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Abstract
We present SECRECY, a system for privacy-preserving col-
laborative analytics as a service. SECRECY allows multiple
data holders to contribute their data towards a joint analysis in
the cloud, while keeping the data siloed even from the cloud
providers. At the same time, it enables cloud providers to offer
their services to clients who would have otherwise refused to
perform a computation altogether or insisted that it be done on
private infrastructure. SECRECY ensures no information leak-
age and provides provable security guarantees by employing
cryptographically secure Multi-Party Computation (MPC).

In SECRECY we take a novel approach to optimizing MPC
execution by co-designing multiple layers of the system stack
and exposing the MPC costs to the query engine. To achieve
practical performance, SECRECY applies physical optimiza-
tions that amortize the inherent MPC overheads along with
logical optimizations that dramatically reduce the computa-
tion, communication, and space requirements during query
execution. Our multi-cloud experiments demonstrate that SE-
CRECY improves query performance by over 1000× com-
pared to existing approaches and computes complex analytics
on millions of data records with modest use of resources.

1 Introduction

Secure collaborative analytics [20,26,30,47,97] is a family of
emerging applications, where multiple data holders are will-
ing to allow certain computations on their collective private
data (e.g., for profit, social good, improved services, etc.), pro-
vided that the data remain siloed from untrusted entities. For
instance, some companies would agree to participate in a gen-
der wage gap study [32] but only if no employee wages are re-
vealed to other companies, as they may lose their competitive
advantage. Similarly, researchers from different medical insti-
tutions may conduct a large-scale study on the union of their
patient records, provided that the data analysis is end-to-end
compliant with privacy regulations [2, 3]. Another example is
private advertising: web users may subscribe to recommenda-

tions based on collaborative filtering as long as their online
activity remains hidden from the service provider [85].

To realize the above use cases, we need systems capable of
extracting value from sensitive or proprietary data, while pro-
tecting the data from untrusted or unauthorized entities. We
identify four major requirements for such systems. First, they
must ensure no information leakage so that they reveal noth-
ing except the output of the computation the data holders have
agreed on. At the same time, they must guarantee security
in the absence of trusted resources, as the data holders may
lack the expertise or infrastructure needed for secure compu-
tation and may need to outsource the analysis to untrusted
third parties [45]. Another requirement is to support complex
analytics beyond simple statistics, such as relational queries
on multiple tables [95]. Lastly, while queries in these use
cases are non-interactive, they must complete in reasonable
time, e.g., within a few hours.

Enabling secure outsourced analytics with practical per-
formance has been a long-standing research challenge [13].
So far, there exist three general approaches to secure com-
putation with no leakage. The first one is Fully Homomor-
phic Encryption (FHE) [57] that provides “ideal” security by
enabling computation directly on encrypted data. Although
there are many implementations that support simple func-
tions [4, 6, 8, 21], FHE is still prohibitively slow for the ana-
lytics we consider in this work. A more practical approach
is to use secure hardware solutions, like Intel’s SGX, which
have been proposed as a faster alternative to cryptography but
do not provide provable security [33, 74]. A third promising
approach is cryptographically secure Multi-Party Computa-
tion (MPC) [77]. MPC refers to a family of cryptographic
protocols that enable mutually distrusting parties to jointly
compute functions on secret (encoded) data without relying
on any single trusted entity. MPC is generally faster than
FHE-based approaches but still challenging to scale to inputs
with more than a few thousand records [22, 45, 73, 95, 105].

Recently, systems like Conclave [105], SMCQL [22], Sen-
ate [95], and others [23, 24, 111] have made MPC more ac-
cessible to data analysts by providing relational interfaces
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Figure 1: Overview of secure collaborative analytics with SECRECY. Clients (e.g., data analysts) access a catalog with metadata about available
private datasets and submit public queries to the SECRECY service. SECRECY performs query planning and provisions computing parties in
available non-colluding cloud providers, e.g., GCP, AWS, and Azure. Next, it instructs data owners to distribute secret shares (cf. §3) of their
data to computing parties. Parties execute the query under MPC and send the results to the analysts. SECRECY considers adversaries who may
have complete control over the network. All data remain private as long as an adversary does not compromise the majority of cloud providers.

and automated query planning. However, to achieve practical
performance, these works employ optimizations that either
leak information to untrusted parties or apply to peer-to-peer
settings where data holders also serve as computing parties
using trusted resources (we provide more details in §8). Out-
sourced MPC, on the other hand, removes the computation
burden from data holders and has recently gained attention, es-
pecially in industry, with systems like Prio [45] Carbyne [11],
CrypTen [70] and Cape Privacy’s TF Encrypted [1]. Yet, these
frameworks focus on certain statistics or ML workloads and
do not support general-purpose analytics.

To fill this gap, we present SECRECY, a new relational MPC
system for efficient collaborative analytics in the cloud with
no information leakage. In SECRECY we take a fundamentally
different approach over prior work and we carefully co-design
the MPC protocol, query engine, and distributed runtime into
a single platform. SECRECY’s core novelty is a generic cost-
based optimization framework for relational MPC that does
not rely on trusted infrastructure. As such, it enables data hold-
ers and analysts to use untrusted cloud resources on demand
and benefit from the “pay-as-you-go” model while retaining
the full security guarantees of the cryptographic protocols.

Contributions. We make the following contributions:
• We present a relational MPC system, based on secret

sharing, that enables efficient collaborative analytics
with no information leakage.

• We design vectorized MPC primitives and relational
operators that amortize the network I/O of secret
sharing. Contrary to prevailing wisdom, we show
that this approach can be competitive with widely
adopted MPC techniques for relational analytics in
both LAN and WAN environments.

• We define an analytical cost model that formulates MPC
query costs in terms of secure computation and commu-
nication operations. We use this cost model to develop a
novel query optimization framework for relational MPC.

• We implement a Volcano-style query processor that lever-
ages the cost model to automatically apply a rich set
of logical, physical, and protocol-aware optimizations
which can improve performance by orders of magnitude.

• We evaluate SECRECY’s performance and the effec-
tiveness of its optimizations using real and synthetic
queries. Our experiments show that SECRECY outper-
forms state-of-the-art MPC frameworks and scales to
much larger datasets.

We believe SECRECY will become a valuable tool to cloud
providers, data holders, and analysts by enabling new privacy-
preserving applications and marketplaces on existing cloud
infrastructure. We will release SECRECY as open-source [9].

2 SECRECY system overview

Figure 1 presents an overview of the SECRECY cloud service.
Each party in SECRECY has one or more of the following
roles: (i) data holder or data owner who provides some input
data, (ii) computing party, e.g., a cloud provider that provides
resources to perform the secure computation, and (iii) analyst
who issues a query to learn the result. SECRECY supports
any number of data owners and uses three computing parties.
A “party” is a logical entity and does not necessarily corre-
spond to a single compute node. SECRECY does not make
any assumption about the physical deployment: parties can
be deployed in private clusters, in a multi-cloud, or across
multiple providers in a hybrid or federated cloud.
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2.1 Design principles
We have designed SECRECY on the following principles:

1. No information leakage. SECRECY reveals nothing about
the input, output, or intermediate data and the execution meta-
data to untrusted parties, including the cloud providers. It
completely hides access patterns, intermediate, and output
result sizes. SECRECY does not require data owners to anno-
tate attributes as sensitive or non-sensitive and does not try
to sidestep the secure computation. It executes all operations
under MPC and protects all attributes to prevent inference
attacks that exploit correlations or functional dependencies in
the data which may be unknown to data owners.

2. No reliance on trusted execution environments. SE-
CRECY does not rely on any (semi-)trusted party, honest bro-
ker or specialized secure hardware. To remove barriers for
adoption, we target general-purpose compute and cloud.

3. Decoupling of roles. In SECRECY, a party may have any
combination of roles, that is, data owners can (but do not
have to) also act as computing parties and/or analysts without
affecting the security guarantees. Query optimization in SE-
CRECY does not rely on data ownership and does not require
data owners to participate in MPC using trusted resources.
Due to decoupling, SECRECY can effectively use a small num-
ber of computing parties to support any number of data owners
without affecting the scalability of secure computation.

4. High expressivity. SECRECY’s protocol does not pose any
restriction on the types of queries that can be supported. While
there exist many efficient protocols for specific instances of
MPC operators, these are often not composable. In SECRECY,
we have decided to provide general operator implementations
that are independent of the data characteristics and can be
composed with each other to create arbitrary query plans.

2.2 Threat model and security guarantees
SECRECY protects data throughout the entire lifecycle and
treats the query itself as public, i.e., it assumes that data own-
ers and analysts have previously agreed on a relational query
to compute and this query is known to the computing par-
ties, as in prior works [22–24, 95, 105]. To evaluate the query,
SECRECY servers execute an identical computation and ex-
change messages with each other according to a protocol. All
communication in a SECRECY deployment must be done via
authenticated and encrypted channels (e.g., using TLS).

Threat model. SECRECY assumes “honest-but-curious” par-
ties and can withstand adversaries who have two types of
capabilities. First, adversaries have complete control over the
network and can monitor all network links. Second, adver-
saries may compromise one computing party and can see all
of its internal state (e.g., memory contents, access patterns,
and data sent/received) but without altering its execution. That
said, most of the techniques we present in this work are also

compatible with malicious-secure MPC protocols where par-
ties can deviate from the protocol arbitrarily (cf. §5.4).

Security guarantees. We have purposely designed SECRECY
in a modular fashion to ensure it can directly inherit all secu-
rity guarantees of the underlying MPC protocol. SECRECY
relies on the semi-honest 3-party replicated secret sharing
protocol by Araki et al. [17, 81]. The protocol provides two
types of guarantees: (i) privacy, meaning that computing par-
ties do not learn anything about the data, and (ii) correctness,
meaning that all participants are convinced that the compu-
tation output is accurate. As long as the computing parties
do not collude, the SECRECY servers cannot learn anything
beyond the size of the input data (which can also be padded
by the data owners). Only the designated analysts learn the
result of the query. SECRECY does not use differential privacy
to protect the result from possible inference attacks by the
analysts but it could be easily augmented to do so (cf. §8). We
also stress that formal verification of the SECRECY software
is out of scope for this work (but an exciting future direction).
For a detailed security analysis please refer to Appendix B.

2.3 Cost-based secure query optimization

Cost-based query optimization on plaintext data relies on se-
lectivity estimations to reduce the size of intermediate results.
MPC operators, however, are oblivious, i.e., their control flow
is independent of the input data and incurs exactly the same
accesses for all inputs of the same size. Oblivious operators
do not reveal the size of intermediate data to prevent recon-
struction attacks based on selectivity statistics [60, 69, 84].
As a consequence, traditional selectivity-based techniques for
plaintext queries [41], such as join reordering or filter push-
down, are not effective when optimizing plans under MPC.
For instance, given that oblivious selections do not reduce
the size of intermediate data, pushing a filter down does not
improve the cost of subsequent operators in the plan.

