
Lineage Stash: Fault Tolerance Off the Critical Path
Stephanie Wang

UC Berkeley

John Liagouris

ETH Zurich

Robert Nishihara

UC Berkeley

Philipp Moritz

UC Berkeley

Ujval Misra

UC Berkeley

Alexey Tumanov

Georgia Institute of

Technology

Ion Stoica

UC Berkeley

Abstract
As cluster computing frameworks such as Spark, Dryad,

Flink, and Ray are being deployed in mission critical applica-

tions and on larger and larger clusters, their ability to tolerate

failures is growing in importance. These frameworks em-

ploy two broad approaches for fault tolerance: checkpointing

and lineage. Checkpointing exhibits low overhead during

normal operation but high overhead during recovery, while

lineage-based solutions make the opposite tradeoff.

We propose the lineage stash, a decentralized causal log-

ging technique that significantly reduces the runtime over-

head of lineage-based approaches without impacting recov-

ery efficiency. With the lineage stash, instead of recording

the task’s information before the task is executed, we record it
asynchronously and forward the lineage along with the task.

This makes it possible to support large-scale, low-latency

(millisecond-level) data processing applications with low

runtime and recovery overheads. Experimental results for

applications in distributed training and stream processing

show that the lineage stash provides task execution latencies

similar to checkpointing alone, while incurring a recovery

overhead as low as traditional lineage-based approaches.

ACM Reference Format:
Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz,

Ujval Misra, Alexey Tumanov, and Ion Stoica. 2019. Lineage Stash:

Fault Tolerance Off the Critical Path. In ACM SIGOPS 27th Sym-
posium on Operating Systems Principles (SOSP ’19), October 27–30,
2019, Huntsville, ON, Canada. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3341301.3359653

1 Introduction
Recent data processing applications in domains ranging from

stream processing [9, 28] to reinforcement learning [27] have

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

https://doi.org/10.1145/3341301.3359653

Mapper 1

Mapper 2
Reducer

(a) Logical.

Ti
m

e

Check-
point

Mapper 1

2

3

2
2

3

Logging +
Lineage

reconstruction

1
1 1

Mapper 2 Reducer

Global checkpointing

(b) Physical.

Figure 1.A streamingmapreduce. (a) Logical representation. Map-

pers compute a stateless function over each record (rounded box) in

the input and output the results to a Reducer. (b) Physical represen-
tation, as a dynamic dataflow. Solid arrows show data dependencies

(record batches). White arrows show stateful dependencies [27], de-

termined by the execution order on a given process. Mappers do not

have application state, but they are stateful because they can buffer

records and dynamically push them to Reducer by submitting tasks,

which get executed in a nondeterministic order. Reducer fails dur-

ing task 3 (red), and outlined tasks must be re-executed to preserve

exactly-once semantics. Lineage reconstruction (green) exactly re-

constructs Reducer by replaying its inputs since the last checkpoint

in the same order. Global checkpointing (blue) re-executes all pro-
cesses’ tasks since the last checkpoint, possibly in a different order

(e.g., Reducer may execute task 3 before 2).

become increasingly online and user-facing, making the need

for low latency as critical as the need for high throughput.

The dynamic dataflow graph [7, 27, 29] is a flexible computa-

tion model that is ideal for developing large-scale online data

processing applications because it can support both batch

processing [29] and fine-grained stateful computation [27].

In this model, a program expresses task parallelism through

asynchronous function invocations, called tasks. Tasks may

be stateless, i.e. free of side effects, or stateful, i.e. bound to a

specific process. Figure 1 shows an example stream process-

ing application as a dynamic dataflow in which operators

can dynamically push records to downstream operators.

Guaranteeing fault tolerance without sacrificing low la-

tency during normal operation is an open challenge for dy-

namic dataflows when tasks are fine-grained, i.e. millisec-

onds long. This is a challenge because many applications re-

quire exactly-once semantics, i.e. all data inputs are reflected

in the final output exactly once, for global consistency.

There are two general techniques for guaranteeing global

consistency after a failure: logging and global checkpoint-

ing (Fig. 1b). With logging, the system durably logs the job’s

https://doi.org/10.1145/3341301.3359653
https://doi.org/10.1145/3341301.3359653

computation and intermediate application data, and in the

event of failure, exactly replays the computation to recover

lost state. With global checkpointing, the system takes pe-

riodic application checkpoints, and in the event of failure,

reruns the job from the latest checkpoint to a consistent but

possibly different state (due to nondeterministic execution).

These differences have fundamental implications for the

runtime and recovery overheads for data processing appli-

cations. In general, logging-based techniques incur a higher

overhead during normal operation because they must record

information during execution, but lower overhead during re-

covery, as they can use this information to reduce the amount

of computation that must be replayed (Fig. 1b). Many sys-

tems for data processing [15, 35, 36] log the lineage, or the
computation graph, but not the intermediate data to lower

the runtime overhead of logging, at the cost of having to

reconstruct lost intermediate data in case of failure. Still, the

runtime overhead of lineage-based reconstruction has so

far restricted its applicability to coarse-grained tasks. Global

consistency requires that the lineage of each task be durably

logged before execution, which requires replication to at

least one remote node to tolerate non-transient failures. This

would add significant overhead to dynamic dataflow graphs,

since tasks are often both small and dynamically generated.

Many systems for fine-grained data processing, includ-

ing Naiad [28] and Flink [9], rely on global checkpointing

because it is easy to understand and adds low runtime over-

head. Other than the overhead of the checkpoint itself [33],

which can be reduced through asynchronous checkpoint-

ing [10, 12, 24], this approach adds minimal runtime over-

head because there is no need to record execution. On the

other hand, recovery requires a coordinated global rollback

of the entire system to the latest checkpoint [18], which is

expensive at large scale [34]. This is because previous work

that is unaffected by the failure must be rolled back for con-

sistency (Fig. 1b), and new work cannot be accepted until re-

covery is complete. Also, because global checkpointing alone

does not promise exact re-execution, guaranteeing exactly-

once semantics for interactions with the outside world adds

significant runtime overhead, since every such interaction

requires a checkpoint to ensure it is never rolled back [18].

In this paper, we introduce the lineage stash, a decentral-
ized logging technique for dynamic dataflows that simulta-

neously achieves low recovery overhead and low runtime

overhead. Like previous lineage-based systems, we rely on

lineage reconstruction for fast recovery and low downtime.

However, unlike these systems, the lineage stash doesn’t

require a task’s lineage to be stored before the execution of

the task. This removes the lineage overhead from the critical

path during normal operation.

The main idea behind the lineage stash is that instead of

storing the lineage in a reliable store on the critical path of

execution, one can forward the full lineage along with every
task invocation. Then, if the system needs to execute a task

with a missing input (e.g., because of a failure), the worker

running the task has full information about which upstream

tasks need to be re-executed to reconstruct the missing in-

put. Of course, this straw man solution is not practical as the

lineage can grow very large, and the overhead of forwarding

it can be prohibitive. To make this solution practical, we

asynchronously store the lineage and forward only the most

recent part which has not been durably stored yet. In par-

ticular, each worker keeps a lineage stash in local memory

containing all tasks that it has seen recently. Each worker

then runs a local protocol to flush its stash to a remote reli-

able store. Since flushing is asynchronous, it has negligible

impact on application latency during normal operation.

The lineage stash is an example of causal logging [5, 17],

a class of recovery techniques for message-passing systems

in which processes asynchronously log nondeterministic

events. The key challenge is to identify the minimum set of

events that need to be logged such that we can guarantee

global consistency after recovery while also guaranteeing pre-
dictably low task latency during normal operation. A naive

logging approach could add prohibitive runtime overhead.

For instance, one could log all messages, but in data pro-

cessing, these messages can be arbitrarily large. The lineage

stashminimizes the amount logged by exploiting the fact that

the computation in data processing is usually deterministic,

while the nondeterministic events can usually be encapsu-

lated by the order of execution. For example, in Fig. 1b, the

application’s map and reduce functions are deterministic,

but the order of task submission and execution is not.

In the lineage stash work, we extend ideas from both lin-

eage reconstruction and causal logging to make them practi-

cal for large-scale, low-latency data processing. In particular,

we identify the nondeterministic events that must be logged

for application correctness and design an efficient protocol

to store this information off the critical path of execution.

We implement the lineage stash on Ray [27], a distributed

framework for dynamic dataflows, and demonstrate the ben-

efit on two representative applications in stream processing

and distributed training. Whereas previous systems for these

applications can achieve either low latency or low recovery

time, we show that the lineage stash can achieve both. Thus,
we present the following contributions:

1. An analysis of the nondeterministic events that must

be logged in data processing applications.

2. A log storage architecture that enables simple, scalable

protocols for flushing the stash and recovery.

