contribute data for one
or more of the credit agencies. As a data owner, they will be able
to browse the available analyses in the catalog, register, and share
data by using QueryShield’s CSV upload feature or by inserting
data records manually. Once the query is submitted, attendees will
be given access to the Cloud providers’ web consoles to get a glance
of what happens under the covers of QueryShield. If desired, they
will also be given the opportunity to act as an adversary and try to
gain access to secret data. For example, they may choose to inspect
network traffic or log into one of the computing party instances.
Finally, they will see the results and verify the correctness of the
output by running the query in the clear.

4.3 Time series Analytics: Glucose Monitoring
In our third predefined scenario, attendees will act as medical in-
vestigators who wish to perform mobile health analytics on private
time series data. Specifically, they will be asked to use TVA’s [4]
dataflow API to express a glucose monitoring analysis task. We will
provide a template query that uses a session window to identify a
patient’s eating periods as consecutive time intervals during which
the patient’s reported glucose measurement exceeds a threshold.
The query then applies a window aggregation to compute the total
number of insulin doses during each eating period. This template
query can be expressed in the TVA dataflow API as follows:

// Define the time series data schema
TS ts = get_shares({"[PATIENT_ID]", "TIMESTAMP",

"[GLUCOSE]", "INSULIN", "TOTAL"});

// Mark eating periods per patient where [GLUCOSE]
// exceeds `5` and aggregate total insulin doses
TS doses = ts.keyBy("[PATIENT_ID]")

.threshold_window("[GLUCOSE]" , 5)

.aggregate("INSULIN", "TOTAL", Agg::SUM);

Note that column names in brackets (e.g., [GLUCOSE]) indicate
boolean secret sharing, whereas unbracketed column names are

arithmetically shared. Attendees will be asked to change the query
definition to try out other time series operators supported by TVA,
such as tumbling windows that group data within fixed, time inter-
vals (for example, to calculate a daily average of some quantity),
and gap session windows that identify periods of activity followed
by periods of inactivity (for example, pedometer data with a gap
of five minutes might distinguish walking from sitting). As in the
previous scenario, attendees will be able to verify the correctness
of their analysis results and act as adversaries, if they wish.

5 RELATEDWORK
Other systems that support relational queries under MPC include
Conclave [6] and Senate [13]. Waldo [2] supports secure time series
analytics using function secret sharing (FSS). An alternative to
MPC is to use hardware enclaves, as in CCF [9] and SCONE [7].
Enclaves are faster than MPC solutions but susceptible to side-
channel attacks. Many cloud providers now offer “clean rooms”
for collaborative analytics [8, 12, 14] that do not rely on enclaves;
however, these services typically require trusting the provider.

6 CONCLUSION
In this paper, we have presented QueryShield, an accessible service
for cryptographically secure multi-party computation. QueryShield
allows data owners to contribute private data to joint analyses in
the cloud while protecting the data from untrusted or unautho-
rized entities. It supports relational queries in SQL and time series
analytics with a familiar dataflow API.
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