To devise effective optimizations under MPC, we express
the plan costs in terms of secure computation and communica-
tion operations. In SECRECY, we define three types of costs:

• The operation cost, Co , which is determined by the
number of primitive MPC operations per party. Prim-
itive operations can be local (+,⊕), which do not require
communication, or remote (×, ∧), which require some
message exchange between parties (cf. §3).

• The synchronization cost, Cs , given by the number of
communication rounds across parties that are inherent
in MPC. Each round corresponds to a barrier, i.e. a syn-
chronization point in the distributed execution, where
parties must exchange data in order to proceed.

• The cost of composition, Cc , which is also measured
in operations and communication rounds required to
compose oblivious relational operators under MPC.

SECRECY applies automatic optimizations that aim to mini-
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mize at least one of these three costs. We present a comprehen-
sive cost analysis of oblivious operators and their composition
in §4. Contrary to plaintext query optimization where esti-
mations are often erroneous [76], in MPC we can use the
typical dynamic programming approach from database op-
timizers [98] to compute exact plan costs at compile time,
since Co ,Cs , and Cc do not depend on the data distribution.

3 Background on MPC

MPC protocols follow one of two general techniques: ob-
scuring the truth table of each operation using Yao’s garbled
circuits [114], or performing operations over encoded data
using secret sharing [100]. So far, garbled circuits has been
the preferred method to securely compute Boolean circuits
in high-latency environments, as they only need a small (con-
stant) number of rounds between computing parties at the cost
of incurring a large memory overhead [73]. On the other hand,
secret sharing-based approaches require more rounds (that
depend on the input size) but have a small memory footprint
and consume less overall bandwidth. In this work we employ
secret sharing in the honest-majority setting that is reasonable
for many real use cases [20,25,26,28,101]. Looking ahead, in
§7 we will demonstrate that SECRECY’s optimizations make
secret sharing competitive in both LAN and WAN settings.

3.1 Replicated secret sharing
SECRECY encodes an `-bit string of sensitive data s by split-
ting it into three secret shares s1, s2, and s3 that individually
have the uniform distribution over all possible `-bit strings
(for privacy) and collectively suffice to specify s (for correct-
ness). Computing parties are placed on a logical ring and
each party Pi receives two of the shares si and si+1 (i.e., P1
receives s1, s2, P2 receives s2, s3, and P3 receives s3, s1).
Hence, any two parties can reconstruct a secret if they col-
lude, but any single party cannot, no matter how powerful it
is. SECRECY supports two secret sharing formats (and can
also transition from one to the other): boolean secret sharing
in which s � s1 ⊕ s2 ⊕ s3, where ⊕ denotes the bitwise XOR
operation, and additive or arithmetic secret sharing in which
s � s1 + s2 + s3 mod 2` .

3.2 Oblivious primitives
In this section, we provide an overview of the oblivious prim-
itives we use throughout our work. Let s, t be two secrets,
and op(s , t) an operation on these secrets. The primitives
allow SECRECY servers to start with shares of s and t and
jointly compute shares of the result op(s , t) without learning
anything about s and t. Each server can use these shares in
subsequent operations or send them to the analysts, who can
reconstruct the true output of op(s , t). We stress that our obliv-
ious relational operators in §4 are agnostic of the underlying

primitives and it would be perfectly possible to implement
primitives based on other MPC protocols without affecting
the applicability of the optimizations in §5.

Basic operations. When given boolean secret-shared data
corresponding to `-bit strings s and t, parties can compute
shares of the bitwise XOR s ⊕ t locally (i.e., without com-
munication) and shares of the bitwise AND st with syn-
chronization cost equal to Cs(AND) � 1 round of communi-
cation. The operation cost is the same in both cases, i.e.,
Co(XOR) � Co(AND) � ` (we consider 1-bit boolean opera-
tions to have unit cost). Similarly, given two secrets u and
v that have been arithmetically shared, parties can compute
shares of the sum u+ v locally (similarly to XOR) and shares
of the product u · v with 1 communication round (similarly to
the bitwise AND operation).

Mixed-mode operations. The above boolean and arith-
metic operations are universal and can be used to com-
pute any function. Moreover, there exist well-known con-
structions of several specific operations with fast instanti-
ations based on boolean and/or arithmetic sharing. In SE-
CRECY we implement several such oblivious operations:
(in)equality, a compare-and-swap multiplexer, boolean ad-
dition with a ripple-carry adder, boolean-to-arithmetic con-
version, and more.
For details on the SECRECY primitives, please refer to §A.1.

4 SECRECY operators and cost model

In this section, we first provide an overview of oblivious op-
erators in SECRECY along with their asymptotic costs (§4.1)
and the costs of their composition under MPC (§4.2). We then
explain how SECRECY computes exact plan costs in §4.3.
Although, in practice, the SECRECY planner uses the detailed
cost formulas from Appendix A, knowledge of the asymptotic
costs is sufficient to follow the optimizations in §5.

4.1 Oblivious relational operators
SECRECY supports a rich class of oblivious relational opera-
tors: SELECT, PROJECT, (SEMI-)JOIN, GROUP-BY, DISTINCT,
and ORDER-BY with LIMIT. It also supports the following ag-
gregations under MPC: COUNT, SUM, MIN/MAX, and global AVG.

All operators have the same semantics as their plaintext
counterparts but their control flow is data independent; in
practice, this means that the SECRECY code does not have
any if statements that depend (either directly or indirectly) on
the input data. At a high level, oblivious selection requires a
linear scan over the input relation, join and semi-join operators
require a nested-loop over the two inputs, whereas order-by,
distinct, and group-by are based on a sorting network.

In all cases, operator predicates can be arbitrary logical ex-
pressions with atoms that may also include arithmetic expres-
sions (+,×,�, >,<,,,≥,≤) and are evaluated under MPC
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Operator #operations (#messages) #communication rounds

SELECT O(n) O(1)
JOIN O(n ·m) O(1)

SEMI-JOIN O(n ·m) O(log m)
ORDER-BY O(n · log2 n) O(log2 n)
DISTINCT O(n · log2 n) O(log2 n)
GROUP-BY O(n · log2 n) O(log2 n)
MASK O(n) O(1)

Table 1: Summary of operation (Co) and synchronization costs (Cs )
for general oblivious relational operators w.r.t. the cardinalities (n,
m) of the input relation(s). The asymptotic number of operations
equals the asymptotic number of messages per computing party,
as each individual operation on secret shares involves a constant
number of message exchanges under MPC. Independent messages
can be batched in rounds as shown in the rightmost column.

using the oblivious primitives of §3.2. All operators except
PROJECT and ORDER-BY append a new attribute to each record
of their input relation that stores a (secret-shared) valid bit:
this bit denotes whether the record belongs to the output of
the operator and is computed under MPC.

Table 1 shows the asymptotic operation and synchroniza-
tion costs per operator with respect to the input size. MASK is
a special operator used by SECRECY to hide records (with
“garbage” values) upon a condition. The formal operator se-
mantics and their exact costs are given in §A.2.

4.2 Composing oblivious operators
We define the composition of two operators as applying the
second operator to the output of the first. One merit of our
approach is that all operators of §4.1 reveal nothing about their
output or access patterns and can be arbitrarily composed into
an end-to-end oblivious plan without special treatment.

Let op1 and op2 be two SECRECY operators. In general,
the composition op2(op1(R)) has an extra cost (additional to
the cost of applying the operators op1 and op2) as it requires
evaluating under MPC a logical expression ec for each gener-
ated tuple. We define the composition cost of op2(op1(R)) as
the cost of evaluating ec on all records generated by op2. The
expression ec depends on the types of operators. For example,
composing two selections, each one appending a valid bit
to the input relation, requires ANDing the two bits for each
record. Table 2 shows the asymptotic composition costs for
different operator pairs. The detailed costs are given in §A.3.

Note that applying the distinct operator to the output of a
selection, a group-by or a (semi-)join requires a linear number
of rounds. This is a significant increase over the O(log2 n)
rounds required by distinct when applied to a base relation
(cf. Table 1). In §5.2, we propose an optimization that reduces
the cost of these compositions to a logarithmic factor.

4.3 Computing optimal plan costs
SECRECY’s query planner is based on a typical bottom-up
dynamic programming algorithm [98] that computes optimal

Operator pair(s) #rounds

{SELECT, (SEMI-)JOIN, GROUP-BY, DISTINCT}→ DISTINCT O(n)
DISTINCT→ {SELECT, (SEMI-)JOIN} O(1)

SELECT↔ (SEMI-)JOIN O(1)
GROUP-BY→ {SELECT, (SEMI-)JOIN} O(1)

{SELECT, (SEMI-)JOIN, DISTINCT, GROUP-BY}→ GROUP-BY O(log2 n)

Table 2: Summary of composition costs (Cc) in number of rounds
for pairs of operators in SECRECY w.r.t the number of generated
records (n). Arrows denote the order of applying the two operators.
Composition incurs a small constant number of boolean operations
per record, so its cost in number of operations is O(n) in all cases.

plans based on our analytical cost model and a set of transfor-
mation rules that we present in §5. The algorithm identifies
all operators in the input query and proceeds in stages: at
each stage it creates bigger plans by adding a new operator to
sub-plans from the previous stage. Initially, the set of possible
sub-plans includes scans of the input relations. When creat-
ing a new (sub-)plan, the algorithm checks for all applicable
transformation rules and applies them exhaustively to gener-
ate equivalent (sub-)plans with lower cost. The cost of a plan
is computed as follows. Each time an operator op is added to
a sub-plan, SECRECY computes the operation and synchro-
nization costs Co(op) and Cs(op). If the operator is applied
to the output of another operator, SECRECY also computes
the composition cost Cc . To do so, it augments the current
plan with a special operator opec (opi(op j(..))) that applies
the composition predicate ec (§4.2). Co(opec ) and Cs(opec )
amount to the cost of composing the operators opi and op j in
number of operations and rounds respectively. For a plan with
k operators, the total cost is

∑k
i�1 αCo(i)+βCs(i), where α, β

are parameters of the deployment. The algorithm returns the
plan with the minimum cost from the final stage.

5 SECRECY optimizations for relational MPC

Here we present the optimizations we introduce in SECRECY
to speed up MPC query execution: (i) logical transforma-
tion rules, such as operator reordering and decomposition
(§5.1), (ii) physical optimizations, such as operator fusion,
vectorized primitives and message batching (§5.2), and (iii)
secret-sharing optimizations that further reduce the number
of communication rounds for certain operators (§5.3). Table 3
summarizes the notation used in the remainder of the paper.

