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Hardness 
Amplification

• Starting point: a weakly hard 
task (best success probability is 
say ¾)
• Goal: a “truly” hard task (cannot 

do much better than trivial)
• Examples: hard functions, 

distinguish two distributions,
interactive arguments, MIP
• Applications: circuit lower 

bounds, PCP theorems, 
cryptography
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Hardness amplification of security game

• Starting point: a weakly secure primitive against efficient adversaries
• Goal: construct a fully secure primitive
• Constraints: preserve desirable properties
• Time efficiency
• Round complexity
• Zero knowledge
• …

Adversary
(Prover)

Challenger
(Verifier)

success / fail

Simplest, natural & generic approach: 
parallel repetition (aka direct product)



Efficient parallel repetition: classical landscape

• 𝑘-fold parallel repetition of any 3-message protocol with 
computational security 𝜀 yields a tight security of 𝜀! + negl
[Bellare, Impagliazzo, Naor’97; Canetti, Halevi, Steiner’05]
• Parallel repetition probably does not work for 4-message protocols in general

[BIN97; Pietrzak, Wikström’12]
• Negligible loss is also probably inherent [Dodis, Jain, Moran, Wichs’12]

• Parallel repetition also works if the protocol is partially simulatable
(3-message, public coin, random-terminating) […; Berman, Haitner, Tsfadia’20]
or wrapped in FHE [Chung, Liu’10]

• Possible to preprocess any 𝑟-round protocol incurring a multiplicative cost of 
order 𝑟 or 𝜆 in efficiency (also tight for each approach)



(Post-)quantum security games

Post-quantum cryptography: 
secure existing cryptography against 
quantum adversaries
(challenger is still classical)

	
Quantum cryptography:
go beyond existing cryptography 
through quantum information and 
quantum computing

	 	



Our quantum efficient parallel repetition

• 𝑘-fold parallel repetition of any 3-message quantum protocol with 
computational security 𝜀 yields a tight security of 𝜀! + negl
• Parallel repetition does not work for 4-message post-quantum protocols 

assuming post-quantum concurrent non-malleable commitments
• Negligible loss is inherent even for post-quantum assuming exponentially 

hard post-quantum extended second-preimage resistant hash functions
• Round collapse: compile any protocol to a 3-message quantum

protocol while preserving computational security
• Same transformation as QIP [Kitaev, Watrous’00; Kempe, Kobayashi, Matsumoto, Vidick’07]

• Multiplicative loss of O 𝑟!.!## for 𝑟-round (definitely not tight)



Uniformity of reduction

Core (classical/quantum) proof strategy: reduction
• “Good” 𝑘-fold adversary 𝐴
⇒ construct “good” 1-fold adversary 𝐵

𝐴 has success probability 𝛿$ (𝛿 ≫ 𝜀)
⇒ we want 𝐵 to also succeed with probability ≈ 𝛿
• 𝐴 could be non-uniform!

∃𝛼: Pr
%,'

𝐴 𝛼 , 𝐶 = 1 = 𝛿$

• Uniform reduction: 𝐵 uses the same advice
(constructive: desirable for win-win philosophy)
• Possible classically: Pr

(,'
𝐵 𝛼 , 𝐶 = 1 ≈ 𝛿
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Trouble with randomized/quantum advice
∀𝐴, 𝛼: Pr

",$
𝐴 𝛼 , 𝐶 = 1 = 𝛿! ⇒ Pr

%,$
𝐵 𝛼 , 𝐶 = 1 ≈ 𝛿

• Q: What if advice is randomized? ∃𝐷: Pr
",$,&~(

𝐴 𝛼 , 𝐶 = 1 = 𝛿!

