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Motivation Understanding the performance of large-scale
data processing applications is hard. In distributed dataflow
systems, the computation of several parallel processes is
interleaved with data and control communication and ex-
ecution dependencies typically span multiple system com-
ponents. In such an environment, bottleneck detection is
cumbersome and currently relies heavily on humans. After
decades of systems research, the state-of-the-art in perfor-
mance analysis still relies on offline trace processing, thus
it is only suitable for batch computations and post-mortem
reports. This work presents SnailTrail, a novel frame-
work for online performance analysis in modern dataflow
engines that can identify bottlenecks in real-time and make
automated optimization possible at runtime.

Our Approach We make the observation that modern
dataflow systems are built on top of common execution
primitives. Based on that, we introduce a general instru-
mentation methodology that enables tracking of important
events in the execution of a dataflow with negligible per-
formance overhead. SnailTrail uses the generated event
streams to construct and continuously maintain an evolving
graph model of system activities, inspired by the concept of
Program Activity Graphs (PAGs) in critical path analysis [1].
In contrast to existing approaches, our framework provides
online performance analytics at scale: execution bottlenecks
are identified at runtime and within configurable fine-grained
time windows. This online analysis provides unprecedented
performance insights on long-running computations (e.g. in
deep learning) and continuous computations on unbounded
data (e.g. in IoT applications) where traditional critical path
analysis is not applicable.

SnalTrail relies on the notion of transient critical
paths, a time-oriented adaptation of the standard critical
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path. Transient critical paths serve as a “signature” of the
dataflow execution, encoding valuable performance metrics,
while also possessing a set of interesting properties that can
serve as lightweight rules to verify the correctness of the
instrumentation itself. Interestingly, transient critical paths
are also resilient to clock skewness and incomplete activity
logs (which naturally occur in distributed system tracing),
and their computation can be efficiently parallelized.

Early Results We have implemented the core engine of
SnailTrail on top of Timely Dataflow [3], a general-
purpose streaming system with native support for data-
parallel computations. SnailTrail is designed to analyze
the performance of dataflow systems with hundreds, even
thousands, of parallel workers in near-real time and with
modest computational resources. As a proof of concept, we
have applied our methodology to Timely Dataflow itself. We
show how the transient critical paths can be used to generate
online performance summaries, which are more informative
than summaries provided by offline analyzers [2, 4].

Ongoing Work We are currently extending SnailTrail

to support more dataflow systems, namely Apache Spark,
Apache Flink, and TensorFlow. Our goal is to reach beyond
real-time performance summaries and enable applications
such as straggler mitigation, performance regression detec-
tion across different software versions, and online what-if
analysis. Further, we plan to leverage transient critical paths
to support automatic performance optimization at runtime,
e.g., via adaptive resource allocation and scheduling strate-
gies. This direction is in line with our broader vision for a
next generation of self-tuned dataflow systems.
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WHY IS MY DISTRIBUTED PROGRAM SLOW?

Understanding the performance 
of distributed data processing 

▸ many processes and activities 
▸ computation is interleaved with data and 

control communication 
▸ execution dependencies are not 

easy to infer and might be dynamic 
▸ the cause of a bottleneck is usually 

not isolated but is a chain of events 
spanning multiple processes
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How  to compute the critical path for 
continuously running, dynamic distributed 
applications, with unbounded input?

POST-MORTEM ANALYSIS IS EASY

1. Collect traces during execution
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profiler

2. Analyze traces offline

analyzer

▸ Critical path analysis 

▸ Performance summaries

TRANSIENT CRITICAL PATH ANALYSIS

▸ Continuous computation of multiple transient critical 
paths on trace snapshots 
▸ tumbling, sliding, or custom windows

t1 t2

▸ aggregate analysis over multiple transient critical paths 

▸ online betweenness centrality to find the most "central" activities 

▸ online graph pattern matching to detect potential bottlenecks

THE EVOLVING PROGRAM ACTIVITY GRAPH

An evolving time-annotated graph model that captures 
computation and communication dependencies among 
distributed workers 
▸ Vertices represent the start or end of activities and communication 

▸ Edges represent the duration of activities and communication
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“RDDs” “DataStreams” “Spouts and Bolts”

▸ task execution 
▸ data exchange 
▸ control messages 
▸ data (de)-serialization 
▸ buffer management

} common set of 
low-level primitives

“Tensors” Performance Summaries
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