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Why unconditional security?
(according to cryptographers @ MIT)

“Cryptographers seldom sleep 
well.” –Silvio Micali
“Their careers are frequently 
based on very precise complexity-
theoretic assumptions, which 
could be shattered the next 
morning.” –Joe Kilian (1988)

Unconditional security is 
cryptographers’ ultimate dream!



What is unconditional security?

• Conditional security: depends on mathematical assumptions
• Unconditional security: proof without mathematical assumptions
Related concepts concerning modeling attackers:
• Information-theoretic (statistical) security: 💪 against attackers that 

can perform arbitrary computations (can even solve halting)
• Computational security (standard): 👑 against attackers with a 

polynomial amount of computational resources

Real world

Modeling assumptions
(unavoidable)

Mathematical 
abstraction

Security 
proof

Mathematical 
assumptions



Examples

One-time pad
is an unconditional
statistically secure
encryption scheme

Diffie-Hellman (as-is)
is a conditional 

computationally secure 
key-exchange scheme

Diffie-Hellman with a 
hypothetical proof

would be an unconditional 
computationally secure 
key-exchange scheme

+ proof-that-
discrete-log-
is-hard.pdf

Image: Crypto Museum and InfoWorld

https://www.cryptomuseum.com/crypto/otp/index.htm
https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.html


Classical cryptography feasibility matrix

Cryptographic task
Security proof

Statistically possible
🦄

Only computationally 
possible 👑

Unconditional ✓ 🚧 “P ≟ NP” 🚧
Conditional (unnecessary) ✓

*Because of this diagonal matrix, for all practical purposes
unconditional security ≈ statistical security (classically)

Too strong!

Avoid!



Quantum cryptography feasibility matrix

Cryptographic task
Security proof

Statistically possible
🦄

Only computationally 
possible 👑

Unconditional ✓ This talk!
Conditional (unnecessary) ✓

Still too strong!

Avoid!

Can we get unconditional computationally 
secure quantum cryptography?

spoilers: yes*

???



Bit commitment

𝑏

𝑏

Hiding:
Hides 𝑏 against 

malicious receiver

Binding:
malicious committer 

cannot change 𝑏

Commit phase

Reveal phase



Why (quantum) commitments?

1. Central: existential equivalence to many other tasks
ØOther quantum cryptography: oblivious transfer (OT),

secure multiparty computation (MPC), zero knowledge (ZK)…
[Bartusek-Coladangelo-Khurana-Ma’21, Ananth-Q-Yuen’22, Brakerski-Canetti-Q’23]

ØHardness of quantum information tasks: compression, channel decoding, 
entanglement distillation, black hole radiation decoding…
[Brakerski’23, Bostanci-Efron-Metger-Poremba-Q-Yuen’24]

2. “Easiest”: constructible from almost any computational cryptography
ØPost-quantum one-way functions
ØQuantum pseudorandomness, quantum encryptions, quantum money…

[AQY’22, Morimae-Yamakawa’22, BCQ’23, Khurana-Tomer’24, Ma-Q-Raizes-Zhandry]



Pursuit of unconditional commitments

• Conceptualized circa ’81, formalized in Brassard-Chaum-Crepeau’88
• Classical commitments require OWFs, thus P ≠ NP [Impagliazzo-Luby’89]

• Statistical quantum commitment proposals and attacks
[Brassard-Crépeau’90, Brassard-Crépeau-Jozsa-Langlois’93, Mayers’95, …]
• Statistical quantum commitment impossibility

[Mayers’97, Lo-Chau’97]

• Statistical relativistic commitments [Kent’99, …]

• Statistical quantum relativistic OT/MPC still impossible
[Rudolph’02; Colbeck’06]

Image: Quantum Technologies

https://www.unige.ch/gap/qic/qtech/news/24-hours-relativistic-bit-commitment


Quantum computational commitments

• Quantum commitments from new quantum assumptions
[Chailloux-Kerenidis-Rosgen’11, Kawachi-Koshiba-Nishimura-Yamakami’12]
vUnclear how these compare to OWFs

• Separation of quantum commitments from P ≠ NP and more
[Kretschmer’21, Ananth-Q-Yuen’22, Morimae-Yamakawa’22,
Kretschmer-Q-Sinha-Tal’23, Lombardi-Ma-Wright’24]
vUnderlying assumptions are either “contrived” or not concrete

Computationally secure quantum 
commitment could still be unconditional?