Target queries. Our work focuses on collaborative analytics
under MPC where two or more data owners want to outsource
queries on their collective data without compromising privacy.
We consider all inputs as sensitive and assume that data own-
ers wish to protect their raw data and avoid revealing attributes
of base relations in query results. For example, employing
MPC to compute a query that includes patient names along
with their diagnoses in the SELECT clause is pointless. Thus,
we target queries that return global or per-group aggregates
and/or distinct results, as in prior works.
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Symbol Description

` length of the share representation in bits
R,S relations with cardinality |R | and |S |
σφ(R) selection with predicate φ
R ./θ S join with predicate θ
Rnθ S left semi-join with predicate θ
δa (R) distinct operator on attribute a
γ

g
a (R) group-by operator on attribute a with aggregation function g

s↑a (R) sort on attribute a (ascending)

Table 3: Notation used in the paper

5.1 Logical transformation rules
SECRECY uses three types of logical transformations that
reorder and decompose operators to reduce the MPC costs:

5.1.1 Blocking operator push-down

Blocking oblivious operators (GROUP-BY, DISTINCT,
ORDER-BY) materialize and sort their entire input before pro-
ducing any output tuple. Contrary to a plaintext optimizer that
would most likely place sorting after selective operators, in
MPC we have an incentive to push blocking operators down,
as close to the input as possible. Since oblivious operators
do not reduce the size of intermediate data, sorting the input
is clearly the best option. Blocking operator push-down can
provide considerable performance improvements in practice,
even if the asymptotic costs do not change. As an example,
consider the rule that pushes ORDER-BY before a selection,
i.e., s↑a(σφ(R)) → σφ(s↑a(R)). Although this rule would not
generate a more efficient plan in plaintext evaluation, it does
so in the MPC setting. This is because the operations required
by the oblivious ORDER-BY depend on the cardinality and
the number of attributes of the input relation. Applying the
selection after the order-by reduces the actual (but not the
asymptotic) operation cost, as σφ appends one attribute to R.

Applicability. Rules in this class are valid relational transfor-
mations with no special applicability conditions under MPC.

5.1.2 Join push-up

The second class of rules leverage the fact that JOIN is the
only operator whose output is larger than its input. Based on
this, we have an incentive to perform joins as late as possible
in the query plan so that we avoid applying other operators to
join results, especially those that require materializing the join
output. For example, placing a blocking operator after a join
requires sorting the cartesian product of the input relations,
which increases the operation cost of the blocking operator to
O(n2 log2 n) and the synchronization cost by 4×.

Example. Consider the following query:
Q1: SELECT DISTINCT R.id

FROM R, S

WHERE R.id = S.id

and the rule δid(R ./id�id S) → δid(R) ./id�id δid(S). Let
R and S have the same cardinality n. A plan that applies

1 s↑aθ↑ak
(R) ; //sort input relation R on aθ, ak

2 let d← |R |/2; //Distance of tuples to aggregate
3 while d ≥ 1 do
4 for each pair of tuples (ti , ti+d), 0 ≤ i < |R | − d, do

//Are tuples in the same group?

5 let b← ti[ak]
?
� ti+d[ak];

//Are tuples in semi-join output too?
6 let bc← b ∧ ti[aθ] ∧ ti+d[aθ]; //bc is a bit

//Oblivious aggregation via multiplexing

7 ti[ag]← bc ·
(
ti[ag]+ ti+d[ag]

)
+ (1− bc) · ti[ag];

8 ti+d[av] ← ¬bc ; //av is the valid bit

9 mask ti+d when ti+d[av] � 0;

10 d � d/2;

11 mask remaining tuples with t[av] � 0 and shuffle R;
Algorithm 1: 2nd phase of Join-Aggregation decomposition

DISTINCT after the join operator requires O(n2 log2 n) oper-
ations. On the other hand, pushing DISTINCT before JOIN
reduces the operation cost to O(n2) and the composition cost
from O(n2) to O(1) in number of rounds. The asymptotic
synchronization cost is the same for both plans, i.e. O(log2 n),
but the actual number of rounds when DISTINCT is pushed
before JOIN is 4× lower.

Applicability. Rules in this class have the same applicability
conditions as similar rules for plaintext queries [42,113], even
though their goal is different. In our setting, the re-orderings
do not aim to reduce the size of intermediate data. In fact,
a plan that applies DISTINCT on a JOIN input produces ex-
actly the same amount of intermediate data as a plan where
DISTINCT is placed after JOIN, yet our analysis reveals that
the second plan has higher MPC costs.

5.1.3 Join-Aggregation decomposition

Consider a query plan where a JOIN on attribute a j is fol-
lowed by a GROUP-BY on another attribute ak , a j . In this
case, pushing the GROUP-BY down does not yield a seman-
tically equivalent plan. Still, we can optimize the plan by
decomposing the aggregation in two phases and push the first
and most expensive phase of GROUP-BY before the JOIN.

Let R, S be the join inputs, where R includes the group-by
key ak . The first phase of the decomposition sorts R on ak
and computes a semi-join on a j that appends two attributes to
R: the valid bit aθ introduced by the semi-join, and a second
attribute ag that stores the result of a partial aggregation1 (we
come back to this later).

In the second phase, we compute the final aggregates per ak
using Algorithm 1, which takes into account the attribute aθ
and updates the partial aggregates ag in-place using odd-even
aggregation. The decomposition essentially replaces the join

1In case the aggregation function is AVG, we need to keep the value sum
(numerator) and count (denominator) as separate secret-shared attributes in R.
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with a semi-join and a partial aggregation in order to avoid
performing the aggregation on the cartesian product R× S.
This way, we significantly reduce the number of operations
and communication rounds, but also ensure that the space
requirements remain bounded by |R |, since the join output is
not materialized. Note that this optimization is fundamentally
different than performing a partial aggregation in the clear (by
the data owners) and then computing the global aggregates
under MPC [22, 95]; in our case, all data are secret-shared
amongst parties and both phases are under MPC.

Example. Consider the following query:
Q2: SELECT R.ak, COUNT(*)

FROM R, S
WHERE R.id = S.id

GROUP BY R.ak

Let R and S have the same cardinality n. The plan that
applies GROUP-BY to the join output requires O(n2 log2 n)
operations and O(log2 n) communication rounds. When de-
composing the aggregation γCOUNT(*)ak

in two phases, the oper-
ation cost is reduced to O(n2) and the synchronization cost
is 4× lower. The space requirements are also reduced from
O(n2) to O(n). In our example, the partial aggregation corre-
sponds to the function t[aθ] �

∑
∀t′∈S θ(t , t′), t ∈ R, where

θ(t , t′) :� t[id] ?
� t′[id]. Similar partial aggregations can be

defined for SUM, MIN/MAX, and AVG.

Decomposition with DISTINCT. A similar idea can also
be employed when the join is followed by a DISTINCT.
The transformation rule in this case is δR.a(R ./θ S) →
δ′a(s↑R.aθ ,↑R.a(Rnθ S)), where aθ denotes the semi-join bit
and δ′(·) is the final phase of distinct that compares adjacent
tuples with aθ � 1. For example, the plan δR.a(R ./b�b S) can
be replaced with the equivalent plan δ′R.a(s↑R.aθ ,↑R.a(Rnb�b

S)) to reduce the operation cost from O(n2 log2 n) to O(n2)
and the synchronization cost from O(n2) to O(log2 n).
Applicability. The decomposition technique we described is
applicable to any θ-join followed by (i) a GROUP-BY with
aggregation or (ii) a DISTINCT operator, under the condition
that the group-by or distinct keys belong to one join input.

5.2 Physical optimizations
We now describe a set of physical optimizations in SECRECY.

5.2.1 Predicate fusion

Fusion is a common optimization in plaintext query planning,
e.g., when predicates of multiple filters are merged and exe-
cuted by a single operator. Fusion has been recently used to
speed up secure ML pipelines in Cerebro [117] and is also
applicable to oblivious relational operators. In our setting,
fusion is achieved by identifying independent operations that
can be executed efficiently within the same communication

round. For example, if the equality check of an equi-join and
a selection are independent of each other, a fused operator
requires dlog `e + 1 rounds instead of 2dlog `e + 1 (cf. §A).
Next, we describe a somewhat more interesting case of fusion.

5.2.2 Operator fusion

Recall that applying DISTINCT after SELECT requires n com-
munication rounds (§4.2). We can avoid this overhead by
fusing the two operators in a different way, that is, sorting the
input relation on the selection bit first and then on the distinct
attribute. Sorting on two (instead of one) attributes adds a
small constant factor to each oblivious compare-and-swap
operation, hence, the asymptotic complexity of the sorting
step remains the same. When distinct is applied to the output
of other operators, including selections and (semi-)joins, this
physical optimization keeps the number of rounds required
for the composition low.

Example. Consider the following query:
Q3: SELECT DISTINCT id

FROM R

WHERE ak = ‘c’

Fusing the distinct and selection operators reduces the num-
ber of communication rounds from O(n) to O(log2 n), as if
the distinct operator was applied only to R (without a se-
lection). DISTINCT can be fused with a join or a semi-join
operator in a similar way. In this case, the distinct operator
takes into account the (semi-)join bit.

5.2.3 Vectorization and message batching

In secret sharing protocols, non-local operations require ex-
changing very small messages. Applying multiple such in-
dependent operations in a vectorized fashion and exchang-
ing the respective messages in bulk improves performance
tremendously. Consider applying a selection with an equality
predicate on a relation with n tuples. Performing oblivious
equality on one tuple requires dlog `e rounds. Applying the se-
lection tuple-by-tuple and sending messages eagerly (as soon
as they are generated) results in n · dlog `e rounds. Instead,
if we apply independent selections across the entire relation
and exchange messages in bulk, we can reduce the total syn-
chronization cost to dlog `e. We have designed all SECRECY
primitives to apply vectorization and message batching by de-
fault, otherwise the cost of secret sharing is prohibitive. Costs
in Tables 1 & 2 already take message batching into account.

5.3 Secret-sharing optimizations
Here we propose optimizations that take advantage of mixed-
mode MPC protocols which permit both arithmetic and
boolean computations. While SECRECY uses boolean secret
sharing for most operations, computing arithmetic expres-
sions or aggregations like COUNT and SUM on boolean shares
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requires using a ripple-carry adder (RCA), which in turn re-
quires many communication rounds. Performing these oper-
ations on additive shares would require no communication,
but converting shares from one format to another can be ex-
pensive. Below, we describe two optimizations that avoid the
RCA in aggregations and predicates with constants.

5.3.1 Dual sharing

The straight-forward approach of switching from boolean to
additive shares (and vice versa) based on the type of operation
does not pay off; the conversion itself relies on RCA, which
has to be applied twice to switch to the other representation
and back. The cost-effective way would be to evaluate logical
expressions using boolean shares and arithmetic expressions
using additive shares. However, this is not always possible be-
cause arithmetic and boolean expressions in oblivious queries
often need to be composed into the same formula. We mitigate
this problem using a dual secret-sharing scheme.