• A: “Uniform reduction” is now impossible!
• 𝐷 samples a “trapdoor” with probability 𝛿$ and samples “abort” otherwise
• 𝐵 must either work with a known “good sample” or try to find one by

taking ≈ 𝛿)$ samples from 𝐷 (assuming only black-box access to 𝐴 and 𝐷)
• Problematic as long as Pr 𝐵 > Pr 𝐴

• Same issue with quantum advice via purification
• We can work with either a single known “good eigenstate” or take ≈ 𝛿)$ copies

(best possible uniform reduction)



Cryptographic applications

• Amplification of quantum primitives with a 2-message security game
• Commitment schemes, EFI pairs… (posed in Yan’22 and Brakerski, Canetti, Q’23)
• Quantum money schemes from weakly unforgeable ones

(posed in Aaronson and Christiano’13)
• Quantum lightning schemes (existential unforgeable quantum money)

• Any weakly-sound (quantum) honest-verifier zero-knowledge 
(QHVZK) argument ⇒ 3-message negligibly-sound QHVZK arguments
ØPreserves succinctness but not classical communication

• Amplification for any post-quantum 3-message argument
• …



Why is even post-quantum non-obvious?
ØClassical reductions for parallel repetition must “rewind” many times, 

notoriously problematic for quantum adversaries
ØRewinding: feed an adversary with one message, obtain some information,

go back and feed a different message
ØQuantumly, obtaining some information is measuring, which disturbs the 

adversary’s success probability; cloning internal states is also impossible

ØQuantumly unrewindable (contrived) protocols exist:
• Relative to a quantum oracle [Ambainis, Rosmanis, Unruh’14]
• Assuming quantum hardness of Learning with Errors

[Brakerski, Christiano, Mahadev, Vazirani, Vidick’21]

ØQuantumly rewinding techniques developed for zero knowledge and 
succinct arguments do not immediately apply [Watrous’09; Unruh’12;
Chia, Chung, Yamakawa’21; Chiesa, Ma, Spooner, Zhandry’22; Lombardi, Ma, Spooner’22]



Yao’s XOR lemma = parallel repetition

• Predicate 𝑓:±1) → ±1 is 𝜀-hard to predict over 𝐷 if any poly-time 𝐴,
E*~( 𝐴 𝑥 ⋅ 𝑓 𝑥 ≤ 𝜀 + negl

• Yao’s XOR lemma (1982): if 𝑓 is 𝜀-hard to predict over 𝐷, then
𝑓⊕! 𝑥,, … , 𝑥! ≔ ∏- 𝑓 𝑥- is 𝜀!-hard to predict over 𝐷⊗! [Levin’87]

Equivalent to parallel repetition up to some loss:
• XOR lemma ⇒ parallel repetition — intuitively easy [Viola, Widgerson’08]

• XOR lemma ⇐ parallel repetition — Goldreich–Levin
[Goldreich, Nisan, Widgerson’11]

• Extremely similar proof techniques



XOR lemma for quantum predicates

• Quantum predicates 𝜌/ and 𝜌0 with disjoint support (𝜌/𝜌0 = 0)
• 𝜀-unpredictable if poly-time 𝐴 𝜌/ − 𝐴 𝜌0 ≤ 2𝜀 + negl
• Our parallel repetition theorem + quantum commitment duality

[Hhan, Morimae, Yamakawa’23]
⇒ 𝑘-fold XOR of 𝜌/, 𝜌0 is 𝜀!/2-unpredictable

(posed in Colisson’19 and Brakerski’23)

• Better loss than classical GNW11 proof
(like how quantum Goldreich–Levin is also more efficient)
• Application: average-case hardness amplification for

“quantum-input decision PSPACE”



Proof for baby case: 2-fold 2-message

• Start with classical baby case:
2-fold 2-message tight parallel repetition with non-uniform 
reduction from Levin’s isolation lemma (1987) and CHS05
• Adapt to post-quantum
• Adapt to fully quantum (handwavy)
• See paper:
• Extension to many folds
• Proof of best possible uniform reduction
• Other applications and details



2-fold 2-message parallel repetition

• Winning fold #𝑖 event 𝐺- ≔ 𝑃 𝑟- , 𝑚-

• Pr 𝐺, ∧ 𝐺2 = 𝛿2

• We want to have tight bounds!
⇒ Reduction should succeed with probability ≈ 𝛿
• Hope: Pr 𝐺, ≥ 𝛿 or Pr 𝐺2 ≥ 𝛿 ⇒ contradiction?