3. The lineage stash: a causal logging technique that

achieves low runtime and recovery overheads for fine-

grained data processing applications.

2 Background
We present a case study of a stream processing application,

which represents an important class of large-scale online

data processing applications.We show how such applications

can be expressed and executed as a dynamic dataflow, and

present the open challenges in the proposed approach.

2.1 Case Study: Stream Processing

Stream processing provides the abstraction of continuous
operators that compute a long-running query over an infinite

stream of data items, or records. Each operator consumes

one or more input streams and produces an output stream.

This imposes a set of requirements that is representative of

large-scale fine-grained data processing applications.

First, stream processing applications have stringent per-

formance requirements during normal operation, requiring

both high-throughput data processing, because of the often

large data ingest, and low latency, as the query result will

change over time and is generally desired as soon as possible.

Second, because stream processing applications often run

online and query results are needed as soon as possible,

applications are sensitive to recovery time. Especially at large

scale, when the chance of a failure is greater, it is critical that

applications experience little downtime after partial failures.

Finally, the types of computation performed vary widely

even in a single application, which has implications on re-

covery correctness [23]. While much of the data processing

computationmay be deterministic (i.e. a function of the input

stream), typically a stream processing application will also

include local state, such as a sink operator that maintains

query results, as well as interactions with the external world,

such as a sink operator that triggers an alert after a speci-

fied query result. A deterministic computation can be safely

re-executed many times, but computations with side effects

on the outside world often require exactly-once semantics,

since the outside world in general cannot be rolled back.

2.2 System Model and Challenges

Existing systems for stream processing fall under two cat-

egories. Systems like Flink [9] and Naiad [28] use global

checkpointing for fault tolerance and instantiate physical

instances of continuous operators, each of which consumes

and produces buffers, or batches, of records. This allows for
low-latency, record-at-a-time processing. In contrast, sys-

tems like Spark Streaming [37], execute synchronous stages
over fixed-size partitions of the input stream, and record the

lineage of each stage for fault tolerance.

Stream processing applications can be represented as a

dynamic dataflow (Fig. 1), with both continuous operators, as
in Flink [9] or Naiad [28], and lineage-based recovery, as in

Spark Streaming [37]. Each continuous operator is instan-

tiated as a process with local state that can execute tasks,
also known as methods or message handlers, submitted by

upstream operators. Each task’s argument is a record batch.

Processes execute tasks as input batches become available

Node 1

Lineage stash
A B
A1 B1

Node 2

Lineage stash
A B
A1

Global store

B1

A1B1

Shard 1 Shard 2 Shard 3

Object store Object store
A B

(a)

D

A

B

C

E3

12

123

3 12123

GF H
1234 1234

(b)

Figure 2. (a) Lineage stash architecture, on top of a decentralized

dataflow scheduler. A and B are processes that can submit tasks to

each other (e.g., A1 submits B1). Dotted arrows show the protocols

used to communicate between nodes. (b) Stream processing. D is

a nondeterministic operator that reads dynamically sized batches

(buffers) from multiple input sources (A, B,C) in any order and out-

puts results to downstream operator E.G is a deterministic operator
that reads statically sized batches from a single source, F .

(Reducer in Fig. 1), and can flush batches to downstream pro-

cesses by dynamically submitting tasks (Mappers in Fig. 1),

e.g., based on the maximum output buffer size.

The lineage in this model is recorded at the granularity of

a batch. This is in contrast to Spark Streaming [37], which

records lineage at the granularity of partitions, each of which

may span many batches. In Fig. 1, we show how the lineage

of each batch is tracked, through data dependencies (solid

arrows), and stateful dependencies (white arrows). Data de-

pendencies are specified by the application through task

arguments, while stateful dependencies are created between

tasks that execute consecutively on the same process. The

use of lineage can reduce downtime during recovery, as in-

tact operators can continue processing records while lost

operators can be replayed exactly from the lineage.

To execute this dataflow graph, we adopt the systemmodel

introduced by Ray [27], in which a distributed scheduler

dispatches tasks to local worker processes based on their data

and stateful dependencies (Fig. 2a). Each Ray node can host

multiple worker processes, which may be stateful (known

as actors [27]). Worker processes on the same node also

share an in-memory object store, which can be used to cache

immutable copies of large task outputs. System metadata,

such as task descriptions and object locations, is stored in a

logically centralized global store, which can be sharded for

scalability and replicated for durability.

There are a number of challenges in applying lineage re-

construction to this setting. First, the granularity at which lin-

eage is recorded is much finer than in previous lineage-based

systems, at the level of batches that can take milliseconds

to process, compared to synchronous stages that can take

seconds. Since the lineage is both significantly larger and up-

datedmore frequently than in existing lineage-based systems,

the common approach of logging lineage to a centralized

location [15, 35, 36] on the critical path of task execution

would affect both task latency and throughput.

Second, the lineage is not only larger, it must also be up-

dated at runtime to guarantee exactly-once record processing.
This is because asynchronous record processing introduces

nondeterministic events when an operator processes data

from multiple sources. For example, in Fig. 2b, operator D
processes data from operators A, B, and C as they become

available, then outputs results to E. If D fails but E remains

active, then we must guarantee that when reconstructingD’s
outputs, we do so in an order consistent with what E has seen

so far. This necessitates reliably recording the order in which

D processed its inputs during execution, which adds latency

if this must be done before E can process the results. Note

that this is not an issue in lineage-based systems that execute

in synchronous stages [37]; in such systems, D would block

results to E until it has processed a predetermined number

of records from A, B, and C . Nor is it an issue when reading

from a single input, as G does in Fig. 2b.

These problems motivate an asynchronous logging ap-

proach, in which task specifications are logged to a central-

ized reliable storage system, but off the critical path of task

execution. In particular, each node logs lineage directly to

a local, in-memory lineage stash (Fig. 2a), which is asyn-

chronously flushed to the global store. However, this solu-

tion presents a third challenge: maintaining the decentral-

ized state. The decentralized logging approach complicates

both normal operation, as it creates local state that must be

flushed, and recovery, as a failed operator’s lineage is no

longer guaranteed to be in a centralized location. The final

challenge is thus in designing simple protocols for flushing

local state and recovering after a failure.

In summary, the challenges are: (1) removing the cost of

recording lineage from the critical path of task execution, (2)

efficiently recording nondeterministic events, and (3) design-

ing simple, scalable protocols for flushing and recovering

lineage. In the remainder of this paper, we describe the lin-

eage stash design and how it meets these challenges.

3 Lineage Stash Overview
The data processing applications that the lineage stash sup-

ports can be viewed logically as message-passing systems, a

low-level abstraction in which a set of processes with local

state communicate with each other by sending and receiving

messages. For example, the continuous operators in a stream

processing application can be viewed as a set of processes

where each message contains a single record. In this section,

we describe the relationship between a message and a task.
The lineage stash is a form of rollback recovery [18], in

which information is recorded during execution to minimize

the amount of work that must be redone after a failure. In-

formally, the lineage stash guarantees that if a process fails,

then any messages that it received since its last checkpoint

will be replayed in the same order. This implies that the

system will recover to a globally consistent state–that is, for
every message that has been delivered to a process, the corre-

sponding event is reflected at the sender. This in turn implies

exactly-once semantics for the application (e.g., every record

is processed once in stream processing). The lineage stash

can also support end-to-end exactly-once semantics for when

the application outputs a result to the external world. As is

standard in rollback recovery [18], the lineage stash targets

the fail-stop model [31] and assumes that the application can

identify and record any nondeterministic events, as well as
inputs and outputs to the external world.

At a high level, we use a causal logging approach for record-
ing and replaying computation. Causal logging [5, 17] is a

technique that aims to lower both recovery and runtime over-

head by logging asynchronously to a stable storage system,

i.e. the Ray system metadata store [27] or the Spark sched-

uler [36]. Each process buffers a log of all nondeterministic

events (e.g., “received messagem”) that caused its current

state and piggybacks any volatile records onto its messages

to other processes. If a process fails, then it can retrieve logs

from the remaining processes to guide its recovery. Since all

nondeterministic events from the initial execution can be

replayed from the logs, this guarantees global consistency.

However, practical use of causal logging in generalmessage-

passing applications remains challenging due to the sheer

variety of nondeterministic events that could occur (e.g.,

writing to external memory, executing on a timer, etc.). Cor-

rectness requires that all such events are logged during exe-

cution, which can be cumbersome, expensive, or both. On the

other hand, data processing applications by nature consist of

mostly pure computation, i.e. side effect-free and the outputs

are a deterministic function of the inputs. This makes causal

logging a promising approach to providing rollback recov-

ery for decentralized data processing applications. The key

system challenge is then to identify and efficiently capture

the sources of nondeterminism that do occur in data process-

ing applications. There are three questions to answer: what
information do we log, how do we log that information, and

how do we recover the initial execution from these logs?