Recall the example query Q2 from §5.1.3 that applies an
aggregation function to the output of a join according to
Algorithm 1. The attribute aθ in Algorithm 1 is a single-
bit attribute denoting that the respective tuple is included
in the join result. During oblivious evaluation, each party
has a boolean share of this bit that is used to compute the
arithmetic expression in line 6. The naïve approach is to
evaluate the following equivalent logical expression directly
on the boolean shares of bc , ti[ag], and ti+d[ag]:

ti[ag] ← b` ∧RCA
(
ti[ag], ti+d[ag]

)
⊕ b` ∧ ti[ag]

where RCA is the oblivious ripple-carry adder primitive, b` is
a string of ` bits (the length of ag) all of which are set equal
to bc , and b` is the binary complement of b` . Evaluating the
above expression requires ` communication rounds for RCA
plus two more rounds for the logical ANDs (∧). On the con-
trary, SECRECY evaluates the equivalent formula in line 6 of
Algorithm 1 in four rounds (independent from `) as follows.
First, parties use arithmetic shares for the attribute ag to com-
pute the addition locally. Second, each time they compute the
bit bc in line 5, they exchange boolean as well as arithmetic
shares of its value. To do this efficiently, we rely on the single-
bit conversion protocol also used in CrypTen [70], which
requires two rounds of communication. Having boolean and
arithmetic shares of bc allows SECRECY to use it in boolean
and arithmetic expressions without paying the cost of RCA.

5.3.2 Proactive sharing

The previous optimization relies on bc being a single bit.
In many cases, however, we need to compose boolean and
additive shares of arbitrary values. Representative examples
are join predicates with arithmetic expressions on boolean
shares, e.g. (R.a − S.a ≥ c), where a is an attribute and c
is a constant. We can speedup the oblivious evaluation of

such predicates by proactively asking the data owners to send
shares of the expression results. In the previous example, if
parties receive boolean shares of S.a + c they can avoid com-
puting the boolean addition with RCA. A similar technique is
also applicable for selection predicates with constants. In this
case, to compute a > c, if parties receive shares of a− c and
c− a, they can transform the binary equality to a local compar-
ison with zero. Note that proactive sharing is fundamentally
different than having data owners perform local filters or pre-
aggregations prior to sharing. In the latter case, the computing
parties might learn the selectivity of a filter or the number
of groups in an aggregation (if results are not padded). In
our case, parties simply receive additional shares and will not
learn anything about the intermediate query results.

5.4 Generality of optimizations

The logical and physical query optimizations constructed in
this work (§5.1-5.2) apply generally to any mixed-mode MPC
protocol that supports the primitives we describe in §3.2. This
includes protocols that remain secure in the face of a mali-
cious adversary who can deviate from the protocol arbitrarily
(e.g., [46, 71, 89]), and (authenticated) garbled circuit pro-
tocols [109, 114] combined with conversions to arithmetic
secret sharing [50, 89] as needed. SECRECY can also support
alternative instantiations of oblivious primitives with different
cost profiles, such as constant-round equality and comparisons
with higher operation costs [48, 86].

While the secret-sharing optimizations of §5.3 are specific
to SECRECY’s underlying MPC protocol (§3.1), we expect
that similar techniques can be developed also for other pro-
tocols. Extending the SECRECY planner to consider the cost
profiles of various building blocks is an exciting avenue for
future work. We provide a formal discussion of generality in
Appendix B.

6 SECRECY implementation

Despite a rich open-source ecosystem of general-purpose
MPC frameworks [62], we found that existing tools either lack
support for general relational operations (with θ-predicates)
or cannot effectively amortize network I/O. For these reasons,
we implemented SECRECY in C/C++, entirely from scratch.
We designed our secure primitives to operate directly on rela-
tions and we also built a library of general oblivious relational
operators that can be combined into arbitrary query plans.

System overview. Figure 2 shows the SECRECY architecture
and software stack. Data analysts submit queries through a
client application that exposes a SQL interface and provides
a query planner that performs query rewriting and cost-based
optimization. Data owners use the secret-sharing generation
module to distribute random shares of their data to the comput-
ing parties. Computing parties can be deployed on premises,
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Figure 2: The SECRECY system consists of (i) a client application
that can be used by data analysts to submit queries, (ii) a data owner
application to generate and distribute secret shares, and (iii) three
computing parties that execute queries under MPC.

in a hybrid cloud, or across multiple clouds. To automate
cloud deployment we use Ansible [7]. The parties’ software
stack consists of (i) a custom implementation of the replicated
secret sharing protocol, (ii) a library of secure computation
and communication primitives, and (iii) a library of oblivious
relational operators. The distributed runtime and communica-
tion layer are based on MPI [5]. Each party is a separate MPI
process that handles both computation and communication.

Operator pipelining. SECRECY relational operators and se-
cure primitives are designed to process table rows in batches.
The batch size is configurable and allows SECRECY to com-
pute expensive operators, such as joins, with full control over
memory requirements. While batching does not reduce the
total number of operations, we leverage it to compute on large
inputs in a pipelined fashion, without running out of memory
or switching to a disk-based evaluation.

Query planning and execution. Upon startup, the parties es-
tablish connections to each other and learn the process IDs of
other parties. Next, they receive shares for each input relation
from the data owners. Queries are specified either in SQL (and
go through query planning) or in a declarative DSL that allows
seamless operator composition by abstracting MPC details.
For SQL parsing we use the Hyrise parser [12]. SECRECY’s
planner generates the optimal query plan as explained in §4.3.
To evaluate a query, parties execute the same oblivious physi-
cal plan on their random shares and return the results to the
designated client. We use a 64-bit share representation by
default, so ` � 64 (cf. Table 3).

7 Experimental evaluation

Our experimental evaluation is structured into four parts:

Benefits of query optimization. In §7.2, we evaluate the ben-
efits of SECRECY’s optimizations on eight real and synthetic
queries. We show that SECRECY’s cost-based optimizer re-
duces the runtime of complex queries by up to three orders of
magnitude both in a LAN and a multi-cloud setting.

Performance on real and synthetic queries. In §7.3 we
evaluate SECRECY’s performance as input sizes grow. We use
queries that include selections, group-by, distinct, semi-join,
and theta-joins with both equality and inequality predicates.
Our results demonstrate that SECRECY can scale to millions
of input rows and evaluate complex queries in reasonable time
with modest use of resources.

Micro-benchmarks. In §7.4, we evaluate individual logical,
physical, and secret-sharing optimizations on the three queries
from §5.1-5.3. Our results demonstrate that pushing down
blocking operators reduces execution time by up to 1000×
and enables queries to scale to 100× larger inputs. Further, we
show that operator fusion and dual sharing improve execution
time by an order of magnitude in the WAN setting.

Comparison with state-of-the-art frameworks. In §7.5,
we compare SECRECY with SMCQL [22] and the 2-party
semi-honest version of EMP [108]. We choose SMCQL (the
ORAM-based version) as the only open-source relational
framework with semi-honest security and no leakage. We also
choose the EMP library since it is used by all recent systems,
namely Shrinkwrap [23], SAQE [24], a new version of SM-
CQL, and Senate [95]. Although none of these systems is
publicly available, they all build their relational MPC engines
on top of EMP. We show that SECRECY outperforms them
both and can comfortably process much larger datasets.

We provide additional micro-benchmarks and experiments
with EMP in Appendix D.

7.1 Evaluation setup
We use three cloud deployments: (i) AWS-LAN uses an
EC2 r5.xlarge instance per party in the us-east-2 region,
(ii) AWS-WAN distributes parties across us-east-2 (Ohio),
us-east-1 (Virginia), and us-west-1 (California), and (iii)
MULTI-CLOUD distributes parties across three different cloud
providers, namely AWS (Ohio), Google Cloud (South Car-
olina), and Azure (Virginia). VMs have 32GB of memory
and run Ubuntu 20.04, C99, gcc 5.4.0, and MPICH 3.3.2.
Measurements are averaged over at least three runs and plot-
ted in log-scale, unless otherwise specified.

Queries. We use 11 queries for evaluation, including five real-
world queries from previous MPC works [22–24, 95, 105].
Three are medical queries [22]: Comorbidity returns the ten
most common diagnoses of individuals in a cohort, Recurrent
C.Diff. returns the distinct ids of patients who have been
diagnosed with cdiff and have two consecutive infections
between 15 and 56 days apart, and Aspirin Count returns
the number of patients who have been diagnosed with heart
disease and have been prescribed aspirin after the diagnosis
was made. We also use queries from other MPC application
areas [95]: Password Reuse asks for users with the same
password across different websites, while Credit Score asks
for persons whose credit scores across different agencies have
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(a) LAN (b) MULTI-CLOUD

Figure 3: SECRECY end-to-end performance when optimizations are enabled (Optimized) and disabled (Not optimized) for real and synthetic
queries. Logical and physical optimizations result in over 1000× lower execution times, while secret-sharing optimizations improve performance
by up to ∼ 52×. Not optimized plans still use vectorization and message batching (§5.2.3), otherwise the cost of secret sharing is prohibitive.

(a) Category A (b) Category B (c) Category C

Figure 4: Scaling behavior of optimized real and synthetic queries on SECRECY

significant discrepancies in a particular year. In addition to
the real-world queries, we use the TPC-H queries (Q4, Q6,
Q13) [103] that have been used in SAQE [24]. Finally, to
evaluate the performance gains from each optimization in
isolation, we use Q1, Q2, Q3 from §5.1-5.3.

Datasets. All experiments use randomly generated tables with
64-bit values. Note that SECRECY’s MPC protocol assumes
a fixed-size representation of shares that is implementation-
specific and could be increased to any 2k value. We also
highlight that using random inputs is no different than using
real data, as all operators are oblivious and the data distribu-
tion does not affect the amount of computation or commu-
nication. Regardless if the input is real or random, parties
compute on secret shares, which are by definition random.
In all experiments we designate one party as the data owner
who distributes shares and learns the results. SECRECY uses
exactly three computing parties; therefore, the number of data
owners and analysts does not affect query performance, only
the cumulative input size does.

7.2 Benefits of query optimization
We compare the performance of 8 queries optimized by SE-
CRECY with that of plans without the optimizations of §5.
For a fair comparison, we implement baseline plans using SE-
CRECY’s batched operators. Although this favors the baseline,
the communication cost of MPC is otherwise prohibitive and
queries cannot scale beyond a few hundred input rows. We
execute each plan with 1K rows per input relation. For Q4
(resp. Q13), we use 1K rows for LINEITEM (resp. ORDERS)
and maintain the size ratio with the other input relation as
specified in the TPC-H benchmark. For Comorbidity, we use

a cohort of 256 patients. We run this experiment on AWS-LAN
and MULTI-CLOUD and present the results in Figure 3.

In the LAN setting, SECRECY achieves the highest
speedups for Recurrent C.Diff., Aspirin Count, and Q13,
that is, 1142×, 121×, and 714× lower execution times, re-
spectively. Optimized plans for these queries leverage join
push-up (Aspirin Count), fusion (Recurrent C.Diff.), and join-
aggregation decomposition (Q13). The optimized plans for
Comorbidity, Password Reuse, Q4, and Q6 leverage dual and
proactive sharing, achieving up to 52× speedup compared to
the baseline. Finally, the Credit Score query leverages dual
sharing which, in this case, provides a modest improvement.
SECRECY achieves significant speedups in the wide area, too.
The performance improvement is higher for Comorbidity, Q4,
and Q13 in the multi-cloud setting, as these queries leverage
optimizations that primarily reduce the synchronization cost.
We evaluate the benefit of individual optimizations in §7.4.