𝐴 𝐶
𝑃 𝑟!, 𝑚!
∧ 𝑃 𝑟", 𝑚"

𝑐!, 𝑐"

𝑚!, 𝑚"



2-fold 2-message parallel repetition (careful)

• Winning fold #𝑖 event 𝐺- ≔ 𝑃 𝑟- , 𝑚-

• 𝛿2 = Pr 𝐺, ∧ 𝐺2
• 𝛿2 = Pr 𝐺, ⋅ Pr 𝐺2|𝐺, (applying Bayes’ rule)
1. Pr 𝐺, ≥ 𝛿 ⇒ contradiction: reduction honestly simulate fold #2
2. Pr 𝐺2|𝐺, ≥ 𝛿 ⇒ ?
• Not meaningful!
• Conditioning on 𝐺1 may significantly change the distribution on 𝑟#
• No reduction L



2-fold 2-message parallel repetition (careful-er)

• Winning fold #𝑖 event 𝐺- ≔ 𝑃 𝑟- , 𝑚-

• 𝛿2 = Pr 𝐺, ∧ 𝐺2
• 𝛿2 = Pr 𝐺, ⋅ Pr 𝐺2|𝐺,
• 𝛿2 = E3! Pr 𝐺, ⋅ Pr 𝐺2|𝐺,
1. ∃𝑟2: Pr 𝐺, ≥ 𝛿 ⇒ still contradiction!
• Reduction hardwires that 𝑟# as advice (non-uniform)

2. ∀𝑟2: Pr 𝐺, ≤ 𝛿 ⇒ E3! Pr 𝐺2|𝐺, ≥ 𝛿 ⇒ also contradiction
• Reduction: “rejection sample” 𝑚# until 𝐺1

(randomly sample 𝑟1, run 𝐴, output 𝑚# if 𝐺1, otherwise rewind to beginning)



Great, how about post-quantum?

1. ∃𝑟2: Pr 𝐺, ≥ 𝛿 ⇒ contradiction
• Reduction hardwires that 𝑟# as advice (non-uniform)
• Still works!

2. E3! Pr 𝐺2|𝐺, ≥ 𝛿 ⇒ contradiction?
• Reduction: “rejection sample” 𝑚# until 𝐺1

(randomly sample 𝑟1, run 𝐴, output 𝑚# if 𝐺1, otherwise rewind to beginning)
• Can reset to beginning if 𝛼 is clonable/classical,

or if we have many copies of 𝛼 (ok but not ideal [Bitansky, Brakerski, Kalai’22])
• Fails harder for 3-message L 𝐴: |𝛼⟩ 𝐶

𝑐!, 𝑐"

𝑚!, 𝑚"	
𝑡!, 𝑡"



Fully quantum (very handwavy)

Back to 2-message…
1. ∃ 𝑟2 : Pr 𝐺, ≥ 𝛿 ⇒ contradiction
• Reduction hardwires that 𝑟# as advice (non-uniform)

2. E 3! Pr 𝐺2|𝐺, ≥ 𝛿 ⇒ contradiction?
• Reduction: “rejection sample” 𝑚# until 𝐺1?
• Natural idea: alternating projectors from quantum rewinding

[Watrous09, CCY21, CMSZ22, LMS22]
• Issues: (1) measures singular value causing disturbance

(2) possible unnecessary amplitude causing destructive interference
• Solution: Quantum Singular Value Transform (QSVT)



Quantum Singular Value Transform (QSVT)
[Gilyén, Su, Low, Wiebe’19]

Unification of most quantum algorithms (except QFT and classical)
• Given a block encoding of 𝐴 = ∑- 𝜍- 𝑤- 𝑣- and a low-degree odd 

polynomial 𝑝: −1,1 → −1,1 , QSVT approximates ∑- 𝑝 𝜍- 𝑤- 𝑣-
• Uniform singular value amplification: Given 𝑃𝑄 = ∑- 𝜍- 𝑤- 𝑣- ,

we can efficiently approximate the map ∑-
4"
5
𝑤- 𝑣- on all 𝜍- < 𝛾 given 

access to C6NOT, C7NOT gates
• We use uniform singular value amplification to do

“coherent post-selection ≈ sampling quantum conditional distributions”



Conclusions
• We adapt recent quantum algorithmic and rewinding techniques to 

prove efficient 3-message parallel repetition theorem and
XOR lemmas with best possible uniform reduction (see paper)
• We show how to quantumly efficiently round collapse other protocols 

to 3-message
Future work:
• Quantize other parallel repetition theorems

(partially simulatable or FHE wrapped protocols)
• Investigate more rewinding reductions J

Thank you! Questions?