Auxiliary-input (non-uniform) cryptography
[Ostrovsky-Widgerson’93, …]

(Inefficient) 
preprocessing

𝑎𝑢𝑥 𝑎𝑢𝑥

(“P ≟ NP” barrier still applies) 

Adversaries also 
non-uniform: 

arbitrary 
preprocessing



Quantum auxiliary-input cryptography
 

(Inefficient) 
preprocessing

𝑎𝑢𝑥 𝑎𝑢𝑥

Adversaries also 
non-uniform: 

arbitrary 
preprocessing



Main theorem

Unconditionally, there exists a quantum auxiliary-input commitment 
scheme with inverse exponential security error that is:
• Statistically binding against (unbounded) committer
• Computationally hiding against exponential-size receiver
vNon-interactive

(one-message commit phase + one-message reveal phase)
vPreparing 𝑎𝑢𝑥 	takes at most uniform doubly-exponential time

(can be further applied for MPC: secure multiparty computations)

*concurrent with Morimae-Nehoran-Yamakawa



Exponential-time preprocessing 
means it is practically irrelevant, 

right?

Well, you could pick a 
smaller security parameter...
(48? so that preprocessing 

time is at most 2 years)



Application: high-stakes MPC
• Preprocessing phase: All parties run in exponential time

(independent of their inputs)
§ Adversaries are unbounded

• Online phase: (after obtaining inputs) enforce all parties to be 
polynomial time by enforcing a reasonable time limit
§ Adversaries also must be efficient

vAfter protocol concludes, one party may be able to recover
 others’ private inputs if they spend exponential time
 (inherent limit of computational security)
ØUse a commitment combiner with another post-quantum scheme

with a larger security parameter (say 512 bits instead of 48)
Ø“Certified everlasting transfer” secrets to a trusted referee [Bartusek-Khurana’23]

Image: Cronokirby

🚮

https://cronokirby.com/posts/2022/05/explaining-yaos-garbled-circuits/


Roadmap

üMain theorem
• Construction with trusted 𝑎𝑢𝑥
• Variation 1: prepare 𝑎𝑢𝑥  with efficient (stateful) trusted setup
• Variation 2: prepare 𝑎𝑢𝑥  with exponential communication
• Improved classical impossibility
• Future directions & conclusions



EFI pairs (of quantum states)
[Brakerski-Canetti-Q’23]

• Efficient generation: 𝐺 1! , 𝑏  is an efficient 
quantum algorithm sampling an arbitrary 
mixed state (distribution over pure states)
• Statistical Farness: 𝐺 1! , 0  vs 𝐺 1! , 1  are 

inefficiently distinguishable
• Computational Indistinguishability: 
𝐺 1! , 0 ≈" 𝐺 1! , 1  are indistinguishable 
against any quantum polynomial-time 
algorithms

𝐺 1", 0

𝐺 1", 1



Stinespring’s dilation theorem (1955)

• Every classical deterministic computation can be written
in a “reversible form”:
add auxiliary wires, apply reversible gates, remove auxiliary wires
• Every quantum computation can be written in a “unitary form”:

add auxiliary registers, apply unitary gates, remove auxiliary registers



EFI circuit in unitary form

How does a quantum unitary circuit generate randomness?
Randomness is caused by ignorance to purifications
• With access to purifications, the overall state is pure (deterministic)

Fact: “SWAP test” algorithm* 
can efficiently test equality 
of two unknown pure states

*Barenco-Berthiaum-Deutsch-Ekert-Jozsa-Macchiavello’97



Quantum commitments from EFI pairs

Canonical form commitment [Chailloux-Kerenidis-Rosgen’11, Yan-Weng-Lin-Quan’15, Yan’22]

𝜓($) &' 𝜓(
($) = 𝐺 1", 𝑏

𝜓)
($) 𝜓($) &'

Commit

Reveal

• Computational hiding
= computational 
indistinguishability

• Statistical binding: 
statistical farness ⇒ 𝑏 is 
statistically determined

SWAP test 
with 𝜓($)

𝑏 ∈ 0, 1



𝑎𝑢𝑥 	commitment from EFI pairs
[Chailloux-Kerenidis-Rosgen’11]

𝜓($) &' 𝜓(
($) = 𝐺 1", 𝑏

𝜓)
($) 𝜓($) &'

Commit

Reveal

Ø Only preparing 𝜓($)  is inefficient
𝑎𝑢𝑥 = 𝜓(&) ⊗ 𝜓(')

Where do we find EFI pairs?
• CKR11: from QMA ⊈ QIP
• This work: unconditional

SWAP test 
with 𝜓($)

𝑏 ∈ 0, 1



Unconditional EFI pairs?