7.3 Performance on real and synthetic queries

We now run the optimized plans with increasing input sizes
in AWS-LAN and report total execution time. For these experi-
ments, we group queries into three categories of increasing
complexity. Category A includes queries with selections and
global aggregations, Category B includes queries with select
and group-by or distinct operators, and Category C includes
queries with select, group-by and (semi-)join operators. Fig-
ure 4 presents the results.

Q6 in Category A consists of five selections and a global
aggregation. It requires minimal communication that is inde-
pendent of the input relation cardinality. As a result, it scales
comfortably to large inputs and takes ∼ 6s for 8M rows.
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(a) Distinct-join reordering (LAN) (b) Join-Aggr. decomposition (LAN) (c) Select-Distinct fusion (WAN) (d) Dual sharing in Group-by (WAN)

Figure 5: Performance improvement of individual optimizations applied by the SECRECY planner

Queries in Category B scale to millions of input rows as
well. The cost of these queries is dominated by the oblivi-
ous group-by and distinct operators. At 2M rows, Recurrent
C.Diff. completes in ∼ 1.2h and Password Reuse in ∼ 20min.

The cost of queries in Category C is dominated by joins
and semi-joins. The size ratio between the two inputs of
each query is different: for Q4 and Q13, we use the ratio
specified in the TPC-H benchmark whereas, for Aspirin Count,
we use inputs of equal size. In Figure 4c, Scaling factor 1×
corresponds to 1K rows for the small input. As we increase the
input sizes, we always keep their ratio fixed. At scaling factor
32×, the most expensive query is Q13, which is optimized
with join-aggregation decomposition and takes ∼ 6.5h on
295K rows. At the same scaling factor, Q4 completes in ∼
3.4h on 164K rows, and Aspirin Count in ∼ 1.3h.

While MPC protocols remain expensive for real-time
queries, our results demonstrate that offline collaborative ana-
lytics on millions of records entirely under MPC are viable.

7.4 Micro-benchmarks

We now use the queries of §5 (Q1, Q2, Q3) to evaluate the
impact of SECRECY’s optimizations in isolation. We run each
query with and without the particular optimization and mea-
sure total execution time. Distinct-join reordering and join-
aggregation decomposition primarily reduce the operation
cost and we evaluate them in AWS-LAN. Fusion and dual shar-
ing reduce the synchronization cost and we evaluate them in
AWS-WAN. Figure 5 shows the results.

Distinct-Join reordering. The optimized plan of Q1 pushes
the JOIN after DISTINCT and, thus, only sorts a relation of n
rows instead of n2. Figure 5a shows that the optimized plan is
up to 50× faster than the baseline, which runs out of memory
for even modest input sizes.

Join-Aggregation decomposition. The baseline plan of Q2
materializes the result of the join and then applies the group-
ing and aggregation. Instead, the optimized plan decomposes
the aggregation in two phases (cf. §5.1.3). As shown in Fig-
ure 5b, this optimization provides 100× lower execution time
than that of the baseline plan. Further, the baseline plan runs
out of memory for inputs larger than 1K rows.

Operator fusion. The baseline plan of Q3 applies the obliv-
ious selection before DISTINCT, while the optimized plan

Comorbidity Recurrent C. Diff. Aspirin Count
SMCQL 91s 358s 365s

SECRECY 0.083s 0.092s 0.171s

Table 4: SMCQL and SECRECY execution times in LAN for the
three medical queries from [22] on 25 tuples per input relation.

Figure 6: Performance comparison of the oblivious sort operator on
EMP and SECRECY in LAN (left) and WAN (right).

fuses the two operators and performs the DISTINCT computa-
tion in bulk (cf. §5.2.2). Figure 5c shows that this optimization
provides more than 25× speedup for large inputs and allows
the query to scale to much larger inputs.

Dual sharing. We also evaluate SECRECY’s ability to switch
between arithmetic and boolean sharing to reduce communi-
cation costs for certain operations. For this experiment, we
compare the run-time of the optimized GROUP-BY-COUNT op-
erator (cf. §5.3) to that of a baseline operator that uses boolean
sharing only and, hence, relies on the ripple-carry adder to
compute the COUNT. Figure 5d plots the results. The baseline
operator is 10× slower than the optimized one, as it requires
64 additional rounds of communication per input row.

7.5 Comparison with other MPC frameworks

Existing 3-party frameworks [62] are either proprietary, e.g.
[27], or they only support specific operators, such as unique-
key joins [82, 99], that cannot be used for any of the queries
we consider. We stress that EMP and SMCQL use 2-party
garbled circuit protocols that are not directly comparable with
SECRECY’s. The purpose of these experiments is to showcase
the end-to-end performance of the available solutions for
relational MPC and not to compare the underlying protocols.

Comparison with SMCQL. In the first set of experiments,
we aim to reproduce the results presented in SMCQL [22,
Fig. 7] on our experimental setup. We run the three medical
queries on SMCQL and SECRECY, using a sample of 25
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rows per data owner (50 in total), and present the results
in Table 4. We use the plans and default configuration of
protected and public attributes, as in the SMCQL project
repository. SECRECY is over 1000× faster than SMCQL in
all queries.

Comparison with EMP. EMP is a general-purpose MPC
framework and does not provide relational operators or query
planning. Nevertheless, we include a comparison with EMP
because it is the MPC library underpinning several non-open-
source relational frameworks (e.g., Shrinkwrap, SAQE, and
Senate). For these experiments, we use the oblivious sort
operation from the EMP repository [108] that has the same
asymptotic complexity with the respective SECRECY sort.
Figure 6 shows the results in AWS-LAN and AWS-WAN for input
sizes ranging from 64K to 4M rows. The performance gap
between SECRECY and EMP is significant. SECRECY is up to
12.7× faster in LAN (∼ 3h vs 14min for 4M input rows). In
the WAN setting, SECRECY sorts 4M rows in 42min, while
EMP could not complete the computation within 9h.

8 Related Work

Relational MPC systems. We distinguish two lines of work
in this space that are often combined. The first line targets
peer-to-peer deployments and reduces multi-party computa-
tion by pushing parts of the query to data owners (for plain-
text evaluation) or executing the protocol within subsets of
the computing parties [13, 22, 44, 95, 105]. The second line
includes systems that trade off MPC performance with con-
trolled information leakage [23, 24, 64, 105, 111]. We summa-
rize each system’s preconditions and guarantees in Table 5
and provide more details in Appendix C. Function secret shar-
ing in Splinter [106] allows for private queries on public data,
which is the opposite to our goal.

Our approach has several advantages over, and is also com-
plementary with, many of the prior techniques. SECRECY’s
optimizations are agnostic to data ownership and retain the
full security guarantees of MPC, merely optimizing its execu-
tion. More importantly, this work provides a strong foundation
for a unified query optimization framework that can accom-
modate multi-cloud, peer-to-peer, and hybrid deployments.
Prior techniques can be ported into SECRECY by plugging
in appropriate cost functions and query transformation rules.
For example, pushing parts of the query to data owners, as in
Conclave [105], can be done via transformation rules that in-
troduce plaintext operators with certain placement constraints.

Enclave-based approaches. In this line of work, parties pro-
cess the plaintext data within a physically protected envi-
ronment. Enclave-based approaches aim to minimize RAM
requirements, pad intermediate results, and hide access pat-
terns in untrusted storage. The works by Agrawal et al. [14]
and Arasu et al. [19] focus on database queries in this setting.

More recent systems such as ObliDB [52], Opaque [116],
StealthDB [104], and OCQ [49] rely on Intel’s SGX.

Enclave-based systems typically achieve better perfor-
mance than MPC systems but require different trust assump-
tions and are susceptible to attacks [33, 35, 36, 59, 74, 75, 107,
112]. Some of these threats can be ameliorated using oblivi-
ous operators within the enclave. Our logical optimizations
from §5.1 could also be applied in this setting to reduce the
number of operations and memory requirements.

System optimizations for MPC. Improving the performance
of secure computation via system optimizations is an active
research topic. MAGE [73] proposed an interesting technique
to reduce the inherent memory overhead of homomorphic
encryption and garbled circuits (cf. §3). As SECRECY relies
on secret sharing, its memory footprint is small. Instead, se-
cret sharing incurs a higher communication cost, which we
amortize using vectorization and message batching (§5.2.3).
MPC performance can be further improved by offloading
secure primitives to hardware accelerators [54, 55, 79, 102].
Most works in this space focus on ML workloads but similar
techniques could also be applied to relational operators.

MPC operators, algorithms, and cost models. Various re-
lated works focus on standalone oblivious relational opera-
tors, e.g. building group-by from oblivious sort [66], equi-
joins [15, 72, 82, 93], or common aggregations [45, 51]. SE-
CRECY is driven by real-world applications that typically
require oblivious evaluation of queries with multiple opera-
tors. Motivated by similar needs, Wang et al. [110] presented
a secure version of the Yannakakis’ algorithm, while Ion et
al. [65] and Buddhavarapu et al. [34] studied unique-key joins
followed by simple aggregations. These works do not provide
general cost-based MPC query optimization and they oper-
ate in the peer-to-peer setting, where data owners participate
in the protocol execution using trusted resources. Recently,
CostCO [53] did some nice work on modeling the cost of
general MPC programs. Our cost model focuses on relational
operators and is tightly integrated with the query planner.

Encrypted DBs. Existing practical solutions in secure
database outsourcing [56] operate in a client-server setting
and reveal or “leak” information to the database server. Sys-
tems based on property-based encryption like CryptDB [96]
offer full SQL support and legacy compliance, but each query
reveals information that can be used in reconstruction at-
tacks [37,58,60,61,69,78,80,84]. Systems based on structural
encryption [38, 67, 88, 94, 115] provide semantic security that
does not eliminate access pattern leaks. SDB [64, 111] uses
secret sharing but leaks information to the server whereas
Cipherbase [18] relies on a trusted machine. These systems
support only one data owner and it would require public-key
encryption to evaluate queries that span multiple datasets [31].

Differential Privacy (DP). Systems like DJoin [83], DStress
[87], and others [29, 43, 63] use DP to ensure that the out-
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Framework MPC Protocol Information
Leakage

Trusted
Party

Query
Execution

Main Optimization
Objective Optimization Conditions

Conclave [105] Secret Sharing /
Garbled Circuits

Controlled
(Hybrid operators) Yes Hybrid

Minimize the use of
secure computation

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
3. There exists an additional trusted party

SMCQL [22]
Garbled Circuits /

ORAM No No1 Hybrid
Minimize the use of
secure computation

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
3. There exists an honest broker

Shrinkwrap [23]
Garbled Circuits /

ORAM
Controlled

(Diff. Privacy) No Hybrid
Calibrate padding of
intermediate results

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
and intermediate result sensitivities

SAQE [24] Garbled Circuits
Controlled

(Diff. Privacy) No Hybrid
Choose sampling rate

for approximate answers

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
and differential privacy budgets

Senate [95] 2 Garbled Circuits No No Hybrid
Reduce joint computation

to subsets of parties

1. Data owners serve as computing parties
2. Input or intermediate relations are owned
by subsets of the computing parties

SDB [64, 111] 3 Secret Sharing Yes
(operator dependent) No Hybrid

Reduce data encryption
and decryption costs

1. Data owner serves as computing party
2. Data owner provides privacy annotations

SECRECY Rep. Secret Sharing No No
End-to-end
under MPC

Reduce MPC costs
(§ 2.3 and § 4-5) None

1 SMCQL relies on an honest broker that may see protected data in the clear during query evaluation [22, § 5.1].
2 Senate provides security against malicious parties whereas all other systems adopt a semi-honest model.
3 SDB adopts a typical DBaaS model with one data owner and does not support collaborative analytics.