What information should we log? A general logging ap-

proach is to reliably record every message that every process

receives, including the content and the execution order. Then,

assuming deterministic message handlers, recovery is simply

a matter of retrieving and replaying the logs.

However, this straw man approach is clearly expensive

for data processing applications. The total message content

in data processing applications can be much larger than the

description of the computation. This is true in communica-

tion primitives like allreduce for large arrays, as the array is

often much larger than the description of the reduce func-

tion. Other data processing applications consist instead of

many small messages that all undergo the same computation

on the receiver. An example of this is stream processing:

logically, operators execute record-at-a-time, but physically,

many records are batched together for efficiency. In this

case, the execution order only needs to be logged at batch

boundaries. In the allreduce case, the message ordering is

deterministic, so it need not be recorded at all.

Fortunately, the message content in data processing appli-

cations is often the output of a deterministic computation

performed by the sender. Thus, it can be perfectly recom-

puted, assuming the same inputs and sender state. This al-

lows for a key optimization: recording the lineage instead
of the raw data. In particular, we reliably store a pointer to

the application data, called an object, and a concise descrip-

tion of the computation, called a task. Each task can take as

input a process’s local state and one or more objects, and

can generate objects (return values) as well as other tasks

(nested functions). The lineage of an object comprises the

task that created it and the lineage of each of the task’s argu-

ments. Since object values are deterministic, we can cache

multiple immutable copies of the object across nodes. As in

previous systems [36], this comes at the cost of having to

recompute objects during recovery if all copies are lost. For

small enough objects, the data can optionally be inlined in

the task specification.

In some cases, nondeterminism is actually key to applica-

tion functionality and performance. In particular, the ability

to dynamically execute tasks based on data availability at

runtime is essential for low latency in applications where a

single process executes tasks from multiple other processes,

such as in stream processing (Fig. 2b). In this case, if another

process sees the result, then the task execution order must be

recorded in the lineage and made durable in case of failure.

Otherwise, the nondeterministic process may recover to a

state inconsistent with the witness, or orphan process [18].
For instance, in Fig. 3a, processes A and B submit tasks con-

currently toC , where they can be executed in any order, and

the result is seen by D. If C were to fail, we must replay the

tasks from A and B in the same order as before to guarantee

consistency with D.
However, there are also applications where it is sufficient

for a process to execute tasks in a deterministic order. For

example, communication primitives like allreduce are fully
deterministic because every process receives tasks from one

other process. Determinism can also be enforced for a process

with multiple callers if tasks are always executed in a specific

order, e.g., round-robin. While this is more restrictive to

applications, it does allow for more efficient logging, since it

is not necessary to record task execution order. For instance,

in Fig. 4a, C is the only process to submit tasks to A, so the

order of tasks that A executes is deterministic and need not

be recorded. Note that it is possible to mix different logging

levels in a single application, i.e. one process may execute

tasks dynamically while others are fully deterministic.

In rare cases, a process may also execute nondeterminis-

tic events during a task. For instance, a stream processing

...

A B C D

...

...

11

A2

B1

A1

C3

C1

C2

00

(a)

Node C
Lineage stash
C D

A2

B1

A1

C3

C1

C2

Node D
Lineage stash

C D

A2

B1

A1

C3

C1

C2

Lineage stash

A2

B1

A1

A2

B1

A1

C3

C1

C2

Lineage stash
C D

C3

C1

C2

C D

Node C Node D

(b)

Figure 3. (a) A nondeterministic application and (b) a failure sce-
nario showing why lineage must be forwarded. BecauseC executes

tasks from A,B in a nondeterministic order, it must retrieve its

lineage from D after a failure, shown by the red dashed arrows.

A B C

A1

B2

C1 B1

A2C2

00 0

(a)

Node A

Lineage stash
A

A1

A2

B

C1

C2

C

B2

B1

Node B

Lineage stash
B

A1

A2

00

Lineage stash
A

A1

A2

B

C1

C2 B2

Lineage stash
B

A1

A2

0

C

B1

0

Node A Node B

(b)

Figure 4. (a) A deterministic application and (b) a failure scenario
showing what lineage must be remembered. To recover B after a

failure, A simply resubmits (red dashed arrows) its previous tasks.

application with strict latency requirements could choose to

release outputs based on a timer. To support this case, we

also allow the application to record such events as part of the

task description so that they can be replayed exactly after

a failure. While we provide system support, it is up to the

application to identify and replay such events; in practice,

we expect this to be done in application-level libraries.

How shouldwe log information?While recording the lin-

eage rather than the data greatly reduces the cost of logging,

the rate at which tasks are generated can still be very high

for fine-grained, decentralized applications. Thus, storing a

task description reliably must be done off of the critical path.

The main idea behind the lineage stash is to use a causal log-
ging approach, where instead of storing the lineage reliably

before the task is executed, we forward the lineage of each of
the task’s inputs with the task invocation. This way, the node
executing the task has all the information to reconstruct the

task’s inputs, if necessary. Each node remembers the lineages

of tasks that it generated or received for execution in a local

store, called the lineage stash.
Only the nondeterministic eventsmust be reliably recorded

for recovery correctness. Thus, in deterministic applications,

the lineage need not be forwarded during normal operation

because it can be deterministically recreated after a failure.

Each process only needs to remember the tasks that it has
submitted, by storing them in its local lineage stash. If a pro-

cess fails, then it recovers by simply asking the remaining

processes to resubmit their stashed tasks. Figure 4b shows

this for the deterministic application example in Fig. 4a: dur-

ing normal operation, A remembers the tasks that it submits

to B in its local lineage stash. When B dies, A resubmits its

stashed tasks (A1, A2) to recover B.
In nondeterministic applications, each process must also

forward the lineage that it has seen so far. This is because

task descriptions are updated during execution based on

nondeterministic events, such as the order of task execution.

If a process fails, then it must recover the most recent copy

of its tasks. For example, in Fig. 3a, becauseC executes tasks

in a nondeterministic order, it must also forward its own

lineage to D during execution. This is so that if C dies, as in

Fig. 3b, D can resubmit these tasks to C in the correct order.

While this simple scheme of remembering and forwarding

recent lineage removes the lineage store from the critical

path of a task’s execution, unfortunately it will not scale for

realistic applications as the lineage can become very large

and forwarding it can be prohibitive. Thus, timely flushing of

the local stash is critical to maintaining predictably low task

latency. Traditionally in rollback recovery systems, each pro-

cess can asynchronously flush its volatile log to an individ-

ual stable storage system, which may be remote [17, 18, 30].

However, this requires each process to garbage-collect its

stable storage and can lead to an unpredictably large storage

footprint if a task is forwarded many times.

We simplify garbage collection by asynchronously flush-

ing each stash to a global but physically decentralized (sharded)

stable storage system, in which each task has a unique iden-

tifier and any process may read or append to any task (Sec-

tion 4.2.2). This means that only a single copy of each task is

reliably stored, and garbage collection of the stable storage

can be handled by a single background process, which erases

tasks previous to the last global checkpoint. Although it is

not our focus in this work, this also facilitates logging for

stateless tasks that are not bound to a specific process.

Because processes can die before they flush their lineage,

task descriptions can be lost entirely before they are written

to the global store. However, we guarantee that during nor-

mal execution, if a task is not yet in the global store, then all

nodes that execute dependent tasks must have the task in

their stash. Therefore, if we lose all nodes that have stashed

a particular task, we can still guarantee consistency because

no live node will have seen the result of the task.

Howdowe recover the logs? To recover a failed process to
a globally consistent state, we must retrieve and re-execute

its lineage. As noted above, for deterministic processes, it is

enough for the other processes to remember the lineage of

tasks that they have submitted so far. These can be resubmit-

ted along with any stashed lineage during recovery (Fig. 4b).

For nondeterministic processes, we must also recover the

initial execution order, aswell as any nondeterministic events

that occured during a task’s execution. For example, in Fig. 3a,

ifC fails and its lineage has not yet been written to the global

store, it must retrieve its lineage from D before it can accept

further tasks from A and B. For an arbitrary application, the

relevant lineage could reside at any process, so a failed pro-

cess would have to retrieve and reconcile a subgraph of its

lineage from every other process [17]. This can be expen-

sive and complicated, especially when there are multiple

simultaneous failures.

We can simplify the lineage recovery protocol with the

global lineage store. Upon a failure, each process simply

flushes its local stash to the global store and replies to the

recovering process once all writes have been acknowledged.