Q: Unconditional EFI pairs of classical Distributions?
A: An expanding random function 𝐻: 𝑁 → 𝑁(  is an inefficient
 classical pseudorandom generator [Goldreich-Krawczyk’92]

ØFix a distinguisher circuit
ØExponential concentration exp −𝑁  via Chernoff’s bound
ØApply union bound over all exp 𝑁  exponential-size circuits
⇒ A random function is pseudorandom with high probability
Generalizes to quantum circuits without quantum advice

Non-uniform 
quantum 

adversaries can 
run multiple 

circuits in 
superposition



Post-quantum sparse pseudorandomness

𝐻: 𝑁 → 𝑁(  is an inefficient pseudorandom generator against 
quantum non-uniform circuits (with quantum advice)?
1. Invoke non-uniform QROM security [Chung-Guo-Liu-Q’20, Liu’23]

• Random functions are pseudorandom against quantum advice
even if they could query the random function oracle during execution phase
• Underlying proof is general and more algorithmic:

multi-instance interactive game, compressed oracle, quantum rewinding

2. A more GK-style algebraic proof [Ma (private communication)]

• Same idea as GK but use a matrix Chernoff’s bound for spectral norm
• Less general but slightly tighter security: 𝑆/𝑁 instead of ! 𝑆/𝑁

(matches GK classical bound: sqrt loss from Hoeffding’s bound)



Putting pieces together

Fix a good function 𝐻 (lexicographically smallest):
𝜓(&) ∝ ∑)∈ &,' ! 𝐻 𝑥 ,⊗ 𝑥 - (4𝜆 qubits in total)

𝜓(') ∝ ∑.∈ &,' "! 	 𝑦 ,⊗ 𝑦 - (efficient)

𝜓($) &' 𝜓(
($) = 𝐺 1", 𝑏

𝜓)
($) 𝜓($) &'

Commit

Reveal

SWAP test 
with 𝜓($)

𝑏 ∈ 0, 1

Takes doubly-exponential 
time, or exponential time 

if P = PSPACE



Instantiating quantum auxiliary input

• Variation 1: prepare 𝑎𝑢𝑥  with efficient (stateful) trusted setup
• Need to prepare: 𝜓(.) ∝ ∑/∈ .,0 " 𝐻 𝑥 &⊗ 𝑥 ' for a random function 𝐻
• If 𝐻 is a random oracle, this can be prepared efficiently with 1 quantum query
ØUse Zhandry’s compressed oracle to statefully simulate a random function
ØStatistically hiding if # of copies prepared is polynomial

• Variation 2: prepare 𝑎𝑢𝑥  with exponential communication
ØNaïve approach: ask one party to prepare copies of 𝜓(.)  for both

Efficiently broken! (using compressed oracles again)
ØA step back: jointly pick a random function 𝐻 and prepare 𝜓(.)  separately



Jointly picking 𝐻

Issue: How do parties agree on the 
random function 𝐻 without trusting 
each other?
Solution: ask the committer to pick 𝐻
ØComputational hiding against receiver 

if committer is honest
ØStatistical binding against committer 

if 𝐻 is expanding

Image by DALL·E



Reflection

• Classical cryptography stops at inefficient pseudorandomness
(not cryptographically useful)
• Quantum cryptography can further achieve commitments with 

preprocessing through purification and SWAP tests
Paradoxically, quantum auxiliary input (or advice)

helps cryptographers more than adversaries

Can randomized advice be useful?
(Raz’05: QIP/qpoly = IP/rpoly = ALL)



Randomized auxiliary-input cryptography

Independent 
distribution

𝑠< 𝑠=

Adversaries also 
non-uniform: 

arbitrary 
preprocessing

Example (Naor non-interactive commitment):
𝑠< = 𝑠= = a good receiver’s “first message”

Public randomized 
advice can be 

derandomized through 
averaging argument 



Impossibility of randomized commitments

Independent 
distribution

𝑠< 𝑠=
(&), … , 𝑠=

(ℓ)
𝑐

𝑟

With high probability,
• If 0 was committed, by 

completeness: 
∃𝑟: Accept 𝑐, 𝑟, 𝑠=

(?), 0

• If 1 was committed, by 
statistical binding: 
∀𝑟:¬Accept 𝑐, 𝑟, 𝑠=

(?), 0

Therefore, an NP algorithm 
can efficiently break hiding 
with just a few samplesClassical samples 

cannot be verified



Conclusions

• Quantum computational advantage through 
cryptography if P = NP
• First demonstration of useful cryptography 

with unconditional inherently-computational 
security
• Reassess the necessity of computational 

assumptions and the existence of barriers
for quantum cryptography

Thank you! Questions?

Unconditional computational 
cryptography is far from reach 
w/o quantum auxiliary input?

Beginning of unconditional 
computational cryptography?

Image: Wikipedia

https://en.wikipedia.org/wiki/Is_the_glass_half_empty_or_half_full%3F