Table 5: Summary of MPC-based systems for relational analytics. Hybrid execution splits the query plan into a plaintext part (executed by the
data owners) and an oblivious part (executed under MPC) and requires data owners to participate in the computation using trusted resources.
The rest of the optimizations supported by each system are applicable under one or more of the listed conditions in the rightmost column.

put of a query reveals little about any one input record. This
property is independent of (yet symbiotic with) MPC’s guar-
antee that the act of computing the query reveals no more
than what may be inferred from its output. The SECRECY
primitives from §3.2 can express arbitrary computations and
could also be used to add DP noise under MPC. We leave
this as future work.

9 Conclusions

This work presents SECRECY, a new system for efficient
secure analytics in the cloud with no information leakage. SE-
CRECY can enable new data markets and socially-beneficial
data analyses while protecting private data. Our results show
that logical optimizations coupled with careful system design
can make MPC practical for complex analytics on millions
of data records. In the future, we plan to extend SECRECY
with multi-objective query optimization that considers cloud
fees, data-parallelism via oblivious hashing (e.g. [91, 92]),
and support for malicious-secure MPC (e.g., [16, 71]).
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A ANALYTICAL COST MODEL

A.1 Oblivious SECRECY primitives

Boolean operations. As explained in §3.2, we consider that
each single-bit operation on shares has unit cost, so the op-
eration cost of both XOR and AND operations is Co(XOR) �
Co(AND) � `, where ` is the length of the share representa-
tion in bits. Recall that the synchronization cost of XOR is
Cs(XOR) � 0 whereas the synchronization cost of AND is
Cs(AND) � 1 round of communication. We further explain
these costs below.

In SECRECY, each party starts with two shares of the input
secrets s, t and ends up with two shares of the output. Initially,
P1 has s1 , s2 , t1 , t2 whereas P2 has s2 , s3 , t2 , t3, and P3 has
s3 , s1 , t3 , t1. Observe that s⊕ t � (s1⊕ s2⊕ s3)⊕ (t1⊕ t2⊕ t3)
= (s1 ⊕ t1) ⊕ (s2 ⊕ t2) ⊕ (s3 ⊕ t3). Each parenthesis corre-
sponds to a share of s ⊕ t and each party can compute two
out of the three shares by simply XORing its input shares.

Logical AND is a bit more complex. Observe that st �
(s1 ⊕ s2 ⊕ s3) ∧ (t1 ⊕ t2 ⊕ t3). After distributing the AND
over the XOR and doing some rearrangement we have st �
(s1t1 ⊕ s1t2 ⊕ s2t1) ⊕ (s2t2 ⊕ s2t3 ⊕ s3t2) ⊕ (s3t3 ⊕ s3t1 ⊕
s1t3). Again, each parenthesis corresponds to a share of st.
Using its input shares, each party can locally compute one
of these shares. The parties then XOR this share with a fresh
sharing of the number 0 (which is created locally) so that the
final share is uniformly distributed [17]. In the end, each party
sends the computed share to its successor on the ring (clock-
wise) so that all parties end up with two shares of st. Logical
OR and NOT are based on the XOR and AND primitives.

Equality/Inequality. Using these boolean operations, parties

can jointly compute s ?
� t (resp. s

?
< t) by computing a sharing

of s ⊕ t and then taking the oblivious boolean-AND of each
of the bits of this string (resp., taking the value of si at the first
bit i in which the two strings differ). As a result, taking the
equality of `-bit strings requires Co(eq) � 2`−1 operations
(namely, ` XORs plus ` − 1 ANDs) and Cs(eq) � dlog `e
rounds. Similarly, inequality comparison has Co(ineq) � 4`−
3 and Cs(ineq)� dlog(`+1)e. As special cases, s < 0 requires
no communication, and equality with a public constant s�c
can also be done locally provided that the data owners have
secret-shared the results of s− c and c− s [70].

Compare-and-swap. The parties can calculate the min and
max of two strings. Setting b � (s<t), we can use a mul-
tiplexer to compute s′ � min{s , t} � bs ⊕ (1⊕ b)t and t′ �
max{s , t} � (1⊕ b)s⊕ bt. Evaluating these formulas requires
6 more operations and 1 more synchronization round beyond
the cost of the oblivious inequality.

Sort and shuffle. Given an array of n secret-shared strings,
each of length `, oblivious sort in SECRECY is based on a
bitonic sorter that comprises log n · (log n +1)/2 stages and

performs n/2 independent compare-and-swap operators in
each stage. Hence, sorting has operational cost Co(sortn) �
1
4 n log n · (log n+1) · (Co(ineq)+6) and synchronization cost
Cs(sortn) � 1

2 log n · (log n+1) · (Cs(ineq)+1). We can obliv-
iously shuffle values in a similar fashion: each party appends
an attribute that is populated with locally generated random
values, sorts the values on this attribute, and then discards it.

Boolean addition. Given boolean-shared integers s and t,
computing the boolean share of s + t using a ripple-carry
adder [68] can be done with Co(RCA) � 5`−3 operations in
Cs(RCA) � ` rounds.

Arithmetic operations. Arithmetic addition and multiplica-
tion work similarly to XOR and AND respectively (see above).
Scalar multiplication c · u, where c is a public constant, does
not require communication.

Conversion. We can convert between additive and boolean
sharings [50, 81, 89] by securely computing all of the XOR
and AND gates in a ripple-carry adder. Single-bit conversion
can be done in two rounds with the simple protocol that is
also used in CrypTen [70].

A.2 Oblivious SECRECY operators
Let R, S, and T be relations with cardinalities |R |, |S |, and |T |
respectively. Let also t[ai] be the value of attribute ai in tuple
t. To simplify the presentation, we describe each operator
based on the logical (i.e., secret) relations and not the random
shares distributed across parties. That is, when we say that
“an operator is applied to a relation R and defines another
relation T”, in practice this means that each party begins with
shares of R, performs some MPC operations on the shares,
and ends up with shares of T.

PROJECT. Oblivious projection has the same semantics as
its plaintext counterpart. The operation and synchronization
costs of oblivious PROJECT are both zero since each party
can locally disregard the shares corresponding to the filtered
attributes.

SELECT. An oblivious selection with predicate ϕ on a rela-
tion R defines a new relation:

T � {t∪{ϕ(t)} | t ∈ R}

with the same cardinality as R, i.e. |T | � |R |, and one more
single-bit attribute for each tuple t ∈ R that contains φ’s result
when applied to t. This bit denotes whether t is included in
the output relation T and is securely computed under MPC so
that its true value remains hidden (i.e., secret-shared) from the
computing parties. Note that, in contrast to a typical selection
in the clear, oblivious selection defines a relation with the
same cardinality as the input, i.e., it does not remove tuples
from R so that the true size of T is kept secret.
Costs: The operation cost of SELECT is Co(σφ(R)) �
Co(φ(t)) · |R |, t ∈ R, where Co(φ(t)) is the operation cost
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of evaluating φ on a single tuple t ∈ R. Since predicate eval-
uation can be performed independently for each tuple in R,
the total number of rounds to perform the SELECT equals the
number of rounds to evaluate the selection predicate on a
single tuple, i.e., Cs(σφ(R)) � Cs(φ(t)), t ∈ R.

Both Co(φ(t)) and Cs(φ(t)) are independent of the actual
t contents: they only depend on φ’s syntax and the lengths
of the attributes used in φ. In SECRECY, a predicate φ can
be an arbitrary logical expression with atoms that may also
include arithmetic expressions (+,×,�, >,<,,,≥,≤) and is
constructed using the primitives of §A.1. Consider the exam-
ple predicate φ :� age>30 AND age<40 that requires ANDing
the results of two oblivious inequalities under MPC. Based
on the costs of primitive operations, we have: Co(φ(t)) �
2Co(ineq)+Co(AND) and Cs(φ(t)) � Cs(ineq)+1. In §5.3,
we described a technique we use in SECRECY that can reduce
selections to local operations (with Cs � 0).

JOIN. An oblivious θ-join between two relations R and S,
denoted with R ./θ S, defines a new relation:

T � {(t∪ t′∪{θ(t , t′)}) | t ∈ R ∧ t′ ∈ S}
where t∪ t′ is a new tuple that contains all attributes of t ∈ R
along with all attributes of t′ ∈ S, and θ(t , t′) is θ’s result
when applied to the pair of tuples (t , t′). T is the cartesian
product of the input relations (R×S), where each tuple is aug-
mented with a (secret-shared) bit denoting whether the tuple t
“matches” with tuple t′ according to θ. We emphasize that our
focus in this work is on general-purpose oblivious joins that
can support arbitrary predicates; there also exist special cases
of oblivious join algorithms, e.g., primary- and foreign-key
equi-joins with lower asymptotic complexity [15, 72, 82, 93]
or compositions of equi-joins with specific operators [34] that
could be added to SECRECY if desired.
Costs: The general oblivious JOIN requires a nested-loop
over the input relations to check all possible pairs, so its
operation cost is Co(R ./θ S) � Co(θ(t , t′)) · |R | · |S |, t ∈
R, t′ ∈ S. However, the total number of communication
rounds to evaluate the JOIN is independent of the input
cardinality; it only depends on the join predicate θ, i.e.,
Cs(R ./θ S)� Cs(θ(t , t′)), t ∈ R, t′ ∈ S. For example, a range
join R ./a<b S has Co(R ./a<b S) � 2|R | · |S | ·Co(ineq) and
Cs(R ./a<b S) � Cs(ineq). The constant asymptotic com-
plexity in number of rounds with respect to the input cardi-
nality holds for any θ-join. Join predicates in SECRECY can
be arbitrary expressions whose cost is computed as explained
above for selection predicates.