The recovering process can then retrieve its lineage by walk-

ing the task dependencies in the global store, starting from

the tasks resubmitted by the other processes. Because the

global store is indexed by task rather than process, retrieving

the lineage is likely slower than if the process’s log were

stored contiguously. While this may affect recovery perfor-

mance, it allows for a simple recovery protocol; our imple-

mentation required only 125 lines of code (Section 5).

We can further optimize the recovery protocol by lever-

aging a property common to decentralized data processing

applications: most processes send tasks to only a small set

of other processes, which changes infrequently. Thus, we

only need to contact this set, which is often much smaller

than the total set of processes. For example, in Fig. 3b,C only

needs to retrieve lineage from D.

4 Lineage Stash Implementation
First, we expand on the architecture presented in Fig. 2a and

introduce the lineage stash protocols, which we present in

Section 4.2 along with their guarantees. A process can send

a task to a remote process using the lineage stash protocols

for forwarding and remembering lineage (Section 4.2.1). Pro-

cesses can also send or receive objects to or from remote

processes through their in-memory object stores. We assume

a fail-stop model: if a node fails, then its object store and

lineage stash will be lost.

Each lineage stash flushes to a logically centralized global
lineage store, a reliable key-value store that maps task ID to

specification. All operations are over a single task, and we do

not assume sequential consistency across tasks, i.e., opera-

tions on different tasks from the same nodemay be processed

in any order. This allows us to shard the global store by task

ID for horizontal scalability, as in Fig. 2a. Each node commu-

nicates with the global store independently to flush its local

stash and retrieve lineage during recovery (Section 4.2.2). As

an optimization, each node can request an acknowledgement

when a given task has been written to the global store.

4.1 Definitions

Next, we describe the lineage structure. All processes, tasks,

and objects are assigned a unique identifier (ID), which can

be deterministically recomputed during recovery. The task

ID is a hash of the sender and receiver IDs and the number

Field Type Description

id TaskID hash(receiver, sender, taskCounter)
version int # of updates to the task specification

receiver ProcessID ID of process that receives the task

sender ProcessID ID of process that sent the task

taskCounter int # of tasks sent from sender to receiver
applicationLog string[] nondeterministic events during task

parentId TaskID id of task that submitted this task

predecessorId TaskID hash(receiver, sender, taskCounter − 1)
argumentIds ObjectID[] object IDs of task arguments

dependencies TaskID[] [parentId, predecessorId] + argumentIds

Table 1. Task specification (version, predecessorId and application-
Log may be updated after task creation to record nondeterminism)

of tasks sent between the pair so far (Table 1), The object ID

is a concatenation of the ID of the task that created it and

the number of objects that the task has created so far.

The task specification (Table 1) can be monotonically up-

dated to record nondeterministic events. The predecessorId
is initially the ID of the previous task that the sender submit-

ted to the destination process. It may be overwritten once,

before execution, to the task that the destination process

executed immediately beforehand, to reflect the task order.

During task execution, the application can also append non-

deterministic events to the applicationLog. Each of these

updates increments the task’s version. To define global con-
sistency, we first define a total order on tasks with the same

ID. This also makes it safe to flush any version of a task; the

global store simply rejects older versions.

Definition 4.1 (Task order). For tasksT andT ′
whereT .id =

T ′.id , T ≤ T ′
if T .version ≤ T ′.version, T .applicationLoд is

a prefix of T ′.applicationLoд, and either T .predecessorId =
T ′.predecessorId orT .predecessorId andT .version are equal
to their initial values (Table 1).

Definition 4.2 (Lineage). The lineage of a taskT consists of

T itself and the lineage of all of its dependencies (Table 1).
For convenience, we will also say that the lineage of an object

is the lineage of the task that created it, and the lineage of a

process is the lineage of the last task that it executed.

Lineage(T) = {T }
⋃

T ′∈T.dependencies

Lineage(T ′)

Recovery correctness is defined via global consistency [12],

i.e., every message received by a process is also reflected in

the sender’s history. In terms of lineage, this means that

for every task that a process has executed, if the same task

appears in some other process’s lineage, then the process

that executed the task must have the most recent version.

Definition 4.3 (Lineage consistency). For any processes

p,q, if Tp .id = Tq .id , p executed Tp , and Tq ∈ Lineaдe(q),
then Tq ≤ Tp .

Lineage consistency after failure of a process p is guaran-

teed as follows: ifT is the last task executed byp that is in the
lineage of any live process, then all tasks in Lineaдe(T) are

def GetUncommittedLineage(stash, T):
lineage = {}
for D in T.dependencies:

if D in stash:
lineage.add(D)
lineage.update(GetUncommittedLineage(stash, D))

return lineage

(a) Getting uncommitted lineage from the local stash.

def AddUncommittedLineage(stash, T, lineage):
for D in T.dependencies:

if D in lineage and D not in stash:
stash.add(D); AddUncommittedLineage(stash, D, lineage)

(b) Receiving uncommitted lineage in the local stash.

Figure 5. Lineage stash methods for getting and receiving a task’s

uncommitted lineage (Definition 4.4). A practical implementation

can easily avoid forwarding duplicate lineage by recording which

tasks have been sent to which nodes.

def SubmitTask(T):
stash.add(T); FlushTask(T)
AssignTask(T, T.receiver, GetUncommittedLineage(stash, T)

if P.NONDETERMINISTIC else {})

(a) Submit a task and forward uncommitted lineage.

def AssignTask(T, P, uncommitted_lineage):
if P.NONDETERMINISTIC:

T.predecessorId = P.lastTaskId; P.lastTaskId = T.id
T.version += 1; FlushTask(T)

stash.add(T)
AddUncommittedLineage(stash, T, uncommitted_lineage)

(b) Assign a task and add the forwarded lineage.

Figure 6. Node methods for task execution. AssignTask also

records nondeterministic execution order by updating the task’s

predecessorId. Nondeterministic events during task execution are

recorded by appending to the task’s applicationLog (not shown).

either in a live process’s stash or in the global store. We en-

sure this property by forwarding uncommitted lineage with
each submitted task.

Definition 4.4 (Uncommitted lineage of T). The tasks in
Lineaдe(T) that are not yet committed in the global store.

4.2 Protocol

4.2.1 Forwarding Lineage

We describe the protocol for submitting a task from one pro-

cess to another, first without flushing. For processes hosted

by separate nodes, this requires a minimum of one message

to send the task itself. We design the lineage stash protocol

so that all additional information needed for recovery cor-

rectness, i.e. the task’s lineage, can be computed locally by

the sender and piggy-backed on this message.

As described in Section 3, only the nondeterministic events

need to be forwarded to receiving nodes. If the application is

Node A
Lineage stash

A B
A1

A2

B1

B2

Node B
Lineage stash

A B

A2 B2

A1 B1

A

B2A2

A1

B

B1

A

B2A2

A1

B

B1

Node B
Lineage stash

B2

A1

A2

A B

B1

Node A
Lineage stash

B2

B
A1

A2

B1

A

A

B2A2

A1

Global store

B

B1

Node A
Lineage stash

B2A2

B1

A B

Node B
Lineage stash

B2A2

A B

B1

(a) (b) (c)

Figure 7. Forwarding and flushing lineage. (a) Task A2 submits

task B2, forwards the uncommitted lineage (A2) to B, and asyn-

chronously flushes B2. (b) A and B receive commit acknowledge-

ments forA1 and B2.A1 can be evicted because it has no dependen-

cies, but B2 cannot. (c) A and B receive commit acknowledgements

for the remaining tasks and it is safe to evict all tasks.

def FlushTask(T):
global_store.Write(T, TryEvict)

def TryEvict(stash, T):
if T.version >= stash[T.id].version:
for D in T.dependencies:

if D in stash: return
stash.erase(T)

Figure 8. Lineage stash methods for flushing to the global store.

FlushTaskwrites a task asynchronously to the global store with the
callback TryEvict. Once a task (or a newer version) is committed

and its dependencies have been evicted, it is evicted in TryEvict
(TryEvict also tries to evict any dependent tasks, not shown).

deterministic, i.e. the task specifications are immutable, then

it is only necessary to remember tasks that have been submit-

ted so far, by adding these tasks to the local stash (Fig. 6a).

For nondeterministic processes, the sender process re-

trieves the task’s lineage from its local stash (Fig. 5a) and for-

wards the result along with the task (Fig. 6a). As in previous

work [17], it is only necessary to forward new uncommitted

lineage that has not yet been forwarded to the receiving

process (not shown). Next, the receiver adds the forwarded

lineage to its own stash (Fig. 5b) before assigning the task

(Fig. 6b). If an added task is already present in the receiver’s

lineage stash, the more recent version is used (not shown).

The task submission protocol is illustrated in Fig. 7a.

