Beating Classical Impossibility of Position Verification

Jiahui Liu UT Austin Qipeng Liu

Simons Institute

Luowen Qian

Boston University

arXiv/2109.07517

Position verification via distance bounding

Attack with colluding adversaries

Position verification impossibility

Position verification impossibility

State of the art for position verification (PV)

- Chandran, Goyal, Moriarty, Ostrovsky (2009):
 - Impossibility
 - Protocol secure against bounded-storage adversaries
- Quantum protocols (quantum communication)
 - Kent (2002)
 - Burhman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner (2010)
 - Beigi, König (2011)
 - Kent, Munro, Spiller (2011)
 - Tomamichel, Fehr, Kaniewski, Wehner (2013)
 - Unruh (2014)

^{• ...}

In this talk...

Quantum hardness of Learning with Errors (LWE) \rightarrow

Classically verifiable position verification against quantum^{*} adversaries

Classical verifiers Classical communication

Can we do better?

- Quantum prover is necessary
- Computational assumptions are necessary (proofs of quantumness are necessary)

*security against entangled adversaries can be achieved with a stronger (standard) assumption/model

Practical advantages

Freespace communication has a high loss!

- Qi and Siopsis (2015): known quantum PVs break with high loss
- Loss-tolerant quantum PV:
 - Qi, Lo, Lim, Siopsis, Chitambar, Pooser, Evans, Grice (2015)
 - Chakraborty, Leverrier (2015)
 - Lim, Xu, Siopsis, Chitambar, Evans, Qi (2016)
 - Speelman (2016)
- LXSCEQ (2016) & Allerstorfer, Buhrman, Speelman, Lunel (2021): fully loss-tolerant quantum PV against *unentangled* adversaries
- Our work: full loss tolerance against entangled adversaries

Practical advantages, cont'd

Freespace quantum communication requires a tracking laser

Quantum information is harder to compose for position-based cryptography, e.g., authentication

BB84 states [Wiesner ca. 1969]

- Computational basis: $|0\rangle$, $|1\rangle$
- Hadamard basis:
 - $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ • $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$
- Can recover the bit given the basis and the state
- Provably information theoretically unclonable w/o knowing basis

Quantum position verification with BB84

[BCFGGOS10, BK11, KMS11, TFKW13, ...]

*Disclaimer: potentially inaccurate physical devices

BB84 position verification security [TFKW13]

Position verification impossibility

Trapdoor claw-free functions [Goldwasser, Micali, Rivest '84]

 $f_{pk} \colon \{0,1\}^n \rightarrow \{0,1\}^m$

- Claw-free: 2-to-1, hard to find collisions efficiently
- Trapdoor: $\exists td$ allows efficient inversion $y \rightarrow x_0, x_1$
- Adaptive hardcore bit: ...

Proof of quantumness

[Brakerski, Christiano, Mahadev, Vazirani, Vidick; 2018]

First attempt

First attempt, cont'd

First attempt, cont'd

First attempt, attack

Second attempt, analysis

Security proof

Computational non-local game of TCFs

Computational non-local game of TCFs

Computational non-local game of TCFs

Reduction to adaptive hardcore bit

Claim: By no-signaling,
$$\Pr[W'_0] = \Pr[W_0|\theta = 0]$$

 $\Pr[W'_1] = \Pr[W_1|\theta = 1]$
 $\Pr[W_0 \land W_1] = \frac{1}{2} (\Pr[W_0 \land W_1|\theta = 0] + \Pr[W_0 \land W_1|\theta = 1])$
 $\leq \frac{1}{2} (\Pr[W_0|\theta = 0] + \Pr[W_1|\theta = 1])$
 $= \frac{1}{2} (\Pr[W'_0] + \Pr[W'_1]) \text{ (no signaling)}$
 $\leq \frac{1}{2} (1 + \Pr[W'_0 \land W'_1]) \text{ (union bound)}$
 $\leq \frac{3}{4} + \text{negl}$ (adaptive hardcore bit)

Other results

- Negligible soundness via parallel repetition [Radian, Sattath 2019; Alagic, Childs, Grilo, Hung 2020; Chia, Chung, Yamakawa 2020]
- Security against entangled adversaries
 - Bounded entanglement from subexponential hardness ($\exp(n^{\varepsilon})$ -hardness) [Aaronson 2005; TFKW13]
 - Unbounded entanglement in the quantum random oracle model (QROM) [Unr14]
- Attack with entangled adversaries for standard model constructions

Future directions

- High dimensional classically verifiable position verification (CVPV)
- Time-entanglement trade-offs
- Is quantum memory/unclonability inherent for CVPV?
- Weakening the assumption/ideal model

Thank you!

Icons from flaticon.com Picture of laser from wikipedia.org