SEMI-JOIN. An oblivious (left) semi-join between two rela-
tions R and S on a predicate θ, denoted with Rnθ S, defines
a new relation:

T � {(t∪{
∨
∀t′∈S

θ(t , t′)}) | t ∈ R}

with the same cardinality as R, i.e. |T | � |R |, and one more
attribute that stores the result of the formula f (θ, t ,S) �

∨
∀t′∈S θ(t , t′), t ∈ R indicating whether the tuple in R

“matches” any tuple in S.
Costs: The operation cost of the general oblivious SEMI-JOIN
is Co(Rnθ S) � Co( f (θ, t ,S)) · |R | � Co(θ(t , t′)) · |R | · |S |+
|R | · (|S | − 1), t ∈ R, t′ ∈ S. The formula f (θ, t ,S) can be
evaluated independently for each tuple t ∈ R using a binary
tree of OR operations, therefore, the synchronization cost of the
semi-join is Cs(Rnθ S) � Cs(θ(t , t′))+ dlog |S |e , t ∈ R, t′ ∈
S (i.e., independent of |R |).
ORDER-BY. Oblivious order-by on attribute ak has the same
semantics as the non-oblivious operator. Hereafter, sorting a
relation R with m attributes on ascending (resp. descending)
order of an attribute ak ,1 ≤ k ≤ m, is denoted as s↑ak (R) � T
(resp. s↓ak (R) � T). We define order-by on multiple attributes
using the standard semantics. For example, sorting a relation
R first on attribute ak (ascending) and then on an (descend-
ing) is denoted as s↑ak↓an (R). An order-by operator is often
followed by a LIMIT that defines the number of tuples the
operator must output.
Costs: Oblivious ORDER-BY in SECRECY relies on a bitonic
sorter of §A.1 that internally uses an oblivious multi-
plexer. Hence, the operation and synchronization costs are
Co(s↑a(R)) � Co(sort|R |) and Cs(s↑a(R)) � Cs(sort|R |), as
given in §A.1. In this case, the number of operations required
by each oblivious multiplexing is linear to the number of at-
tributes in the input relation, however, the total number of
rounds depends only on the cardinality of the input. The
analysis assumes one sorting attribute; adding more sorting
attributes increases the number of operations and communi-
cation rounds in each comparison by a small constant factor.

GROUP-BY with aggregation. An oblivious group-by ag-
gregation on a relation R with m attributes defines a new
relation T � { f (t′) | t′ � t ∪ {ag , av}, t ∈ R} with the
same cardinality as R, i.e. |T | � |R |, and two more attributes:
ag that stores the result of the aggregation, and av that denotes
whether the tuple t is ‘valid’, i.e., included in the output. Let
ak be the group-by key and aw the attribute whose values are

aggregated. Let also S �

[
t1[aw], t2[aw], ..., tu[aw]

]
be the

list of values for attribute aw for all tuples t1 , t2 , ..., tu ∈ R that
belong to the same group, i.e., t1[ak] � t2[ak] � ... � tu[ak],
1 ≤ u ≤ |R |. The function f in T’s definition above is defined
as follows:

f (ti)�


ti[ag] � a g g(S), ti[av] � 1, i � u′, 1 ≤ u′ ≤ u

tinv , i , u′, 1 ≤ i ≤ u

where tinv is a tuple with tinv[av] � 0 and the rest of the
attributes set to a special reserved value, while a g g(S) is the
aggregation function, e.g. MIN, MAX, COUNT, SUM, AVG, and is
implemented using the primitives of §A.1. Put simply, oblivi-
ous aggregation sets the value of ag for one tuple per group
equal to the result of the aggregation for that group and up-
dates (in-place) all other tuples with “garbage.” This operation
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is followed by an oblivious shuffling to hide the group bound-
aries when opening the relations to the learner (and only if
there is no subsequent shuffling in the query plan). Groups can
be defined on multiple attributes using the standard semantics.
Costs: The GROUP-BY operator γa g g

ak
(R) breaks into two

phases: an oblivious sort on the group-by key(s) and
an odd-even aggregation [66] applied to the sorted input.
The odd-even aggregation performs (|R |(log |R | − 1)+ 1) ·
Co(a g g(t , t′)) operations in log |R | ·Cs(a g g(t , t′)) rounds,
where Co(a g g(t , t′)) and Cs(a g g(t , t′)) are the operation
and synchronization costs, respectively, of applying the ag-
gregation function to a single pair of tuples t , t′ ∈ R (in-
dependent of |R |). Accounting for the initial sorting on
the group-by keys, the total operation cost of the oblivi-
ous group-by is Co(γa g g

ak
(R)) � Co(s↑ak (R))+ (|R |(log |R | −

1) + 1) · Co(a g g(t , t′)). The total synchronization cost is
Cs(γa g g

ak
(R)) � Cs(s↑ak (R)) + log |R | · Cs(a g g(t , t′)). The

analysis can be easily extended to multiple group-by keys.

DISTINCT. The oblivious distinct operator is a special case
of group-by with aggregation, assuming that ak is not the
group-by key as before but the attribute where distinct is
applied. For distinct, there is no ag attribute and the function
f is defined as follows:

f (ti) �


ti[av] � 1, i � u′, 1 ≤ u′ ≤ u

ti[av] � 0, i , u′, 1 ≤ i ≤ u

Distinct marks one tuple per group as ‘valid’ and the rest as
‘invalid’.
Costs: The DISTINCT operator includes an oblivious sort on
the distinct attribute(s) followed by a second phase where
the operator compares adjacent tuples in the sorted input to
set the distinct bit av . Setting the distinct bit for each tuple
is independent from the rest of the tuples, so all distinct bit
operations can be performed in bulk. The total operation cost
Co(δak(R)) � Co(s↑ak (R))+ (|R | − 1) ·Co(eq) and synchro-
nization cost Cs(δak(R))� Cs(s↑ak (R))+Co(eq) of oblivious
distinct are dominated by the oblivious sort.

MASK. Let tinv be a tuple with all attributes set to a special
reserved value. A mask operator with predicate p on a relation
R defines a new relation T � { f (t) | t ∈ R}, where:

f (t) �


t , p(t) � 0

tinv , p(t) � 1

Mask is used at the end of the query, just before opening the
result to the learner, and only if there is no previous masking.
The cost analysis of MASK is similar to that of SELECT.

Global aggregations. SECRECY also supports global aggre-
gations without a group-by clause. The total operation cost
of a global aggregation is Co(a g g(R)) � Co(a g g(t , t′)) ·

(|R | − 1), where Co(a g g(t , t′)) is the operation cost of ap-
plying the aggregation function to a single pair of tuples
t , t′ ∈ R. The total synchronization cost is Cs(a g g(R)) �
Cs(a g g(t , t′)) · dlog |R |e, since the aggregation can be ap-
plied using a binary tree of function evaluations.

A.3 Composition of oblivious operators

Composing selections and joins. Recall that selections,
joins, and semi-joins append a single-bit attribute to their
input relation that indicates whether the tuple is included in
the output. To compose a pair of such operators, we compute
both single-bit attributes and take their conjunction under
MPC. For example, for two selection operators σ1 and σ2
with predicates ϕ1, ϕ2, the composition σ2(σ1(R)) defines a
new relation T � {t ∪ {ec � ϕ1(t) ∧ϕ2(t)} | t ∈ R}. The
cost of composition in this case is the cost of evaluating the
expression ϕ1(t)∧ϕ2(t) for each tuple in T. This includes
|T | independent boolean ANDs which can be evaluated in
one round.

Composing distinct with other operators. Applying a se-
lection or a (semi-)join to the result of DISTINCT requires one
communication round to compute the conjunction of the se-
lection or (semi-) join bit with the bit av generated by distinct.
However, applying DISTINCT to the output of a selection, a
(semi-)join or a group-by operator, requires some care. Con-
sider the case where DISTINCT is applied to the output of a
selection. Let aφ be the attribute added by the selection and ak
be the distinct attribute. To set the distinct bit av at each tuple,
we must make sure there are no other tuples with the same
attribute ak , with aφ � 1, and whose distinct bit av is already
set. To do so, the distinct operator must process tuples sequen-
tially and the composition itself requires n rounds, where n
is the cardinality of the input. This results in a significant
increase over the O(log2 n) rounds required by distinct when
applied to a base relation. Applying distinct to the output of a
group-by or (semi-)join incurs a linear number of rounds for
the same reason. In §5.2, we proposed an optimization that
reduces the cost of these compositions to a logarithmic factor.

Composing group-by with other operators. To perform a
group-by on the result of a selection or (semi-)join, the group-
by operator must apply the aggregation function to all tuples
in the same group that are also included in the output of the
previous operator. Consider the case of applying group-by to
a selection result. To identify the aforementioned tuples, we
need to evaluate the formula:

b← b∧ ti[aφ]∧ t j[aφ]

at each step of the group-by operator, where b is the bit that
denotes whether the tuples ti and t j belong to the same group
and aφ is the selection bit. This formula includes two boolean
ANDs that require two communication rounds. Applying
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group-by to the output of a (semi-)join has the same compo-
sition cost; in this case, we replace aφ in the above formula
with the (semi-)join attribute aθ.

To apply a selection to the result of GROUP-BY, we must
compute a boolean AND between the selection bit aφ and the
‘valid’ bit av of each tuple generated by the group-by. The
cost of composition in number of rounds is independent of
the group-by result cardinality, as all boolean ANDs can be
applied in bulk. The same holds when applying a (semi-)join
to the output of group-by. Finally, composing two group-by
operators has the same cost with applying GROUP-BY to the
result of selection, as described above.

Composing order-by with other operators. Composing
ORDER- BY with other operators is straight-forward. Applying
an operator to the output of order-by has zero composition
cost. The converse operation, applying ORDER-BY to the out-
put of an operator, requires a few more boolean operations per
oblivious compare-and-swap (due to the attribute/s appended
by the previous operator), but does not incur additional com-
munication rounds.

B SECURITY ANALYSIS

We have purposely designed SECRECY in a modular black-
box fashion, with a hierarchy of MPC protocol functionalities
→ oblivious primitives→ relational operators→ optimiza-
tions. This design choice provides two benefits: (i) immediate
inheritance of all security guarantees provided by the under-
lying MPC protocol, and (ii) flexibility to support different
protocols in the future that might have a different number of
parties, threshold, and threat model.

Inheritance of security guarantees. SECRECY relies on a
set of functionalities that must be provided by the MPC pro-
tocol. These functionalities enable parties to receive secret-
shared inputs and return secret-shared outputs: (i) Fadd and
Fmult that add and multiply their inputs, (ii) Fxor and Fand that
take boolean operations of their inputs, (iii) Fa2b and Fb2a

that perform conversions between arithmetic and boolean
representations, (iv) Feq and Fcmp to compute the equality
and comparison predicates (where the hardest step of the lat-
ter usually involves extracting the most significant bit of an
arithmetic-shared value), and (v) Fsh and Frec that allow ex-
ternal participants to secret-share data to and reconstruct data
from the computing parties.

In this section, we argue that SECRECY retains the secu-
rity guarantees provided by the underlying MPC protocol, or
equivalently that it retains the security guarantees of these
ideal functionalities. Our reasoning shows that SECRECY
compiles each query into a sequence of calls to these func-
tionalities that is oblivious, meaning that its control flow is
independent of its input and all data remains hidden:

1. SECRECY calls the functionalities of the MPC protocol

in a black-box manner. As a result, computing parties
always operate on secret-shared data; only Frec provides
any data in the clear (namely to the learner), and SE-
CRECY only calls this functionality once at the end of
the query execution.