The SubmitTask and AssignTask procedures maintain

the invariant that all lineage is durable during normal execu-

tion, assuming no flushing yet, proved by induction on the

global state (all process and lineage stash state).

Invariant 1 (Lineage durability without flushing). For each
process p and task T that p has executed or submitted, T ’s
lineage is in p’s local stash.

4.2.2 Flushing the Stash

To prevent lineage stashes from growing indefinitely, each

process flushes its stash to the shared global store. Because

task versions are ordered, each lineage stash could safely

flush any task that it sees. However, to avoid overloading

the global store with many writes of the same task, we

choose to instead flush a task every time it is updated, i.e., its

version (Table 1) is incremented. When a task is submitted

(Fig. 6a), the sender asynchronously flushes the initial version

of the task, as A does for B2 in Fig. 7a. When the execution

order is nondeterministic, the node updates the assigned

task’s specification to reflect its predecessor task and flushes

again (AssignTask in Fig. 6b). If a task executes a nondeter-

ministic event, the node adds the application-provided entry

to the task applicationLog and flushes again (not shown).

Each node receives commit acknowledgements for par-

ticular task versions from the global store and evicts tasks

from its stash accordingly (TryEvict in Fig. 8) . TryEvict
only evicts a task if it has been committed and if its depen-

dencies have also been evicted from the local stash. This is

to guarantee that for every task still in the local stash, there

is a connected subgraph in the stash that contains the task’s

uncommitted lineage, to ensure GetUncommittedLineage
correctness when flushing is enabled.

As an example, in Fig. 7b, both processes receive acknowl-

edgements for tasksA1 and B2. Note that these acknowledge-
ments can arrive in any order since we do not assume sequen-

tial consistency from the global store. Both stashes can evict

A1 becauseA1 does not have any dependencies. However, B2
cannot be evicted yet because it has uncommitted dependen-

cies A1 and B1. This ensures that GetUncommittedLineage
will correctly return the uncommitted lineage for B2 or any
future tasks dependent on B2.
The FlushTask and TryEvict procedures maintain the

same invariant as above, but for uncommitted lineage. The

remaining lineage is in the global store and therefore durable.

Invariant 2 (Lineage durability with flushing). For each
process p and task T that p has executed or submitted, T ’s
uncommitted lineage is in p’s local stash.

4.2.3 Recovery Protocol

During the recovery protocol, the failed process retrieves

and re-executes the lineage of the last task that it executed

before failure that exists in another live process’s lineage.

Note that this may differ from the last task that the failed

process actually executed but is enough to guarantee global

consistency.

First, each process that submitted a task to the failed pro-

cess resubmits its last submitted task. Step 5 in Figure 9b

shows this for operator C from the application example in

Fig. 3a. For a deterministic process, the lineage does not

change after it is generated, so the resubmission step with

Invariant 2 is enough to guarantee global lineage consistency

(after re-execution). Invariant 2 implies that any uncommit-

ted lineage will be forwarded with the resubmitted task. All

other lineage can be retrieved from the global store.

When the execution is nondeterministic, the failed pro-

cess must also retrieve the latest version of each task that it

executed. We adopt a standard causal logging procedure [17],

A2

B1

A1

Lineage stash
C D

C3

C1

C2

C

1

4

Node C Node D
Global store

A2

A1

C D

C3

C2

B1 C1

2
3

5

Node C

A2

B1

C

5

C

Node C

A1

Global store

A2

A1

C D

C3

C2

B1 C16

7

B1

A2

(a) (b) (c)

Figure 9. Recovery procedure for the nondeterministic process

from Fig. 3 in detail. (a) (1) C contacts downstream process D, (2)
D flushes its lineage, (3) D receives all acknowledgements, (4) D
replies to C . (b) Processes A and B (not shown) resubmit their last

submitted tasks (A2, B1) to C . This may happen concurrently with

steps 1-4. (c) After steps 1–5, C recovers the lineage of A2 and B1,
which includes the initial execution order, from the global store.

in which the failed process contacts other processes to re-

trieve their stashed lineage. However, rather than have the

processes reply directly with the uncommitted lineage, each

process instead flushes its entire local stash to the global

store (via FlushTask, Fig. 8), waits for all tasks to commit

(via TryEvict, Fig. 8), then acknowledges to the recovering

process, which can then retrieve the flushed lineage from

the global store (Fig. 9). Using Invariant 2 and the fact that

the global store only accepts writes for higher task versions,

this guarantees lineage consistency (after re-execution).

The recovering process can then re-execute its tasks based

on the lineage retrieved from the global store, for both deter-

ministic and nondeterministic applications. The process may

resubmit tasks that have already executed, which get added

to its stash as during normal execution to guarantee that

Invariant 2 will hold after recovery completes. Receiving

processes can easily deduplicate these tasks with a counter.

4.3 Failure Model

The protocols in Section 4.2 guarantee exactly-once seman-

tics within an application. They can also support end-to-end
exactly once semantics, e.g., if a sink operator in a stream

processing application outputs to an external system. The

lineage stash can support a task that outputs to the external

world by first flushing the task and its local uncommitted

lineage (Section 4.2.2), then waiting for the commit acknowl-

edgements from the global store. This guarantees that if

the operator fails later on, it will replay its execution in the

same order and restore to a state consistent with the external

world. In contrast, a global checkpointing approach alone

must take a checkpoint during every such interaction to

guarantee that the execution will not be rolled back [1, 19].

Like other rollback recovery systems, we target a fail-stop

model [18]. Each node’s local state (processes, in-memory

object store, and lineage stash) can be rebuilt after a fail-

ure, possibly on a different physical node. As in previous

causal logging work [4], we also allow the user to configure

the maximum number of times that an uncommitted task is

forwarded to lower-bound f , the number of simultaneous

failures tolerated. f may be greater than the task forwarding

limit depending on application properties: communication

structure (e.g., in acyclic graphs [4]) and the mix of determin-

istic versus nondeterministic processes. We discuss further

application-specific failure handling considerations here.

Checkpointing. Long-running applications must still take

checkpoints to bound re-execution time after a failure. In the-

ory, the application can take inconsistent checkpoints with

the lineage stash. However, as prior work has shown [19],

it is much simpler to take globally consistent checkpoints,

to avoid coordination between processes for garbage collec-

tion of the global store. Since many applications today, e.g.,

distributed training [2] and stream processing [10], already

provide support for efficient global checkpointing, we recom-

mend adopting these methods to simplify and roughly bound

recovery. The lineage stash can be used in conjunction to

further guarantee exact replay, to reduce recovery time and

runtime overheads for end-to-end exactly-once semantics.

Intermediate State. In general, logging approaches collect

state during execution in order to reduce recovery overheads

and garbage-collect the state after a checkpoint. Therefore,

in every logging approach, it is possible for this intermediate

state to exceed storage capacity.

For the lineage stash, there are three types of intermediate

state. First, for the lineage in the local stash, the node can

apply backpressure on the local processes until enough tasks

have been flushed, via the protocol in Section 4.2.2. Second,

for the lineage in the global store, the options are to scale

up the capacity (e.g., by adding shards), force an application

checkpoint, or fall back to a global rollback in case of failure.

Third, there are the objects in the local in-memory store. This

is unique to the lineage stash because we decouple the object

metadata (i.e., the lineage) from the object data. The options

are similar: spill to external storage, force a checkpoint, or

evict some objects and fall back to a global rollback.

5 Evaluation
We study the performance of the lineage stash compared

to a WriteFirst method, which persists tasks to a global

store before execution. We also evaluate the performance of

the lineage stash on two end-to-end applications, distributed

model training with ring allreduce and stream processing,

and show that the lineage stash can provide faster recovery

than a checkpoint-only solution with little to no additional

runtime overhead. In summary, we study:

1. What is the latency overhead of the WriteFirstmethod

compared to the lineage stash?

2. How can an application maintain a stable amount of

uncommitted lineage?

3. How does the lineage stash benefit data processing

applications vs a global checkpoint-only approach?

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms
WriteFirst+1ms
WriteFirst+5ms
Lineage stash+0ms
Lineage stash+1ms
Lineage stash+5ms

(a) Deterministic.

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms, f=64
WriteFirst+1ms, f=64
WriteFirst+5ms, f=64
Lineage stash+0ms, f=64
Lineage stash+1ms, f=64
Lineage stash+5ms, f=64

(b) Nondeterministic, unlimited forwarding.

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms, f=64
WriteFirst+1ms, f=64
WriteFirst+5ms, f=64
Lineage stash+0ms, f=8
Lineage stash+1ms, f=8
Lineage stash+5ms, f=8

(c) Nondeterministic, forward up to 8 nodes.