2. The control flow of each relational operator (§A.2) is
oblivious, i.e., data-independent. Concretely, SELECT
and PROJECT always require a single pass over the input,
(semi-)JOINs require a nested for-loop over the two in-
puts, ORDER-BY is based on an oblivious sorting network,
and GROUP-BY and DISTINCT consist of an ORDER-BY
followed by an additional oblivious step (to apply the ag-
gregation and identify the unique records, respectively).

3. SECRECY composes relational operators (§A.3) using
the protocol functionalities (e.g., taking ANDs under
MPC) within an oblivious linear scan over the output of
the composition.

4. The logical and physical transformations of §5 rewrite
the oblivious sequence of calls to the protocol function-
alities into a new semantically equivalent sequence of
calls that is also oblivious and has lower execution cost.

As a result, semi-honest security of the full SECRECY proto-
col follows by inspection of the ideal functionalities. Privacy
is satisfied against all parties because none of the function-
alities ever provides a (non-secret-shared) output to the data
owners or computing parties, and only the final Frec provides
an output to the analyst as desired. Correctness of the full pro-
tocol follows immediately from correctness of each individual
functionality.

Generality of optimizations. The logical and physical query
optimizations constructed in this work (§5.1-5.2) apply gen-
erally to any mixed-mode MPC protocol that supports the set
of functionalities we describe above. This level of abstraction
is commonly used by modern mixed-mode MPC protocols
(e.g., [17, 39, 40, 46, 50, 71, 81, 89, 90]).

If providing malicious security, we require these function-
alities to validate the shares of their inputs and outputs (e.g.,
using an information-theoretic MAC or replicated sharing),
either immediately or with delayed validation before invok-
ing Frec. As a consequence, SECRECY satisfies correctness
against the computing parties because input validation binds
them to provide the output of the prior step as the input shares
into the next functionality. Additionally, correctness against
the data owners and analyst follow from the fact that, aside
from the data owners’ initial sharing through Fsh, none of the
functionalities allow them to provide an input so they cannot
influence the protocol execution.

As a result, the techniques from SECRECY can be applied
to any N-party MPC protocol that provides semi-honest or
malicious security against T adversarial parties. In particular,
SECRECY can be instantiated with 2, 3, and 4-party secret
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sharing-based protocols that remain secure in the face of a
malicious adversary who can deviate from the protocol ar-
bitrarily (e.g., [46, 71, 89]), or with (authenticated) garbled
circuit protocols [109, 114] combined with occasional conver-
sions to arithmetic secret sharing [50,89] as needed. Protocols
that provide the stronger cryptographic guarantee of robust-
ness often do so by running several MPC executions both
before and after evicting the malicious party, and by the same
logic as above SECRECY even maintains the robust security
of these protocols.

C SUMMARY OF MPC-BASED SYSTEMS
FOR RELATIONAL ANALYTICS

Here we provide more details on existing systems for rela-
tional MPC summarized in Table 5. Hybrid execution splits
the query plan into parts that can be evaluated in plaintext by
a single party (the appropriate data owner) versus parts that in-
herently require multiple parties’ data (executed under MPC).
Therefore, hybrid execution is only feasible when data owners
can compute part of the query on premise. SMCQL, SDB,
and Conclave can further sidestep MPC when some attributes
have been annotated as non-sensitive. Shrinkwrap and SAQE
build on SMCQL to calibrate leakage based on user-provided
privacy budgets, and Senate reduces joint computation when
some relations are owned by subsets of the computing parties.
This is common in peer-to-peer MPC but does not occur in a
typical outsourced setting like the one of Figure 1, where all
computing parties receive shares of the input data.

As shown in Table 5, Senate is the only relational system
with support for malicious security. Due to its hybrid exe-
cution model, Senate requires additional steps to verify the
integrity of local computations by the data owners (not to
be confused with formal software verification). While SE-
CRECY currently focuses on semi-honest security, the Araki
et al. protocol [17] and subsequent mixed-mode ABY3 proto-
cols [81] can be extended to provide malicious security with
low computational cost [16, 71]. By optimizing MPC rather
than sidestepping it, a malicious-secure version of SECRECY
would not impose any new restriction on the supported set of
queries or the mixed-mode MPC protocol utilized.

D ADDITIONAL EXPERIMENTS

D.1 Performance of SECRECY primitives
Here we present a set of micro-benchmarks that evaluate the
performance of SECRECY’s MPC primitives in AWS-LAN.

Effect of message batching on communication latency. In
the first experiment, we measure the latency of inter-party
communication using two messaging strategies. Recall that,
during a message exchange, each party sends one message to
its successor and receives one message from its predecessor

(a) Effect of message batching (b) Comparison and addition

Figure 7: Performance of oblivious SECRECY primitives

(a) Unary operators (b) Join operators

Figure 8: Performance of oblivious SECRECY operators

on the logical ‘ring’. Eager exchanges data among parties as
soon as they are generated, thus,. producing a large number
of small messages. The Batched strategy, on the other hand,
collects data into batches and exchanges them only when
computation cannot otherwise make progress, thus, producing
as few as possible, albeit large messages.

We run this experiment with increasing data sizes and mea-
sure the total time from initiating the exchange until all parties
complete the exchange. Figure 7a shows the results. We see
that batching provides two to four orders of magnitude lower
latency than eager messaging. Using batching in our experi-
mental setup, parties can exchange 100M 64-bit data shares
in 2s. These results reflect the network performance in our
cloud testbed. We expect better performance in dedicated
clusters with high-speed networks and higher latencies if the
computing parties communicate over the internet.

Performance of secure computation primitives. We now
evaluate the performance of oblivious primitives that require
communication among parties. These include equality, in-
equality, and addition with the ripple-carry adder. In Fig-
ure 7b we show the execution time of oblivious primitives
as we increase the input size from 1K rows to 10M rows.
All primitives scale well with the input size as they all de-
pend on a constant number of communication rounds. Equal-
ity requires six rounds. Inequality requires seven rounds
and more memory than equality. Boolean addition is not
as computation-intensive as inequality, but requires a higher
number of rounds (64).
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Figure 9: Performance comparison of an oblivious join operator on
EMP and SECRECY in LAN (left) and WAN (right).

D.2 Performance of SECRECY operators

The next set of experiments evaluates the performance
of SECRECY’s relational operators. We apply DISTINCT,
GROUP-BY, ORDER-BY, and JOIN (equality and range) to rela-
tions of increasing size and measure the total execution time
per operator in AWS-LAN. We empirically verify the cost anal-
ysis of §A and show that our vectorized implementations are
efficient and scale to millions of input rows with a single CPU
thread. Figure 8 shows the results.

Unary operators. In Figure 8a, we plot the execution time
of unary operators vs the input size. Recall from §A.2 that
DISTINCT and GROUP-BY are both based on sorting and, thus,
their cost includes the cost of ORDER-BY for unsorted inputs of
the same cardinality. To shed more light on the performance of
DISTINCT and GROUP-BY, Figure 8a only shows the execution
time of their second phase, that is, after the input is sorted and,
for GROUP-BY, before the final shuffling (which has identical
performance to sorting).

For an input relation with n rows, DISTINCT performs n−
1 equality comparisons, one for each pair of adjacent rows.
Since all these comparisons are independent, our vectorized
implementation uses batching, thus, applying DISTINCT to
the entire input in six rounds of communication (the number
of rounds required for oblivious equality on pairs of 64-bit
shares). As a result, DISTINCT scales well with the input
size and can process 10M rows in 20s. GROUP BY is slower
than DISTINCT, as it requires significantly more rounds of
communication, logarithmic to the input size. Finally, ORDER
BY relies on our implementation of bitonic sort, where all n

2
comparisons at each level are batched within the same round.

Joins. The oblivious join operators in SECRECY hide the
size of their output, thus, they compute the cartesian product
between the two input relations and produce a bit share for
all pairs of records, resulting in an output with n ·m entries.
We run both operators with n � m, for increasing input sizes,
and plot the results in Figure 8b. The figure includes equi-
join and range-join results for up to 100K rows per input, as
we capped the duration of this experiment to 5h. SECRECY
executes joins in batches without materializing their entire
output at once. As a result, it can perform 10B equality and
inequality comparisons under MPC within the experiment
duration limit.

D.3 EMP vs SECRECY on oblivious join
Here we compare EMP with SECRECY using an oblivious
join operator that is based on the sample program from the
SoK project [10]. For these experiments, we use inputs of the
same cardinality and increase the size from 10K to 100K rows
per input. We cap the time of these experiments to 12h. Fig. 9
plots the results in AWS-LAN and AWS-WAN. Within the experi-
ment duration, EMP can evaluate joins on up to 40K rows per
input (in 11h). SECRECY is 18× faster for the same input size
and can process up to 100K rows per input in less than 4h.

E QUERIES USED IN THE PAPER

Here we list the queries used in §7 (in SQL syntax):

Comorbidity:
SELECT diag, COUNT(*) cnt
FROM diagnosis
WHERE pid IN cdiff_cohort
GROUP BY diag
ORDER BY cnt DESC

LIMIT 10

Recurrent C. Diff.:
WITH rcd AS (

SELECT pid, time, row_no
FROM diagnosis
WHERE diag=cdiff)

SELECT DISTINCT pid
FROM rcd r1 JOIN rcd r2 ON r1.pid = r2.pid
WHERE r2.time - r1.time >= 15 DAYS
AND r2.time - r1.time <= 56 DAYS
AND r2.row_no = r1.row_no + 1

Aspririn Count:
SELECT count(DISTINCT pid)
FROM diagnosis as d, medication as m on
d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time

Password Reuse:
SELECT ID
FROM R
GROUP BY ID, PWD

HAVING COUNT(*)>1

Credit Score:
SELECT S.ID
FROM (
SELECT ID, MIN(CS) as cs1, MAX(CS) as cs2
FROM R
WHERE R.year=2019
GROUP-BY ID ) as S

WHERE S.cs2 - S.cs1 > c
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TPC-H Q4:
SELECT o_orderpriority, count(*) as order_count
FROM orders
WHERE o_orderdate >= date ’[DATE]’ AND
o_orderdate < date ’[DATE]’ + interval ’3’ month
AND EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate

)
GROUP BY o_orderpriority

ORDER BY o_orderpriority

TPC-H Q6:
SELECT sum(l_extendedprice*l_discount) as revenue
FROM lineitem
WHERE l_shipdate >= date ’[DATE]’ AND
l_shipdate < date ’[DATE]’ + interval ’1’ year
AND l_discount between [DISCOUNT] - 0.01
AND [DISCOUNT] + 0.01 and l_quantity < [QUANTITY]

TPC-H Q13:
SELECT c_count, count(*) as custdist
FROM (

SELECT c_custkey, count(o_orderkey)
FROM customer left outer join orders ON
c_custkey = o_custkey
AND o_comment = ‘[WORD]’

GROUP BY c_custkey
) as c_orders (c_custkey, c_count)

GROUP BY c_count

ORDER BY custdist desc, c_count desc
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