Figure 10. Task latency for deterministic and nondeterministic applications, with lineage stash vs WriteFirst. A ring of 64 processes is

instantiated, one on each node. Each process submits no-op tasks with a unique token to its successor. Task latency is the time before the

process receives its token again divided by the number of processes. For Fig. 10c, we forward an uncommitted task up to f =8 times.

0 25 50 75 100
Task duration (ms)

0

20

40

60

Un
co

m
m

itt
ed

lin
ea

ge
 si

ze f=8
f=16
f=32
f=64

Figure 11. Median (and first and third quartiles) size of the for-

warded uncommitted lineage, varying task duration for different

values of f , the maximum number of concurrent failures tolerated.

Above 10ms tasks, the uncommitted lineage size is stable.

We ran all experiments on Amazon EC2 (instance types

inline). We implemented the lineage stash in 1k LoC (C++)

on Ray [27], a low-latency system for distributed dynamic

dataflows that normally uses WriteFirst. The recovery pro-
tocol for nondeterministic applications (Section 4.2.3) was

implemented in an additional 125 LoC. For each Ray cluster,

we used one non-replicated Redis instance per global store

shard and one m5.8xlarge node separate from the workers

to host the shards. In benchmarks that simulate global store

write latency, we modified Ray to submit writes on a timer.

5.1 Microbenchmarks

Task latency distribution. We measure the latency of the

lineage stash relative to WriteFirst. We also simulate global

store latencies of +1 and +5ms. In Fig. 10, each process in

a ring of 64 processes simultaneously submits a no-op task

to its successor in the ring with a unique token, and we

measure task latency based on the round-trip time of each

token. Because of the ring structure, every task’s lineage

includes nearly every other task executed so far.

Figure 10a shows the latency distribution for applications

with deterministic lineage. While WriteFirst can achieve

p50=0.96ms and p99=1.12ms latency, it suffers greatly with

simulated delays of +1 and +5ms (maximum of >6ms). Mean-

while, the lineage stash achieves p50=0.48ms and p99=0.58ms

latency, even with +5ms of simulated delay. This is because

each node only needs to remember uncommitted tasks that

it submitted in its local stash (Section 3).

For nondeterministic applications, both systems flush each

task a second time, before dispatch to the process, to record

the execution order (Section 4.2). For the lineage stash, in

Figs. 10b and 10c, we forward uncommitted tasks infinitely

many and up to 8 times, to tolerate up to f =64 (the number

of nodes) or f =8 simultaneous failures, respectively.

As expected, logging execution order doubles WriteFirst
latency compared to deterministic applications (p50=1.72ms

at +0ms; p50=11.07ms at +5ms). For the lineage stash with

f =64 (Fig. 10b), the latency is much higher than for deter-

ministic applications (p50=4ms and p99=11ms at +5ms). This

is because every process has a path to every other process,

which causes the uncommitted lineage to grow too large

when the task duration is too short relative to the global

store latency. Once we limit the number of times a task

can be forwarded (Fig. 10c), latency is stable. The lineage

stash’s p50 latency at +5ms delay is 0.70ms, 15× lower than

WriteFirst’s at +5ms and lower even than WriteFirst’s
at +0ms.

Uncommitted lineage. The amount of forwarded uncom-

mitted lineage depends on: (1) the global store latency, (2) the

task arrival rate, (3) f , the number of simultaneous failures

tolerated, and (4) the application structure (Section 4.3). For

instance, if a process submits one task every T seconds to

another process and the global store latency is 10T , then we

expect each task to forward an average of 10 tasks.

In Fig. 11, we vary task duration as a proxy for task arrival

rate and report the forwarded lineage size, per submitted

task. We also vary the maximum number of times an un-

committed task can be forwarded, to demonstrate how to

cap the forwarded lineage at the cost of only tolerating f
failures (Section 4.3). The workload is a ring of 64 nondeter-

ministic processes as in Fig. 10, with a simulated global store

latency of 100ms. This communication structure is challeng-

ing for the lineage stash because each process has a path

to every other process, so each task must be forwarded to

f other nodes to tolerate f failures. Also, the global store

10 100 1000
Array size (MB)

102

103

Du
ra

tio
n

(m
s)

OpenMPI
WriteFirst+5ms
WriteFirst+0ms
Lineage stash+5ms
Lineage stash+0ms

(a) Allreduce latency.

275 280 285 290 295
Iteration

100

101

102

Ite
ra

tio
n

tim
e

(s
)

OpenMPI
WriteFirst
Lineage stash

(b) Allreduce recovery.

(c) SGD recovery.

Figure 12. (a) Allreduce duration on 64 workers (m5.2xlarge),

averaged over 20 trials (with std. deviation). WriteFirst and the

lineage stash use ring allreduce, with simulated global store la-

tency as labeled. (b) Allreduce recovery time for lineage stash vs

WriteFirst vs OpenMPI, with checkpoints to disk every 150 itera-

tions. We kill and restart a worker at iteration 284. (c) Distributed
SGD on the lineage stash vs Horovod v0.16.1, on 16 p3.8xlarge.

Both use TensorFlow v1.12 on Resnet-101 with synthetic data and

batch size 64. The lineage stash uses the same ring allreduce as in

Section 5.2.1. Each worker checkpoints the model to disk every 640

iterations (~7min). We kill and restart a worker at iteration 1200.

Allreduce Distributed SGD Streaming WC

OpenMPI LS Horovod LS Flink LS

Mean latency 530 550 684 674 79 92

w/o failure

Mean latency 79,012 19,557 417,655 124,296 8,869 435

during failure

Table 2. Summary of mean latencies in milliseconds during nor-

mal operation and during recovery for Ray with the lineage stash

(LS) compared to baseline systems on a variety of applications. For

latency during a failure in streaming (Section 5.2.3), we take the

mean of all reported latencies between the failure time to when

the latency for new inputs converges to normal operation. For the

other applications, we report the maximum latency.

should have much lower latency in practice, but we config-

ure this to accurately show the effect of millisecond task

durations.

Below task duration 11ms, the forwarded lineage in all

cases grows unbounded and is capped only by f . This has
consequences on the task latency: 61 forwarded tasks trans-

lates to 3.4ms latency, versus 1.1ms latency for 8.8 forwarded

tasks. Interestingly, no matter the value of F , all configu-
rations converge on 8-9 forwarded tasks at task duration

11ms. This suggests that for a given application structure

and global store latency, there is a maximum task arrival rate

under which the uncommitted lineage will remain stable.

5.2 End-to-end Applications

5.2.1 Ring allreduce

Allreduce is an important collective communication routine

commonly used in high-performance computing in which

all processes start with an input element and end with the re-

duced sum of the inputs. Ring allreduce is an implementation

optimized for large arrays, in which a ring of P processes

exchange inputs over 2(P−1) rounds of communication with

P messages (tasks) each. The runtime of this algorithm is es-

pecially important for machine learning, where it is used in

data-parallel synchronous distributed training to exchange

gradients between copies of the model. Ring allreduce can

be written as a deterministic application on the lineage stash.

Also, because the application data is large, we cache all object

data in Ray’s per-node shared-memory store.

In Fig. 12a, we compare the runtime of ring allreduce

on the lineage stash against the same implementation but

with WriteFirst and against OpenMPI v1.10 [20]. We show

that the latency with the lineage stash is comparable to that

of OpenMPI and consistently lower than WriteFirst. On
100MB arrays, the mean duration on the lineage stash is

550ms versus 530ms on OpenMPI. The lineage stash outper-

forms OpenMPI on 1GB arrays but is 5× worse on 10MB,

in both cases possibly because of OpenMPI’s use of a dif-

ferent allreduce algorithm. Meanwhile, the lineage stash is

1.26× faster than the WriteFirst method on 100MB. With

a global store delay of 5ms, the lineage stash iteration time

stays constant, since it is insensitive to global store latency,

while the WriteFirst iteration time increases to 1184ms.

We also compare recovery in Fig. 12b on an application

that iteratively calls allreduce on a 100MB array on 64 work-

ers. We checkpoint the allreduce data to disk every 150 it-

erations (~1min), kill and restart a node near iteration 280,

and measure the time to recover all of the allreduce out-

puts since the last checkpoint. For OpenMPI, we restart the

benchmark from the latest checkpoint on failure. For the

lineage-based systems, the failed process retrieves all lost

allreduce outputs since the last checkpoint from the remain-

ing nodes’ in-memory stores and replays the last allreduce

iteration from the lineage. Figure 12b shows that the lineage

stash (and WriteFirst) achieves 4× better recovery time

than OpenMPI with only a small runtime overhead during

normal operation (Table 2).

5.2.2 Distributed Training

Data-parallel distributed training is an increasingly impor-

tant workload in which many copies of a model train on

different batches of a dataset. In synchronous training, all

workers iteratively compute a local gradient (in 100s of ms on

GPUs), sum gradients with allreduce, and apply the summed

gradient to their model copy. Thus, fast allreduce is critical

for distributed training throughput. While distributed train-

ing is often long-running, meaning that fast recovery may

0 250 500
Latency (ms)

0.0

0.5

1.0

CD
F Flink

WriteFirst
Lineage stash

(a) Latency without failure.

20 40 60 80 100
Time (s)

101

102

103

104

La
te

nc
y

(m
s)

(b) Latency during failure.

20 40 60 80 100
Time (s)

0
1
2
3
4
5

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

(c) Throughput during failure.

Figure 13. (a) Latency CDF for a streaming wordcount on 32 m5.xlarge workers at 400k records/s (4M words/s). Latency is sampled once

every 1000 records. Both systems used a parallelism of 32 (per source, map, reduce, sink) and checkpoints to disk every 30s. (b, c) Failure and
recovery for streaming wordcount on 32 m5.xlarge nodes at 300k records/s, checkpoints to disk every 30s. A worker is killed and restarted at

t=~45s (vertical red line), ~15s after the first checkpoint. We report (b) median latencies seen by a single sink (with 1st and 3rd quartiles),

x-axis is the record timestamp, and (c) total throughput, x-axis is physical time. The throughput drop at t=~80s is due to checkpointing.

be less important than in an online application, we show

that the lineage stash can provide faster recovery than state-

of-the-art systems with no perceivable runtime overhead.

In Fig. 12c, we compare distributed stochastic gradient

descent (SGD) on Ray with the lineage stash vs Horovod

v0.16 [32] (both with Tensorflow [2] v0.12) and show that we

can achieve a similar mean iteration time of 674ms, compared

to 684ms on Horovod, during normal operation (Table 2).

Also, we show that we can recover from the failure at itera-

tion 1200 in 124s, more than 3× faster than Horovod (417s).

Approximately half of the lineage stash’s recovery time is

due to TensorFlow initialization, which could be reduced

with a standby worker, while the rest is spent recovering

and reapplying the lost gradients to the restored model.

5.2.3 Stream Processing

In this section, we measure the benefits of the lineage stash

for an online stream processing workload. Stream process-

ing at scale requires low-latency scheduling across many

nodes. Since applications are also long-running, the chance

of a failure is high, so reducing downtime during recovery is

critical. Finally, these applications often interact with the ex-

ternal world, which in general cannot be rolled back, so exact

replay is important for end-to-end exactly-once semantics.

We implement a streaming wordcount application on top

of Ray with and without the lineage stash, with one long-

running actor per mapper and reducer instance. Each actor

batches records in the stream and submits one task per batch

to a downstream actor. Mapper tasks compute over an input

batch and contain only the lineage (no application data),

while reducer tasks contain inlined task arguments. Reducers

execute tasks nondeterministically, i.e. they process tasks

from themappers in order of arrival. This order is recorded in

the lineage, as described in Section 4.1. To test the overhead

of the lineage stash for nondeterministic processes, we record

the latency for each reducer at a different node, so that the

reducer must forward any uncommitted lineage to a remote

node. We also implement asynchronous, globally consistent

checkpointing, using the same algorithm as Flink [10].

Latency without failures. In Fig. 13a, we show that the

lineage stash on Ray can achieve similar latencies as Flink

(v1.8.1) at a throughput of 400k records/s (4M words/s) on 32

nodes. The p50 and p90 latency for Flink is 79ms and 125ms,

respectively, vs. 92ms and 132ms for the lineage stash. Mean-

while, WriteFirst cannot keep up with the target through-

put because the global store is a bottleneck.

Recovery time. In Figs. 13b and 13c, we run the same work-

load at 300k records/s and kill a worker ~15s after the first

checkpoint. For both systems, we immediately restart the

worker so that Flink has enough resources to continue.

For Flink, because the entire job must roll back and play

forward again, new records are blocked by recovery and

throughput drops to 0 (t=48-60s in Fig. 13c). Once all lost

work has been replayed, at t=61s in Fig. 13c, the system can

process new records that entered the stream during recovery.

Because the system is overprovisioned for the target load,

the system is able to use the extra capacity to eventually

catch up to the input stream, returning to normal through-

put at t=101s in Fig. 13c. Note that the higher the expected

load during normal operation, the more the system must

be overprovisioned for failure, or else the system will never

catch up with the input stream after recovery. The records

that are processed during this period (t=48-100s in Fig. 13b)

all experience higher latency than normal (>15s) since their

processing was blocked by the global rollback (Table 2).

For Ray with and without the lineage stash, the failed node

has one source, mapper, reducer, and sink, each of which is

replayed after the failure. The mapper can skip most tasks

during replay since it is stateless, but the reducer must re-

compute its state from its last checkpoint. While new records

scheduled to the recovering operators are delayed by task

replay, those scheduled to intact operators can be safely pro-

cessed. Thus, the total throughput drops only slightly after

the failure, to ~280k records/s (t=48-65s in Fig. 13c). Once the

failed operators have finished re-execution, they process the

new records (t=66-80s in Fig. 13c). During this period, the

total throughput increases (to ~320k records/s), as in Flink,

but much less additional capacity is needed. Also, although

the maximum per-record latency is about the same as for

Flink, since the maximum work replayed by any single pro-

cess is the same, most of the record latencies during recovery

(t=48-80s in Fig. 13b) are actually the same as during normal

operation, since they were not blocked by recovery (Table 2).

6 Related work

Message-passing systems. Because almost any distributed

application could be logically viewed as a message-passing

system [18], there are many framework examples, includ-

ing parallel computing frameworks [20], distributed train-

ing frameworks [2, 32], low-latency data processing frame-

works [9, 28], and actor frameworks [6, 8]. Out of these

systems, the ones that provide explicit fault tolerance sup-

port [2, 9, 28, 32] use global checkpointing alone, most likely

because this is the simplest to implement and understand and

adds low and predictable runtime overhead. Previous work

has studied techniques for asynchronous global checkpoint-

ing [12] that are optimize runtime overheads for particular

applications, such as stream processing [9, 25]. However,

in general, a global checkpoint-only approach introduces

higher recovery overheads, as well as high runtime overhead

when end-to-end exactly once semantics are needed [18],

i.e., when outputting to the external world.

Causal logging [5, 17] is a general class of techniques in

which processes log nondeterministic events asynchronously

and piggyback volatile records onto messages to other pro-

cesses. Potentially because of protocol complexity and dif-

ficulty in guaranteeing low runtime overhead in practice,

causal logging is not used in any practical application that we

are aware of. A primary difficulty in any logging approach,

causal or otherwise, is that all possible sources of nondeter-

minism must be logged, which is complicated for a general

application that can make system calls, share memory, etc.

Our primary contribution is in identifying distributed data

processing as a promising application for causal logging and

describing how to efficiently capture the necessary nonde-

terministic events. We also present a system architecture

for the stable log storage system that reflects the design of

modern cloud storage systems, which are often highly avail-

able and horizontally scalable but guarantee only eventual

consistency and do not promise low latency [11, 13, 16].

Lineage-based systems.MapReduce [15], Apache Hadoop

[35], and Apache Spark [36] implement a bulk synchronous
parallel model in which the user specifies data parallelism

through a lineage graph of coarse-grained transformations

that apply the same operation to each item in an arbitrarily

sized dataset. A centralized scheduler then schedules tasks in

each stage to execute over a data partition. For fault tolerance,

the lineage is stored reliably at a centralized location, usually

the scheduler, on the critical path of task execution. Driz-

zle [34] amortizes the scheduler overhead for applications

where the lineage is known a priori, as in stream process-

ing [37]. However, this does not solve the problems inherent

to BSP systems, namely that the job must proceed in syn-

chronous stages and each stage must be statically sized (e.g.,

the static microbatch size in Spark Streaming [37]).

CIEL [29], Ray [27], andNoria [21] are examples of lineage-

based systems that support dynamic dataflows, but again

with synchronous logging to a centralized location. More

importantly, none of these systems support exact replay of

nondeterministic execution. They target only computations

that can be rolled back and replayed without side effects on

the external world. Noria guarantees exactly-once semantics

for client reads, but at the cost of rolling back and replaying

all computation downstream of the failed node.

Transactional systems. Lineage, or provenance, is a pow-
erful concept in database systems that can enable debugging

and data auditing [14, 22]. The lineage stash could similarly

enable debugging, especially for asynchronous distributed

algorithms, but we focus here on fault tolerance. In this way,

it is more closely related to the logging techniques used in

databases to enforce transactional semantics, i.e. ACID.

Themost commonmethod is “write-ahead logging”, where

changes are durably logged before the transaction commits

[26]. This technique is widely applicable and has been used to

reduce recovery time and guarantee exactly-once semantics

for large-scale stream processing in MillWheel [3], at the

cost of higher latency during execution. MillWheel writes

all operator state and intermediate records to a persistent

storage system [13] on the critical path of execution, while

the lineage stash logs only the lineage to persistent storage

and does so off of the critical path.

7 Conclusion
We introduce the lineage stash, a causal logging technique

for simultaneously achieving predictably low latency during

normal execution and rapid recovery after a failure. While

others [9, 18, 34] have shown that there is a fundamental

tradeoff between these axes, we show here that the tradeoff

need not affect the application. We achieve this by recording

lineage off the critical path of task execution and replaying

the lineage to reconstruct lost data after a failure. We eval-

uate the concept empirically on end-to-end applications in

machine learning and stream processing, and show how the

lineage stash enables large-scale, online data processing with

fine-grained dynamic dataflows.

Acknowledgments
We thank Akshay Narayan, Malte Schwarzkopf, Michael

Whittaker, Vasiliki Kalavri, and members of the RISELab

at UC Berkeley for their helpful feedback. We also thank

our shepherd, Lorenzo Alvisi, and the anonymous SOSP

reviewers for their guidance. This research is supported in

part by NSF CISE Expeditions Award CCF-1730628 and gifts

from Alibaba, Amazon Web Services, Ant Financial, Arm,

CapitalOne, Ericsson, Facebook, Google, Intel, Microsoft,

Scotiabank, Splunk and VMware as well as by NSF grant

DGE-1106400. John Liagouris was partially supported by a

Swiss NSF “Scientific Exchanges” grant.

References
[1] An Overview of End-to-End Exactly-Once Processing in Apache Flink

(with Apache Kafka, too!). https://flink.apache.org/features/2018/03/
01/end-to-end-exactly-once-apache-flink.html.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., et al. TensorFlow: A system

for large-scale machine learning. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA (2016).

[3] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J.,

Lax, R., McVeety, S., Mills, D., Nordstrom, P., andWhittle, S. Mill-

wheel: fault-tolerant stream processing at internet scale. Proceedings
of the VLDB Endowment 6, 11 (2013), 1033–1044.

[4] Alvisi, L., and Marzullo, K. Trade-offs in implementing causal

message logging protocols. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing (1996), Citeseer,
pp. 58–67.

[5] Alvisi, L., and Marzullo, K. Message logging: Pessimistic, optimistic,

causal, and optimal. IEEE Transactions on Software Engineering 24, 2
(1998), 149–159.

[6] Armstrong, J., Virding, R., Wikström, C., and Williams, M. Con-

current programming in ERLANG.

[7] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Ran-

dall, K. H., and Zhou, Y. Cilk: An efficient multithreaded runtime

system. Journal of parallel and distributed computing 37, 1 (1996),

55–69.

[8] Bykov, S., Geller, A., Kliot, G., Larus, J. R., Pandya, R., and Thelin,

J. Orleans: Cloud computing for everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (2011), ACM, p. 16.

[9] Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., and Tzoumas,

K. State management in Apache Flink: Consistent stateful distributed

stream processing. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1718–1729.
[10] Carbone, P., Fóra, G., Ewen, S., Haridi, S., and Tzoumas, K. Light-

weight asynchronous snapshots for distributed dataflows. CoRR
abs/1506.08603 (2015).

[11] Cattell, R. Scalable sql and nosql data stores. Acm Sigmod Record 39,
4 (2011), 12–27.

[12] Chandy, K. M., and Lamport, L. Distributed snapshots: Determining

global states of distributed systems. ACM Trans. Comput. Syst. 3, 1
(Feb. 1985), 63–75.

[13] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A

distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 4.

[14] Cheney, J., Chiticariu, L., Tan,W.-C., et al. Provenance in databases:

Why, how, and where. Foundations and Trends® in Databases 1, 4 (2009),
379–474.

[15] Dean, J., and Ghemawat, S. MapReduce: Simplified data processing

on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.
[16] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-

man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vo-

gels, W. Dynamo: amazon’s highly available key-value store. In ACM
SIGOPS operating systems review (2007), vol. 41, ACM, pp. 205–220.

[17] Elnozahy, E. N. Manetho: fault tolerance in distributed systems using
rollback-recovery and process replication. PhD thesis, Rice University,

1994.

[18] Elnozahy, E. N., Alvisi, L., Wang, Y., and Johnson, D. B. A survey

of rollback-recovery protocols in message-passing systems. ACM

Comput. Surv. 34, 3 (2002), 375–408.
[19] Elnozahy, E. N., and Zwaenepoel, W. On the use and implemen-

tation of message logging. In Proceedings of IEEE 24th International
Symposium on Fault-Tolerant Computing (1994), IEEE, pp. 298–307.

[20] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J.,

Sqyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,

A., Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S.

Open MPI: Goals, concept, and design of a next generation MPI im-

plementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting (Budapest, Hungary, September 2004), pp. 97–104.

[21] Gjengset, J., Schwarzkopf, M., Behrens, J., Araújo, L. T., Ek, M.,

Kohler, E., Kaashoek,M. F., andMorris, R. Noria: dynamic, partially-

stateful data-flow for high-performance web applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Association, pp. 213–231.

[22] Gulzar, M. A., Interlandi, M., Yoo, S., Tetali, S. D., Condie, T., Mill-

stein, T., and Kim, M. Bigdebug: Debugging primitives for interactive

big data processing in spark. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE) (2016), IEEE, pp. 784–795.

[23] Hwang, J.-H., Balazinska, M., Rasin, A., Cetintemel, U., Stone-

braker, M., and Zdonik, S. High-availability algorithms for dis-

tributed stream processing. In 21st International Conference on Data
Engineering (ICDE’05) (2005), IEEE, pp. 779–790.

[24] Koo, R., and Toueg, S. Checkpointing and rollback-recovery for

distributed systems. IEEE Transactions on software Engineering, 1
(1987), 23–31.

[25] Kwon, Y., Balazinska, M., and Greenberg, A. Fault-tolerant stream

processing using a distributed, replicated file system. Proc. VLDB
Endow. 1, 1 (Aug. 2008), 574–585.

[26] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P.

Aries: a transaction recovery method supporting fine-granularity lock-

ing and partial rollbacks using write-ahead logging. ACM Transactions
on Database Systems (TODS) 17, 1 (1992), 94–162.

[27] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang,

E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I., and Stoica, I. Ray: A

distributed framework for emerging AI applications. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18) (Carlsbad, CA, 2018), USENIX Association.

[28] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and

Abadi, M. Naiad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–455.

[29] Murray, D. G., Schwarzkopf, M., Smowton, C., Smith, S., Mad-

havapeddy, A., and Hand, S. CIEL: A universal execution engine

for distributed data-flow computing. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (Berkeley,
CA, USA, 2011), NSDI’11, USENIX Association, pp. 113–126.

[30] Rao, S., Alvisi, L., and Vin, H. M. The cost of recovery in message log-

ging protocols. IEEE Transactions on Knowledge and Data Engineering
12, 2 (2000), 160–173.

[31] Schlichting, R. D., and Schneider, F. B. Fail-stop processors: an

approach to designing fault-tolerant computing systems. ACM Trans-
actions on Computer Systems (TOCS) 1, 3 (1983), 222–238.

[32] Sergeev, A., and Del Balso, M. Horovod: fast and easy distributed

deep learning in tensorflow. arXiv preprint arXiv:1802.05799 (2018).
[33] Shabtay, L., and Segall, A. On the memory overhead of distributed

snapshots. In Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Distributed Computing (New York, NY, USA, 1994), PODC

’94, ACM, pp. 401–.

[34] Venkataraman, S., Panda, A., Ousterhout, K., Ghodsi, A., Arm-

brust, M., Recht, B., Franklin, M., and Stoica, I. Drizzle: Fast and

adaptable stream processing at scale. In Proceedings of the Twenty-
Sixth ACM Symposium on Operating Systems Principles (2017), SOSP
’17, ACM.

https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html

[35] White, T. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[36] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,

M., Franklin, M. J., Shenker, S., and Stoica, I. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing.

In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation (2012), USENIX Association, pp. 2–2.

[37] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica,

I. Discretized streams: Fault-tolerant streaming computation at scale.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 423–

438.

	Abstract
	1 Introduction
	2 Background
	2.1 Case Study: Stream Processing
	2.2 System Model and Challenges

	3 Lineage Stash Overview
	4 Lineage Stash Implementation
	4.1 Definitions
	4.2 Protocol
	4.3 Failure Model

	5 Evaluation
	5.1 Microbenchmarks
	5.2 End-to-end Applications

	6 Related work
	7 Conclusion
	Acknowledgments
	References

